文章编号:0258-7106(2013)01-0157-12

东昆仑哈日扎含矿花岗闪长斑岩 LA-ICP-MS 锆石 U-Pb 定年及地质意义^{*}

宋忠宝1 张雨莲1 陈向阳1 江 磊1 李东生2 舒晓峰2,

栗亚芝1,李金超1,孔会磊1

(1 西安地质矿产研究所,陕西西安 710054;2 青海省第三地质矿产勘查院,青海西宁 810029)

摘 要 哈日扎铜钼多金属矿床位于东昆仑成矿带东段,是大型斑岩型铜钼多金属矿床。笔者利用锆石 LA-ICP-MS U-Pb 法,获得花岗闪长斑岩的成岩年龄为(234.5±4.8)Md(MSWD=0.24);花岗闪长斑岩为其成矿母岩。 对哈日扎花岗闪长斑岩的岩石学和地球化学研究表明,花岗闪长岩富 SiO₂(70.94%~76.08%)K₂Q(4.91%~ 6.07%),贫 CaQ(0.16%~2.01%)Na₂Q(0.24%~0.78%)属钾玄岩系列及高钾钙碱性系列。稀土元素总量变化 较大(124.69×10⁻⁶~178.68×10⁻⁶)稀土元素配分曲线为平缓的右倾型, 轻稀土元素相对富集, 重稀土元素相对 亏损。δEu 变化范围 0.26~0.30 具有弱负 Eu 异常。岩石微量元素相对富集大离子亲石元素(LILE),贫高场强元 素(HFSE),即相对富集 Rb, U, La 和 Nd, 而亏损 Ba, Sr, Nb 和 Y。花岗闪长斑岩形成于同碰撞构造环境。 关键词 地球化学, 锆石 LA-ICP-MS U-Pb 测年, 地球化学特征, 构造环境, 花岗闪长斑岩, 哈日扎, 东昆仑

中图分类号:P618.41 ;P618.65

Geochemical characteristics of Harizha granite diorite-porphyry in East Kunlun and their geological implications

文献标志码 :A

SONG ZhongBao¹, ZHANG YuLian¹, CHEN XiangYang¹, JIANG Lei¹, LI DongSheng², SHU XiaoFeng², LI YaZhi¹, LI JinChao¹ and KONG HuiLei¹

(1 Xi'an Institute of Geology and Mineral Resources, CGS, Xi'an 710054, Shaanxi, China;

2 Third Geological and Mineral Exploration Academy of Qinghai Province, Xining 810029, Qinghai, China)

Abstract

The Harizha Cu-Mo poly-metallic deposit is one of the typical large-size porphyry deposits in the eastern Kunlun metallogenic belt, with the LA-ICP-MS U-Pb age of its mother rock granite diorite-porphyry being (234.5 ± 4.8) Ma (MSWD = 0.24). Detailed petrographic and geochemical studies show that the granite diorite-porphyry in Harizha belongs to high-K calc-alkaline series, rich in SiO₂ (70.94% ~76.08%) and K₂O (4.91% ~6.07%), and poor in CaO(0.16% ~2.01%) and Na₂O(0.24% ~0.78%). The granite diorite-porphyry is characterized by total content of Σ REE varying greatly from 124.69×10⁻⁶ to 178.68×10⁻⁶, rich in LREE and low HREE, with δ Eu values from 0.26~0.30. Trace elements show enrichment of LILE such as Rb, U , La and Nd and depletion of HFSE like Ba, Sr, Nb and Y. Granite diorite-porphyry resulted from the syn-collisional tectonic setting.

^{*} 本文得到中国地质调查局地质调查项目(1212011121089,1212010918044)的资助

第一作者简介 宋忠宝,男,1963年生,研究员,主要从事青藏高原地区岩石矿床及同位素年代学研究。Email:szhongbao@163.com 收稿日期 2012-05-06;改回日期 2012-12-20。秦思婷编辑。

Key words: geochemistry, LA-ICP-MS zircon U-Pb dating, geochemical feature, tectonic setting, granite diorite-porphyry, Harizha, East Kunlun

东昆仑成矿带是青海省内重要的铁、多金属成 矿带之一。区内已发现有铜、钼、铅、锌、铁多金属等 矿床(点)多处 找矿潜力较大 前人已进行了较多的 研究(宋忠宝等,2009;2010;李洪普等,2009;潘彤 等,2001;2003;潘彤,2008;刘云华等,2005;2006a; 丰成友等 2010a 2010b 2012)。哈日扎矿床是近年 来青海第三地质矿产勘查院新发现的斑岩型铜钼矿 床 对其相关的地质研究刚起步。前人对其含矿斑 岩的特征及找矿潜力进行了研究(杨平等,2010;韩 英善等 2012) 笔者通过野外调查 发现矿区内发育 的铜钼矿化与花岗闪长斑岩关系密切 ,但花岗闪长 斑岩形成于什么时代,产出的构造环境和反映的地 球动力学过程又是怎样?笔者拟对哈日扎矿区与斑 岩成矿密切相关的花岗闪长斑岩开展系统的岩石地 球化学和 LA-ICP-MS 锆石 U-Pb 定年研究,以准确厘 定该区花岗闪长斑岩的形成时代,探讨其产出的地质 构造环境及与多金属成矿作用之间的关系 , 为进一步 在该区域进行地质找矿工作提供帮助。

1 矿区地质概况

哈日扎含铜斑岩体位于东昆仑东端,都兰县察 汗乌苏河上游哈日扎地区 ,大地构造位置处于东昆 仑北多旋回岩浆弧带。矿区出露地层主要有古元古 界白沙河岩组、上三叠统鄂拉山组和第四系。古元 古界白沙河岩组岩性组合主要是黑云斜长片麻岩、 斜长角闪片岩和大理岩等。在与早二叠世二长花岗 岩接触带有含矿矽卡岩带 片麻岩地层中沿构造裂 隙有热液型铜矿化产出,与成矿关系较为密切。上 三叠统鄂拉山组为一套陆相火山岩建造 ,岩性主要 是灰绿色岩屑晶屑凝灰熔岩、含集块凝灰熔岩、英安 质熔岩角砾岩和英安岩等。第四系广布于沟谷低洼 地带,有残坡积、沼泽堆积和冲洪积等。发育近NW 向、NW-SE 向、近 SN 向、NE 向 4 组断裂构造相互 交切。其中 NW 向、NE 向断裂具多期活动特征 构 成了区内主要的导运岩(矿)构造,并具储矿构造特 征。侵入岩出露有晚奥陶世片麻状花岗闪长岩、辉 长岩、早二叠世花岗闪长岩、似斑状二长花岗岩及中 三叠世花岗闪长斑岩等,含矿斑岩体为中三叠世花 岗闪长斑岩(图1)。矿区内填绘有4处含铜花岗闪

长斑岩露头。

目前,地表已发现的斑岩型铜矿(化)带主体由 不规则状花岗闪长斑岩构成,围岩主要为古元古界 白沙河岩组黑云斜长片麻岩及下二叠统花岗闪长 岩。矿化带内花岗闪长斑岩较破碎,多呈碎裂状,矿 化主要为黄铜矿化、黄铁矿化、孔雀石化和方铅矿化 等。其中,黄铜矿呈细粒稀疏浸染状、细脉状分布于 花岗闪长斑岩体中。矿化带地表断续出露长约1400 m,最宽处达200 m,工程控制矿体长800 m,呈透镜 状,平均厚8.9 m,最宽处厚26 m,地表矿体产状不 清,但从深部钻孔验证结果来看,矿体整体向西倾。 地表圈定铜矿体3条,通过钻孔验证,深部共发现铜 矿体16条,铅矿体2条,以品位较低和矿化不均匀 为主要特征。地表主要矿体特征见表1。

M4 铜矿体通过深部钻孔验证,矿化体具有厚度 大(累计见矿化厚度 32.03~49.37 m),品位低(Cu 为 0.17%~0.57%,Mo为 0.01%~0.02%)的斑岩 体全岩矿化的特点,矿体单层厚度从 1.5~11 m 不 等,含矿岩性主要为花岗闪长岩、花岗闪长斑岩,矿 化主要与硅化(石英细脉,一般 0.5~1 cm)关系密 切。含矿岩石中除呈浸染状、细脉状分布的黄铜矿 之外,局部还见呈星点状、细脉状的辉钼矿,团块状 的方铅矿、闪锌矿,斑点状的斑铜矿和团块状、稀疏 浸染状、薄膜状的黄铁矿,而且铜矿化向深部有逐渐 增强的趋势。目前,钻孔显示 500 m 以下斑岩体仍 有矿化存在,且以黄铜矿化为主。

矿石矿物:斑岩型铜矿石金属矿物主要有黄铜 矿和黄铁矿。脉石矿物主要有长石、石英、绿泥石 等。黄铜矿呈他形粒状、不规则粒状,粒度介于0.03 ~0.78 mm,以细粒为主,不均匀浸染状分布于花岗 闪长斑岩中,黄铁矿,呈浅黄色,他形粒状、不规则粒 状轮廓晶形,呈浸染状、微细脉状。矿石结构、构造: 矿石结构主要有斑状、细粒镶嵌变晶结构;浸染状构 造、脉状构造和块状构造。矿石类型:按矿石自然类 型分为氧化矿石、混合矿石和原生矿石3种类型。 氧化矿石常呈褐红色、桔黄色和灰绿色等,矿石中常 含有较多的高岭土等。因多金属硫化物淋滤流失, 造成氧化矿石品位相对较低;混合矿石由氧化矿石 和原生矿石组成;原生矿石分布于地表氧化带以下, 金属矿物由硫化物组成。 37°20

祁 漫

塔

乌图美仁

Ι

159

图 1 哈日扎地区地质略图(据杨平等 2010 修改)

1—古元古界白沙河岩组片麻岩夹片岩岩段;2—上三叠统鄂拉山组英安岩、晶屑凝灰熔岩;3—第四系松散堆积物;4—晚奥陶世弱片麻状 花岗闪长岩;5—晚奥陶世辉长岩;6—早二叠世花岗闪长岩;7—早二叠世二长花岗岩;8—中三叠世花岗闪长斑岩;9—花岗细晶岩脉; 10—花岗斑岩脉;11—矽卡岩带;12—矿体及编号;13—褐铁矿化蚀变带;14—绢英岩化蚀变带;15—黄铁矿化蚀变带;16—孔雀石化/褐 铁矿化蚀变;17—构造岩浆带边界;18—早古生代缝合带主断裂;19—晚古生代—早中生代缝合带主断裂;20—地层产状;21—片理产状; 22—逆断层;23—平移断层;24—省界;25—矿区位置;26—采样位置

构造岩浆带:⊥—柴北缘(∈ ₃-S) ; Ⅱ—柴达木地块(Pt₁)⁄盆地(J-N) ; Ⅲ—祁漫塔格-都兰(∈ ₃-T) ; Ⅳ—东昆仑北坡(O-T) ;

V—东昆仑南坡(O-T); Ⅷ—宗务隆山-鄂拉山(C-T₃)

Fig. 1 Geological sketch map of Harizha area (modified after Yang et al. 2010)

1—Palaeoproterozoic Baishahe Formation : gneiss intercalated with schist ; 2—Upper Triassic Elashan Formation : dacite , crystal tuffaceous lava ;
3—Quaternary loose overburden ; 4—Late Ordovician weak gneissic granodiorite ; 5—Late Ordovician gabbro ; 6—Early Permian granodiorite ;
7—Early Permian monzonitic granite ; 8—Middle Triassic granite diorite porphyry ; 9—Granite fine grained dike ; 10—Granite porphyry vein ;
11—Skarn zone ; 12—Ore body and its serial number ; 13—Limonitized zone ; 14—Sericitized zone ; 15—Pyritized zone ; 16—Malachitization/ limonitization ; 17—Boundary of tectonic-magmatic belt ; 18—Main fault of Early Paleozoic suture zone ; 19—Main fault of Late Paleozoic-Early Mesozoic suture zone ; 20—Attitude of strata ; 21—Attitude of schistosity ; 22—Reverse fault ; 23—Strike-slip fault ; 24—Provincial boundaries ; 25—Ore district ; 26—Sampling location

Tectono-magmatic belts : I —North margin of Qaidam Basir(\in_3 -S); II —Qaidam block(Pt₁)basir(J-N); III —Qimantag-Dular(\in_3 -T); IV —Northern slope of East Kunlur(O-T); VI—Southern slope of East Kunlur(O-T); VI—Zongwulongshan-Elashar(C-T₃)

表 1 哈日扎花岗闪长斑岩铜矿体特征表 Table 1 Characteristics of granitic diorite-porphyry ore bodies from Harizha

矿化带编号	矿体编号	矿种	平均品位/%	₭/m	宽/m	矿体产状	蚀变特征
M1	M1-1	Cu	0.63	800	8.2	310°∠70°	绢云母化、硅化
M2	M2-1	Cu	0.56	1000	13.8	295°∠80°	矽卡岩化、绢云母化、硅化
M4	M4-1	Cu	0.47	1400	20.6	290°∠65°	高岭土化、绢云母化、硅化

2 岩体地质特征

含铜斑岩体出露于哈日扎主脊北侧,南北向断续出露长约800m,东西宽约40~200m,面积约0.07km²,是典型的小岩体,地表总体呈南北向不规则脉状展布(图1)。本次采集的岩石样品(图1)以浅灰色-灰绿色为主,略带灰黄色,块状构造,具斑状结构,斑晶成分为斜长石(20%),钾长石(10%),石英(18%),黑云母(2%)等,斑晶含量50%,局部有浸染状黄铜矿,大小在0.4mm×0.47mm~2.04mm×5.8mm之间。斜长石斑晶呈板状或粒状,粒径大小不等且连续变化,范围0.3~3.2mm,可见聚斑,晶体均被绢云母交代。钾长石呈粒状,粒径大小不等,范围0.3~3.6mm,被绿泥石交代。石英多呈熔蚀状(港湾状、浑圆状),粒径大小不等,范围0.5~

5.8 mm。基质较致密,具微粒花岗结构,由粒径 0.01~0.034 mm的长石和石英组成,副矿物有磷灰 石、锆石和金属矿物等。

3 花岗闪长斑岩地球化学特征

3.1 样品采集及测试

样品均采自哈日扎矿区内花岗闪长斑岩体的不同部位。选择 5 件新鲜样品进行岩石主元素、微量元素和稀土元素分析。主量元素、微量元素和稀土元素分析均在西安地质调查中心测试中心完成,分析仪器为 SX-50 型 ICP-MS 等离子体质谱仪。

3.2 点主量元素特征

花岗闪长斑岩的主量元素分析(表 2)表明,哈日 扎花岗闪长斑岩 u(SiO₂)范围 70.94%~76.08%, 平均74.24%,反映了岩浆分异过程的一致性,属于

表 2 哈日扎矿区花岗闪长斑岩主量元素、微量元素和稀土元素分析结果及特征比值

 Table 2
 Chemical analytical data of major elements, trace elements and rare earth elements for whole-rock samples from Harizha granite diorite-porphyry and their characteristic element ratios

组分	11HRD08-B1-1 🔘	11HRD08-B1-2	11HRD08-B1-3	11HRD08-B1-4	11HRD09-B1
	0		w(B)/%		
SiO_2	73.11	76.08	75.51	75.55	70.94
Al_2O_3	13.51	13.54	13.74	13.96	13.61
Fe_2O_3	1.10	0.92	1.53	1.60	2.52
FeO	0.76	0.25	0.38	0.23	0.93
CaO	2.01	0.32	0.16	0.17	1.34
MgO	0.50	0.34	0.34	0.36	0.49
K_2O	4.91	5.40	5.42	5.18	6.07
Na ₂ O	0.54	0.78	0.77	0.70	0.24
TiO_2	0.23	0.19	0.21	0.22	0.23
P_2O_5	0.050	0.040	0.040	0.040	0.050
MnO	0.040	0.010	0.010	0.010	0.050
LOS	3.11	1.91	1.85	1.96	3.10
H_2O^+	1.33	1.30	1.30	1.33	1.52
总和	101.2	101.08	101.26	101.31	101.09
$K_2O + Na_2O$	5.45	6.18	6.19	5.88	6.31
K ₂ O/Na ₂ O*	9.09	6.92	7.04	7.40	25.29
CaO/Na ₂ O*	3.72	0.41	0.21	0.24	5.58
σ	0.986	1.155	1.179	1.062	1.425
AR	2.08	2.61	2.61	2.43	2.46

161

续表 2

Count. Table 2

组分	11HRD08-B1-1	11HRD08-B1-2	11HRD08-B1-3	11HRD08-B1-4	11HRD09-B1
			τ ι(Β)/ %		
DI	82.00	90.02	89.38	88.79	82.75
A/CNK*	1.609	1.318	2.088	1.168	1.147
A∕NK*	2.48	2.19	2.22	2.37	2.16
			w(B)/10 ⁻⁶		
Cu	1880	946	458	1130	5730
Pb	61.8	52.6	68.4	77.4	409
Cr	4.29	5.64	4.89	2.94	3.47
Ni	2.09	2.14	1.44	0.95	2.01
Co	9.29	1.22	1.06	1.40	19.1
Rb	307	316	328	318	425
Mo	1 51	0.72	1 47	1 01	1.65
Sr	81 4	87.6	78-3	74 5	73 4
Ba	584	556	524	504	961
Nh	13 /	11.8	13 1	13.2	11 5
To	1.56	11.0	15.1	1.50	1.5
1a 7	1.30	1.30	1.01	1.38	1.20
Zr	106	113	111	108	111
Ht	3.38	3.60	3.65	3.28	3.38
U	8.32	16.9	17.9	19.9	8.12
Th	30.4	27.2	27.4	26.8	25.8
Rb/Sr*	3.77	3.61	4.19	4.27	5.79
Co/Ni*	4.44	0.57	0.74	1.47	9.50
Nb/Ta*	8.59	7.87	8.14	8.35	9.13
La	31.5	23.0	23.3	24.6	35.3
Ce	65.4	48.6	49.3	52.2	72.8
Pr	7.94	5.94	6.11	6.52	8.75
Nd	30.7	22.8	24.0	24.8	33.2
Sm	7.22	5.42	5.68	6.37	7.38
Eu	0.64	0.50	0.47	0.57	0.68
Gd	6.12	5.12	5.08	5.56	6.28
1b D	0.98	0.84	0.82	0.94	0.98
Dy	5.97	5.10	5.08	5.74	5.66
Ho Fr	2 20	1.00	1.10	1.22	1.13
Er	3.30	2.86	2.89	3.29	3.00
1 m Vl	2.02	0.40	0.48	0.34	0.43
1D Lu	0.51	2.34	2.31	2.97	2.00
Lu V	0.31	0.43	0.40	0.50	0.47
ZBEE	165 00	124 60	127 28	135 82	52.0 178.68
LRFF	143 4	106.26	127.20	115.06	158 11
HRFF	21 69	18 43	18 42	20.76	20.57
I REE\HEEE *	6 61	5 77	5 91	5 54	7 69
$(1 a/Yb)^*$	7 49	6.50	6.66	5 94	9.74
SEu*	0.29	0.20	0.00	0.29	0.30
δCe*	0.99	1.00	0.99	0.99	0.99
~~~~	~	A	~ • • • • •	~	~

测试单位:西安地质调查中心测试中心。*单位为1。

 $Sm/Nd^*$ 

0.24

0.24

0.24

0.26

0.22

中酸性岩浆岩的范围。 u(Al₂O₃)范围 13.51% ~ 13.96% ,平均 13.67% ,铝的含量较高。 u( TFeO ) 范围 1.17% ~ 3.45%, 平均 2.04%。FeO/Fe₂O₃比 值范围 0.14~0.69, u(FeO)远小于 u(Fe₂O₃)。富  $K_2$ Q(4.91%~6.07%),贫 CaQ(0.16%~2.01%) 贫 Na₂O(0.24%~0.78%), u(K₂O+Na₂O)范围 5.45%~6.31%,平均6.00%。K₂O/Na₂O比值范 围 6.92~25.29,属于钾质。在 SiO₂-K₂O 图解(图 2) 中 样品全都落入钾玄岩与高钾钙碱性系列成分 区。测试数据还表明,随 SiO,质量分数的增加,主 量元素 TiO₂、CaO、Fe₂O₃、FeO、MgO、K₂O 和 P₂O₅ 呈现递减趋势 ,显示良好的负相关性 ,说明它们是同 源岩浆分异的产物。里特曼指数 σ为 0.986~ 1.425 减度率(AR)为2.08~2.61,分异指数(DI) 为 82.00~90.02, 说明岩浆分异程度较高。过铝指 数 A/CNK 均大于 1.1(1.147~2.088) 表明为 S 型 花岗岩属于强过铝质花岗岩(图3)。

3.3 稀土元素特征

由稀土元素分析结果(表 2)可知 哈日扎花岗闪 长斑岩的稀土元素总量为 124.69×10⁻⁶~178.68× 10⁻⁶ ,含量较低,但还是高于球粒陨石内的含量。其 稀土元素标准配分曲线呈现右倾(图 4),富集轻稀土 元素,重稀土元素弱富集 <u>5</u>件花岗闪长斑岩 LREE/ HREE为5.54~7.69,显示轻稀土元素相对于重稀土





Fig. 2  $u(SiO_2)$  versus  $u(K_2O)$  diagrams for Harizha granite diorite-porphyry



Fig. 3 A/CNK versus A/NK diagrams for Harizha granite diorite-porphyry

元素富集,反映了轻稀土元素强烈分馏的特点, &Eu 变化范围 0.26~0.30,具有弱负 Eu 异常,表明花岗 闪长斑岩经历了一定程度的斜长石分离结晶作用, 并且源区可能存在斜长石残留。Sm/Nd 比值在 0.22~0.26 之间变化(La/Yb)N 比值变化于 5.94 ~9.74 表明岩浆来源于地壳。

轻稀土元素富集的系列花岗岩有利于寻找 Fe、 Cu、Mo等玢岩型、斑岩型和砂卡岩型矿床(张绍立 等,1985),而斑岩铜多金属成矿系列的 SREE 在热 液蚀变过程中的行为也表明铕亏损,对斑岩矿化具 有指示意义,若斑岩体 SREE 高、δEu 小,则反映成 矿流体作用越强,矿化程度越好(王之田等,1991)。 从哈日扎矿床的稀土元素样品分布(图4)来看,成矿 母岩花岗闪长斑岩总体上显示轻稀土元素富集 (106.26~158.11), δEu 小(0.26~0.30),表明成矿 流体作用较强,矿化程度好(周雄等,2010)。

## 3.4 微量元素特征

赵伦山等(1988)指出,铜元素的克拉克值为50 ×10⁻⁶,钼元素的克拉克值为1.5×10⁻⁶,铅元素的 克拉克值为14×10⁻⁶。哈日扎矿区花岗闪长斑岩微 量元素分析结果(表2)表明,该区花岗闪长斑岩体的 铜含量超过其克拉克值9.16~114.6倍左右,为铜 矿的富集提供了成矿物质;钼含量较低,为0.48~ 1.10倍,但也有可能在有利部位局部富集成矿;铅含 量超过其克拉克值3.75~29.21倍左右,表明有壳源 物质混染或蚀变。花岗闪长斑岩Rb/Sr比值为3.61~





5.79 明显高于地幔相应比值(0.24~0.89),与地壳 比值(5.36~6.55)接近(Rudnick el al.,1995),说明 岩浆来源于地壳。而 u(Sr)介于 73.4×10⁻⁶~87.6 ×10⁻⁶,u(Rb)介于 307×10⁻⁶~425×10⁻⁶,表明 其演化程度相对较高。Co/Ni 比值在 0.57~9.50 之间,Nb/Ta 比值在 7.87~9.13 之间,平均 8.42,比 值较小 表明为地壳物质。

从微量元素蛛网图(图5)可以看出本区微量元 素含量均高于原始地幔的值,为右倾型,Ba、Nb、Sr 的亏损较明显,存在显著的Ba、Nb和Sr谷。显示出 岩浆与俯冲有关的特点。K的富集和Ba的亏损则 可能与源区金云母的熔融缺失有关。根据该区 Y+ Nb和 Rb的含量投影到图 6b,可以看出该区的花岗 闪长斑岩属于同碰撞花岗岩的范围,是形成斑岩型 矿床的有利岩体。

# 4 花岗闪长斑岩 LA-ICP-MS 锆石 U-Pb 定年

#### 4.1 样品采集

本次所采集的样品位于哈日扎地区,采样点坐标: 东经 98°33′53″,北纬 35°56′15″。样品编号为 11HR07,岩性为花岗闪长斑岩。野外采集新鲜样品









图 6 哈日扎花岗闪长斑岩构造环境判别图解(据 Pearce, 1996) Fig. 6 Tectonic discrimination diagram of granite diorite-porphyry in Harizha(after Pearce, 1996)

15 kg 岩石中锆石分选工作由河北省廊坊区域地质 调查所实验室完成。首先,用水将样品表面清洗并 晾干、粉碎至 80 目,然后用水粗淘、强磁分选、电磁 分选和用酒精细淘之后,在实体显微镜下手工挑选 锆石,按常规方法分选后,再挑选晶形完好,无包裹 体,透明度好,粒度大的单颗粒锆石进行测试。将待 测试样品置于 DEVCON 环氧树脂中,待固结后抛磨 至粒径的大约二分之一,使锆石内部充分暴露,然后 进行锆石显微(反射光和透射光)照相、CL 显微图像 研究及 LA-ICP-MS 测试。

# 4.2 锆石特征

锆石的 CL 图像(图 7)在西北大学大陆动力学 国家重点实验室完成。所选锆石大部分形态完整, 少数在制备过程中由于碎样粒度较小而破碎。从图 中可以看出,锆石以淡黄色短柱状晶体为主,长柱状 晶体次之,长宽比 2:1~4:1 粒径 50~400 μm,半自 形至自形晶,部分振荡环带发育,Th/U 比值为 0.28 ~0.42,均大于 0.1,显示了岩浆成因锆石特征 (Claesson et al. 2000;何世平等 2010),说明锆石的 结晶年龄可以代表花岗闪长斑岩的成岩年龄。

4.3 测试方法

激光剥蚀等离子体质谱(LA-ICP-MS)浩石微区 U-Pb年龄测试,在西北大学大陆动力学国家重点实 验室进行,在 Agilent7500型 ICP-MS 和德国 Lambda Physik 公司的 ComPex102 ArF 准分子激光器(工作物质 ArF,波长 193 nm),以及 MicroLas 公司的 Geo-Las200M 光学系统的联机上进行。激光束斑直径为 30 μm,激光剥蚀样品的深度为 20~40 μm。实验中 采用 He 作为剥蚀物质的载气,用美国国家标准技术 研究院研制的人工合成硅酸盐玻璃标准参考物质 NIST SRM610 进行仪器最佳化。采样方式为单点 剥蚀,数据采集选用一个质量峰一点的跳峰方式,每 完成 5 个测点的样品测定,加测标样一次。在所测 锆石 样 品 分析 20 个点之前、后 各测 1 次 NIST SRM610。锆石年龄采用国际标准锆石 91500 作为 外标标准物质,元素含量采用 NIST SRM610 作为外 标²⁹Si 作为内标。详细分析步骤和数据处理方法参 见相关文献(Horn et al. 2000;Ballard et al. 2001; Kosler et al. 2002 ,袁洪林等 2003 )。

### 4.4 定年结果

所得锆石同位素比值和年龄数据应用 Glitter (ver4.0, Mac QuarieUniversity)程序进行计算和处 理,并按照 Andersen 的方法,用 LA-ICP-MS Common Lead Correction(ver3.15)对其进行了普通铅校 正。所有样品均采用²⁰⁶Pb/²³⁸U年龄,年龄计算及谐 和图采用 Isoplot(ver3.0)完成。测试结果见表 3,单 个数据点的误差均为 1 $\sigma$ ,其加权平均值为 95%的置 信度。



#### 图 7 哈日扎岩体部分锆石阴极发光照片(圈内数字代表 U-Pb 分析点 数值代表²⁰⁶ Pb/²³⁸U 表面年龄)

Fig. 7 CL images of zircons from Harizha intrusion ( numbers in the circles represent analytical spots of U-Pb , and the values represent ages of  $^{206} Pb/^{238} U$  )

害	
H 1	
44	
测	
Ŧ	
ŧΠ	
1	
T	1
5	
R	
Ξ	1
4	į.
Ţ	
μ	
314	
Ħ	
米	
1	
102	
기스	2
技	
1	
47	
阳	
3	2
表	

Table 3 LA-ICP-MS isotopic data of zircon from Harizha intrusion

다 또 찾	$^{207}\text{Pb}_{\prime}$	/ ²⁰⁶ Pb	²⁰⁷ Pb.	/ ²³⁵ U	$^{206}\text{Pb}/$	/238U	²⁰⁸ Pb/	/232Th	²⁰⁷ Pb/ ²	$^{206}\mathrm{Pb}$	²⁰⁷ Pb/ ²	35U	²⁰⁶ Pb/ ²	238U	$^{208}\mathrm{Pb}/^{2}$	$^{32}\mathrm{Th}$
<b>1</b> 一 元 一 元 一	比值	10	比值	10	比值	$1\sigma$	比值	$1\sigma$	年龄/Ma	$1\sigma$	年龄/Ma	$1\sigma$	年龄/Ma	10	年龄/Ma	$1\sigma$
11HRD07-T1-01	0.05319	0.01291	0.29152	0.06881	0.03975	0.00227	0.01986	0.00229	336.90	472.53	259.80	54.10	251.30	14.05	397.50	45.30
11HRD07-T1-02	0.05644	0.00609	0.2876	0.02939	0.03696	0.00107	0.01412	0.00087	468.90	223.37	256.70	23.18	234.00	6.64	283.40	17.28
11HRD07-T1-06	0.05653	0.00259	0.28573	0.01047	0.03666	0.00063	0.01414	0.00031	472.60	98.94	255.20	8.27	232.10	3.90	283.80	6.20
111HRD07-T1-07	0.05637	0.00225	0.28652	0.0084	0.03687	0.0006	0.01232	0.00025	466.10	86.71	255.80	6.63	233.40	3.73	247.60	5.00
111HRD07-T1-09	0.05098	0.00245	0.25824	0.01018	0.03674	0.00063	0.01297	0.00031	240.00	107.12	233.20	8.21	232.60	3.95	260.40	6.10
111HRD07-T1-10	0.05643	0.00407	0.28491	0.01872	0.03662	0.00079	0.01212	0.00044	468.70	153.10	254.50	14.80	231.80	4.93	243.60	8.72
11HRD07-T1-12	0.05339	0.00208	0.27061	0.00764	0.03676	0.00059	0.01226	0.00024	345.30	85.54	243.20	6.11	232.70	3.67	246.30	4.87
111HRD07-T1-13	0.05383	0.00743	0.2718	0.03606	0.03662	0.00125	0.0124	0.0008	363.70	284.62	244.10	28.79	231.90	7.75	249.00	16.05
11HRD07-T1-14	0.05513	0.0026	0.28555	0.01099	0.03756	0.00065	0.01129	0.00022	417.50	102.06	255.00	8.68	237.70	4.03	227.00	4.40
11HRD07-T1-15	0.05732	0.00539	0.30594	0.027	0.03871	0.00102	0.01515	0.00083	503.30	195.15	271.00	20.99	244.80	6.31	303.80	16.57
111HRD07-T1-16	0.05417	0.00455	0.27278	0.02128	0.03652	0.00087	0.01334	0.00064	>378.00	178.81	244.90	16.98	231.20	5.41	267.90	12.84
11HRD07-T1-17	0.05425	0.00214	0.2737	0.00791	0.03659	0.00059	0.01166	0.00022	381.20	85.56	245.60	6.31	231.70	3.67	234.30	4.30
11HRD07-T1-18	0.05699	0.00201	0.2914	0.00678	0.03709	0.00058	0.01296	0.00023	490.40	76.56	259.70	5.33	234.70	3.61	260.30	4.59
11HRD07-T1-19	0.05497	0.00189	0.27757	0.00611	0.03663	0.00057	0.01214	0.0002	410.80	74.50	248.70	4.85	231.90	3.54	244.00	4.07
11HRD07-T1-22	0.05676	0.00237	0.30973	0.00994	0.03958	0.00066	0.01296	0.00026	481.50	90.52	274.00	7.70	250.20	4.07	260.30	5.26
11HRD07-T1-24	0.05602	0.00255	0.28736	0.01054	0.0372	0.00064	0.01225	0.0003	452.90	98.51	256.50	8.31	235.50	3.96	246.10	6.05
11HRD07-T1-25	0.05298	0.00186	0.2677	0.00625	0.03665	0.00057	0.01142	0.0002	327.80	86.77	240.90	5.00	232.00	3.56	229.50	4.01
注: 使用 Anderson 等(	2002)的软小	牛进行普通	铅校正。							101						

165





本次共获得 17 个有效数据点,沿水平方向不同 程度地偏离谐和线,这主要是由于锆石中²⁰⁷Pb 丰度 较低难以测准,又或者与普通铅的丢失有关。鉴于 此,²⁰⁶Pb/²³⁸U 年龄更能准确反映成岩年龄。²⁰⁶Pb/ ²³⁸U 表面年龄值为 231.2~251.3 Ma,变化幅度较 小具有非常一致的表面年龄。其加权平均年龄值 ((234.5±4.8) Ma(MSWD=0.24))(图 7)与谐和 年龄值((221.2±9.2) Ma(MSWD=0.94))(图 8) 在误差范围内一致,可以准确代表岩体的形成年龄 为中三叠世,这一年龄解释为该花岗闪长斑岩的侵 位年龄。

5 讨 论

### 5.1 花岗闪长班岩形成时代及其成矿作用

东昆仑祁漫塔格地区是一个显著的侵入岩浆构 造带,这里除了有加里东期(谌宏伟等,2006;陈博 等 2012)和华力西期(李光明等,2001)花岗岩类岩 体外,近些年来还厘定出一批印支期花岗岩类岩体。 如约格鲁花岗闪长岩 SHRIMP 锆石 U-Pb 年龄为 (242±6) Ma(刘成东等,2004);王松等(2009)得到 的卡尔却卡花岗闪长岩锆石的 U-Pb 年龄为(237± 2) Ma 鹛子沟含矿钾长花岗斑岩的 SHRIMP 锆石 U-Pb 年龄为(224±1.6) Ma(李世金等,2008),卡尔 却卡矿区外围花岗闪长岩的全岩 K-Ar 年龄分别为 (219±10) Ma 和(220±11) Ma(王松等,2009);乌 兰乌珠尔含矿花岗斑岩锆石的 U-Pb 年龄为(215± 4.5)Ma( 佘宏全等,2007),野马泉地区景忍中细粒 正长花岗岩的 SHRIMP 锆石年龄为(204.1±2.6) Ma( 刘云华等,2006b )。丰成友等(2009)利用辉钼 矿 Re-Os法,获得矽卡岩型铜钼多金属矿石和矽卡 岩型钼矿石的等时线年龄分别为(225.0±4.0)Ma (MSWD = 0.24)和(230.1±4.7)Ma(MSWD = 0.12),厘定矿区成矿时代为中-晚三叠世。笔者从 哈日扎铜多金属矿区与斑岩型-砂卡岩型铁铜铅锌多 金属矿化具有密切成因联系的花岗闪长岩中获得锆 石的 U-Pb 年龄为(234.5±4.8)Ma 表明该岩体形成 于中三叠世,不仅显示印支期曾发生强烈的花岗岩浆 侵人活动,而且还产生强烈的多金属成矿作用。

### 5.2 成岩物质来源

哈日扎含矿花岗闪长斑岩的 Sm/Nd 比值为 0.22~0.26 (La/Yb),比值为 5.94~9.74,Rb/Sr 比值为 3.61~5.79 Co/Ni 比值为 0.57~9.50 Nb/ Ta比值为 7.87~9.13 均表明岩浆来源于地壳。针 对u(SiO₂)在 67%~77%之间的强过铝质花岗岩而 言, CaO/Na₂O 比值能反映其源区成分特征 (Sylvester,1998)。泥岩生成的过铝质花岗岩中 CaO/NaoO比值一般小于 0.3 , 而砂岩生成的过铝质 花岗岩中 CaO/Na₂O 比值一般大于 0.3 ,由砂岩( 或 正变质岩)部分熔融形成的花岗质熔体的 CaO/Na₂O 比值高于由泥岩部分熔融形成的熔体。哈日扎花岗 闪长斑岩的 CaO/Na₂O 比值为 0.21~5.58,其中 3 件样品 CaO/Na2O 比值大于 0.3 表明其岩浆源区岩 石成分可能为泥岩和砂岩混合 ,以砂岩为主。综上 , 推测成矿岩体来源于沉积地层或蚀变的硅质洋壳物 质重融 ,也就是成矿物质主要来自与含矿斑岩体或 岩脉有联系的深部岩浆分异演化而析出的含矿气液 流体 同时 ,含矿斑岩体或岩脉定位-结晶时通过周 围受热地下水的对流循环作用,还可从围岩中萃取 少量成矿物质加入成矿作用。

#### 5.3 形成构造环境及其地球动力学意义

东昆仑成矿带处于古亚洲构造域与特提斯构造 域叠加复合部位。主要包括早古生代多岛弧盆系形 成与闭合和晚古生代—早中生代多岛盆系形成与闭 合 2 大主构造阶段,为一个典型的复合造山带。研 究表明,东昆仑地区在晚古生代—早中生代是一个 连续的构造演化过程。早古生代形成的昆中洋盆闭 合之后,东昆仑地区成为复杂的活动大陆边缘。受 到来自巴颜喀拉-阿尼玛卿洋俯冲的影响,从石炭纪 开始陆续有与洋壳俯冲作用有关的火山喷发和岩浆 侵入,这一过程持续到二叠纪末—三叠纪初。巴颜 喀拉-阿尼玛卿洋闭合以后,挤压应力场的持续作用 促使陆内造山作用的发生,岩石圈急剧增厚,整个区 域上升成陆。

岩石地球化学特征研究表明,哈日扎矿区花岗 闪长斑岩为钾玄岩与高钾钙碱性系列岩石,且富 钾 具有陆壳的特征。大离子亲石元素 Rb、Th、K 明 显富集 高场强元素(Ta、Nb、Yb)亏损 轻、重稀土元 素分异明显, 轻稀土元素明显富集, 呈现轻微-中等 程度的负铕异常。这些地球化学特征常见于同碰撞 花岗岩或火山弧花岗岩。在花岗岩 Y-Nb 图解(图 6a)中,所有点都落在同碰撞花岗岩或火山弧花岗岩 中 在 Y + Nb-Rb 图解中 所有点均落在同碰撞花岗 岩(图 6b)中。而在 260~230 Ma, 东昆仑正好处在 洋壳大规模俯冲碰撞阶段,此次得到的哈日扎花岗 闪长斑岩形成时代[(234.5±4.8) Ma]和王松等 (2009)得到的卡尔却卡花岗闪长岩形成时代[(237) ±2) Mal正好处在该阶段晚期,也就是处在洋壳大 规模俯冲碰撞阶段,并在230 Ma进入由挤压向后碰 撞造山转变的阶段。后碰撞阶段"相对松弛"的应力 背景使下地壳物质部分熔融,形成了大量的花岗质 岩浆 同时 由于底侵作用使得混染地幔物质。中三 叠世岩浆侵入过程中,挥发分携带铜钼等成矿元素◎ 向顶部及外围运移。在与围岩接触部位、岩浆遇冷, 温度降低 其中的副矿物、暗色矿物、斜长石和石英 等矿物以及铜钼等元素开始从岩浆中结晶出来。随 着岩浆进一步演化,铜钼元素在此处不断聚集,同 时,含矿斑岩体或岩脉定位-结晶时通过周围受热地 下水的对流循环作用 还可从围岩中萃取少量成矿 物质加入成矿作用。形成哈日扎铜钼矿区西北部、 中北部和中部,这3个产于成矿岩体内外的铜钼矿 体群。

丰成友等(2012)研究认为,在东昆仑祁漫塔格 地区大多具斑状或似斑状结构的晚三叠世高分异富 钾花岗岩形成于204~228 Ma,大约240 Ma 祁漫塔 格主造山已由挤压转入伸展并伴有幔源岩浆活动, 晚三叠世后演化到后碰撞阶段;中-晚三叠世花岗岩 与本区密集产出的矽卡岩型和斑岩型多金属矿床的 时空与成因关系密切,具有重要的找矿指示意义。

# 6 结 论

(1)哈日扎花岗闪长斑岩具富 SiO₂(70.94% ~

76.08%) K₂O(4.91%~6.07%),贫 CaO(0.16% ~2.01%) Na₂O(0.24%~0.78%)的特点,为钙碱 性过铝质花岗岩。

(2)稀土元素总量变化不大(124.69×10⁻⁶~ 178.68×10⁻⁶) 羟稀土元素富集,重稀土元素相对 亏损,具负铕异常( dEu = 0.26~0.30 )。Ba、Nb、Sr 亏损明显,可能为同碰撞花岗岩,有利于斑岩型矿床 成矿。

(3)LA-ICP-MS 锆石 U-Pb 测年结果表明, 哈日 扎花岗闪长斑岩形成于(234.5±4.8)Ma, 为中三叠 世,对东昆仑成矿带在中三叠世进一步寻找同时代 的斑岩型-矽卡岩型矿床提供了理论依据。

志 谢 在野外样品采集及工作过程中,得到 青海省地勘局第三地质矿产勘查院项目组的大力支 持和帮助;在论文编写过程中,丰成友研究员和高永 宝博士提出了很好的建议;审稿人认真的审阅并提 出意见,在此表示衷心感谢!

### 参考文献/References

- 陈 博 涨占玉 耿建珍,贾群子,宋忠宝,张晓飞,陈向阳,全守村,张 雨莲,栗亚芝. 2012. 青海西部祁漫塔格山卡尔却卡铜多金属矿 床似斑状黑云二长花岗岩 LA-ICP-MS 锆石 U-Pb 年龄[J]. 地质 通报,31(02):463-468.
- 谌宏伟,罗照华,莫宣学,刘成东,柯 珊. 2006. 东昆仑喀雅克登塔 格杂岩体的 SHRIMP 年龄及其地质意义[J]. 岩石矿物学杂志, 25(1) 25-32.
- 丰成友,李东生,屈文俊,杜安道,王 松,苏生顺,江军华.2009.青 海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年 及其地质意义[J].岩矿测试,28(3):223-227.
- 丰成友,李东生,吴正寿,李军红,张占玉,张爱奎,舒晓峰,苏生顺. 2010a. 东昆仑祁漫塔格成矿带矿床类型、时空分布及多金属成 矿作用[J]. 西北地质 43(4):10-17.
- 丰成友 张大权 李东生,孙 艳,李国臣,马圣钞. 2010b. 青海祁漫 塔格地区成矿规律研究 []. 矿床地质, 29(增刊): 3-4.
- 丰成友,王 松 李国臣,马圣钞,李东生. 2012. 青海祁漫塔格中晚 三叠世花岗岩:年代学、地球化学及成矿意义[J]. 岩石学报,28 (2):665-678.
- 韩英善,郭桂兰,张大明,景向阳,奎明娟. 2012. 东昆仑东段哈日扎 地区含矿斑岩特征及找矿潜力分析[J]. 西北地质,45(1):33-39.
- 何世平,李荣社,王 超,于浦生,辜平阳,时 超.2010. 祁连山西段 甘肃肃北地区北大河岩群片麻状斜长角闪岩的形成时代[J]. 地 质通报,29(9):1275-1280.
- 李光明, 沈远超, 刘铁兵. 2001. 东昆仑祁漫塔格地区华力西期花岗 岩地质地球化学特征[J]. 地质与勘探, 37(1):73-78.

- 李洪普,曹永亮,关有国,张寿庭,苏生顺,许文鼎. 2009. 青海东昆仑 山四角羊地区铁多金属矿床的成矿地质特征[J]. 地质通报,28 (6):787-793.
- 李世金,孙丰月,丰成友,刘振宏,赵俊伟,李玉春,王 松. 2008. 青 海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报 82 (7)949-955.
- 刘成东,莫宣学,罗照华,喻学惠,谌宏伟,李树为,赵 欣. 2004. 东 昆仑壳-幔岩浆混合作用:来自锆石 SHRIMP 年代学的证据 J]. 科学通报 49(6) 592-602.
- 刘云华 莫宣学 涨雪亭,许国武. 2005. 东昆仑野马泉地区矽卡岩矿 床地质特征及控矿条件[J]. 华南地质与矿产(3):18-23.
- 刘云华,莫宣学,张雪亭,许国武.2006a.东昆仑野马泉地区砂卡岩 矿床地球化学特征及其成因意义[J].华南地质与矿产(3)31-36.
- 刘云华,莫宣学 喻学惠,张雪亭,许国武. 2006b. 东昆仑野马地区景 忍花岗岩锆石 SHRIMP U-Pb 定年及其地质意义[J]. 岩石学报, 2次 10) 2457-2463.
- 潘 彤,马梅生,康祥瑞. 2001. 东昆仑肯德可克及外围钻多金属矿 找矿突破的启示[J]. 中国地质, 28(2):17-21.
- 潘 彤 孙丰月. 2003. 青海东昆仑肯德可克钴铋金矿床成矿特征及
   找矿方向[J]. 地质与勘探, 39(1):18-22.
- 潘 彤. 2008. 青海东昆仑肯德可克钴金矿床硅质岩特征及成因
   [J]. 地质与勘探 44(2) 51-54.
- 佘宏全 涨德全 景向阳 ,关 军 ,朱华平 ,丰成友 ,李大新. 2007. 青 海省乌兰乌珠尔斑岩铜矿床地质特征与成因[]]. 中国地质 ,34 (2) 306-314.
- 宋忠宝 杜玉良 ,李智明 ,贾群子 ,高永宝 ,刘振宏 ,袁光平 ,常革红 ,童 ,海奎. 2009. 青海省矿产资源发育特征概述[J]. 地球科学与环境学报 ,33(1),30-47.
- 宋忠宝,贾群子,张占玉,何书跃,陈向阳,全守村,栗亚芝,张雨莲, 张晓飞. 2010. 东昆仑祁漫塔格地区野马泉铁铜矿床地质特征 及成因探试[].西北地质,34(4)209-217.
- 王 松,丰成友 李世金,江军华,李东生,苏生顺,2009. 青海祁漫塔 格卡尔却卡铜多金属矿区花岗闪长岩锆石 SHRIMP U-Pb 测年 及其地质意义[J]. 中国地质 36(1):74-84.
- 王之田 秦克章. 1991. REE 在判别斑岩体含矿性上的应用[J]. 地 质科技情报,10(2)37-41.
- 杨 平 ,裴生菊 ,陈丽娟 ,唐 键 ,赵海霞. 2010. 青海哈日扎含铜斑

岩特征及其找矿潜力分析 J]. 青海大学学报(自然科学版),28 (6),62-68.

- 袁洪林,吴福元,高山,柳小明,徐平,孙德有.2003.东北地区新 生代侵入体的锆石激光探针 U-Pb 年龄测定与稀土元素成分分 析[J].科学通报,48(14):1511-1520.
- 张绍立,王联魁,朱为方,杨文金. 1985. 用磷灰石中稀土元素判别花 岗岩成矿系列[J]. 地球化学,14(1):45-57.
- 赵伦山 涨本仁. 1988. 地球化学[M]. 北京:地质出版社.
- 周 雄 "温春齐,费光春,曹盛远,吴鹏宇,霍 艳. 2010. 西藏邦铺斑 岩型钼矿床二长花岗斑岩地球化学特征及构造意义[J]. 矿物岩 石 30(4):48-54.
- Anderson W , Jarzynski J and Salan R T. 2002. Monitoring the condition of liquid-lubricated mechanical seals[ J ]. Sealing Technology , (2) 6-11.
- Ballard R J , Palin M J , Williams S I , Campbell H I and Faunes A. 2001. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by LA-ICP-MS and SHRIMIE J J. Geology , 29 383-386.
- Claesson S, Vetrin V, Bayanova T and Downes H. 2000. U-Pb zircon ages from a Devonian carbonatite dyke, Kola peninsula, Russia : A record of geological evolution from the Archaean to the Palaeozoic [J] Lithos, 51 95-108.
- Horn J Rudnick R L and McDonough W F. 2000. Precise elemental and isotope ratio determination by simultaneous solution nebulization and laser ablation-ICP-MS: Application to U-Pb geochronology[ J ]. Chemical Geology , 164 281-401.
- Kosler J Fonneland H Sylvester P Tubrett M and Pedersen R B. 2002. U-Pb dating of detrital zircons for sediment provenance studies :A comparison of laser ablation ICP MS and SIMS techniques[ J ]. Chemical Geology ,182 :605-618.
- Pearce J A. 1996. Sources and settings of granitic rocks J J. Episodes , 19(4):120-125.
- Rudnick L R and Fountain M D. 1995. Nature and composition of the continental crust : A lower crustal perspective J J. Reviews of Geophysics 33 267-309.
- Sylvester J P. 1998. Post-collisional strongly peraluminous granites [J]. Lithos 45(1-4) 29-44.