文章编号 10258-7106 (2008) 03-0399-08

青海东昆仑卡尔却卡多金属矿区斑岩型 铜矿的流体包裹体研究^{*}

李世金¹²,孙丰月¹,王 力¹,李玉春²,刘振宏³,苏生顺²,王 松⁴

 (1吉林大学地球科学学院,吉林长春 130061;2青海省地质调查院,青海西宁 810012;3青海省国土资源厅, 青海西宁 810001;4中国地质科学院矿产资源研究所,北京 100037)

摘 要 卡尔却卡铜多金属矿床是青海省地质调查院于近几年在东昆仑西段祁漫塔格地区新发现的一个矿床,目前规模已达中型。文章通过对矿区西北部受岩体断裂破碎蚀变带控制的铜矿体中石英流体包裹体岩相学、显微测温和激光拉曼探针成分分析,表明铜矿化石英脉中发育气液两相、富气相、含子矿物三相、纯液相和纯气相5类包裹体,气液两相和含子矿物三相流体包裹体的盐度差异明显,但它们的均一温度比较一致(320~440℃),反映在成矿流体演化过程中发生了强烈的流体不混溶,对成矿起重要作用;流体包裹体气相成分主要为H₂O和 CO₂,其次为 CH₄、N₂、H₂S 及烃类。综合流体包裹体研究和矿化、蚀变等地质特征,笔者认为矿区西北部矿化应为与高中温岩浆热液作用有关的斑岩型铜矿化,它与区内强烈发育的铜铅锌多金属砂卡岩矿化均为同一构造-岩浆作用的产物。

关键词 地质学 流体包裹体 岩浆流体 斑岩铜矿 矿床成因 卡尔却卡 东昆仑 中图分类号:618.41 文献标志码 :A

Fluid inclusion studies of porphyry copper mineralization in Kaerqueka polymetallic ore district, East Kunlun Mountains, Qinghai Province

LI ShiJin^{1,2}, SUN FengYue¹, WANG Li¹, LI YuChun², LIU ZhenHong³, SU ShengShun² and Wang Song⁴ (1 College of Earth Sciences, Jilin University, Changchun 130061, Jilin, China; 2 Qinghai Geological Survey, Xining 810012, Qinghai, China; 3 Department of Land and Resources of Qinghai Province, Xining 810012, Qinghai, China; 4 Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China)

Abstract

The Kaerqueka polymetallic ore deposit, located in Qimantage area within the western part of East Kunlun Mountains, is a medium-sized ore deposit discovered by Qinghai Geological Survey in recent years. The authors studied copper ore bodies controlled by the fractured alteration zone of the rock body in northwest ore district by such means as petrographic analysis, microthermometry and laser Raman microprobe analysis of fluid inclusions. As a result, five types of fluid inclusions were found in the copper mineralized quartz veins, i.e., two-phase liquid-vapor inclusions, gas-rich inclusions, daughter mineral-bearing three-phase inclusions, liquid inclusions and vapor inclusions. There exists a significant difference in salinity between the two-phase liquid-vapor inclusions and the daughter mineral-bearing three-phase inclusions, suggesting that strong fluid immiscibility must have taken place in the evolutionary process of the ore-forming fluids, which played an important role in mineralization. H_2O and CO_2 are dominant in the fluids, followed by CH_4 , N_2 , H_2 , H_2S and hydrocarbons. Taking into

本文得到国家地质调查项目(编号:1212010531403)和'十一五'国家科技支撑计划课题(编号 2006BAB01A06)的资助
 第一作者简介 李世金,男,1965年生,博士研究生,教授级高工,主要从事矿床地质研究和勘查工作。E-mail ddylsj@163.com
 收稿日期 2008-01-07;改回日期 2008-04-07。张绮玲编辑。

account fluid inclusion features and geological characteristics of mineralization and alteration, the authors hold that porphyry-type copper mineralization in the northwest part of the ore district is related to high-middle temperature magmatic hydrothermal activities, and is the same tectonic-magmatic product as the polymetallic skarn mineralization.

Key words: geology, fluid inclusion, magmatic fluid, porphyry copper, genesis of ore deposit, Kaerqueka, East Kunlun

地处柴达木盆地西缘的青海省祁漫塔格地区, 近年来的矿产勘查取得了重要进展,不仅新发现多 处大中型铁、钴、铜、钼、铅、锌多金属矿床,而且还确 认了斑岩型矿床的存在,该地区已成为青海省的重 要金属矿产基地。其中,位于青、新两省区交界处的 卡尔却卡多金属矿床是典型代表之一(图1),该矿床 由青海省地质调查院于 2003 年发现,成矿元素组合 复杂,以 Cu-Pb-Zn 为主,共生、伴生有 Fe、Au、Ag 等,目前矿床规模已达中型,正在开展的矿产勘查工 作显示其进一步的找矿潜力巨大。由于该矿床发现 较晚,理论研究工作刚刚起步,张德全等(2006)⁹基 于含矿斑岩体的发现、蚀变组合和矿化特征等,提出 矿区西北部的铜矿化为斑岩型铜矿化。本文对卡尔 却卡矿床的地质特征进行了详细的介绍,通过对铜 矿体流体包裹体的显微测温和激光拉曼探针分析等 研究,探讨了流体来源和形成的物理化学条件,以期 对矿床成因认识和区域找矿评价工作有所裨益。

1 矿区地质概况

卡尔却卡多金属矿区出露岩石以花岗质侵入岩 为主(占基岩面积的90%以上),其次为少量奥陶纪— 志留纪滩间山群大理岩和基性火山岩,以剥蚀残留 体形式零星分布于侵入岩体中(图1)。第四系主要 为河谷冲积砂、砾和粘土,分布于河谷和山前地区。 侵入岩主要有似斑状黑云母二长花岗岩和花岗

闪长岩,前者呈岩基状产出,整体展布呈 NWW 向, 与区域构造线基本一致,黑云母二长花岗岩为浅肉 红色,中-粗粒似斑状结构,块状构造,局部片麻状构 造,形成于晚二叠世[•];后者呈岩株状侵入于前者,形 态为较规则长条状,亦呈受构造控制明显的 NWW 向展布,岩石为灰白色,中-细粒结构,块状构造,多 发育暗色包体,2件花岗闪长岩的全岩 K-Ar 法年龄 分别为(219±10)Ma 和(220±11)Ma[•]。该类岩体 东端与奥陶纪—志留纪滩间山群火山-沉积岩系接 触部位常常形成富含多金属矿化的矽卡岩带(图1)。 此外,尚有一些闪长岩、闪长玢岩和花岗岩等呈小岩 枝或岩脉产出,与晚三叠世花岗闪长岩时空关系密 切,推测为同源岩浆演化的产物。另据钻孔资料,于 矿区深部揭露出花岗闪长斑岩和黑云母花岗斑岩等 小岩体,它们具铜等金属矿化。

矿区构造以断裂为主,褶皱构造不发育。断裂 有 NWW 向和 NE 向 2 组,以前者为主。NWW 向断 裂集中分布于野拉赛以西,挤压强烈,断裂破碎带一 般宽 50~300 m 不等,长度一般大于 10 km,是重要 的控岩和控矿构造。NE 向断裂分布于野拉赛,显示 张性特征,构造带宽 50~350 m 不等,长度大于 15 km,该组断裂切穿 NWW 向断裂和花岗岩类岩体。

卡尔却卡矿区成矿元素组合复杂,以 Cu-Pb-Zn 为主,共、伴生有Fe、Au、Ag等。根据野外详细调 查,可分为2种矿化类型:①斑岩型铜矿化,位于矿 区西北段,地表表现为产于似斑状黑云母二长花岗 岩破碎蚀变带中的热液脉状铜矿化,地表共圈出3 条破碎蚀变带和 10 条铜矿体。破碎蚀变带宽 40~ 150 m 走向延长几百米至 4 km 矿体中石英细脉发 育,一般宽几厘米,最宽1.3 m,具黄铜矿化、黄铁矿 化 含铜最高达 7.57%。铜矿体中普遍伴生金 金含 量在 $0.1 \times 10^{-6} \sim 0.5 \times 10^{-6}$ 。 矿石具碎裂结构、他 形粒状变晶结构、填隙结构、浸蚀结构及稠密浸染 状、脉状、网脉状构造。主要金属矿物为黄铜矿、黄 铁矿,含少量黑钨矿、锡石、毒砂。 在深部,根据钻孔 (ZK3901)揭露,见有全岩矿化的花岗闪长斑岩、黑 云母花岗斑岩体侵入 斑岩体普遍发育黄铁矿化、绢 云母化,铜品位在0.1%左右的矿化厚度逾140 m。 蚀变特征表现为自矿体中心向外的面型,中部为钾 化和硅化,外侧为黄铁绢英岩化。因受风化作用的 影响 蚀变带普遍有褐铁矿化 铜矿化地段孔雀石发

育。② 岩体与地层围岩接触带的矽卡岩型多金属 矿化 矿区内共圈出 3 处多金属矿化矽卡岩带 均产 于花岗闪长岩与滩间山群的接触部位。但不同矿化 矽卡岩带产出的金属成矿元素组合不一致 SK-I 号 矽卡岩带以铜、锌、铁为主,已圈出地表铜矿体7条、 深部铜、锌、铁多金属矿体 15 条 ;SK- || 号矽卡岩带 主要为铅-锌组合,共、伴生金和银,共圈出5条铅、 锌、银矿体和 3 条低品位金矿体 ;SK-Ⅲ号矽卡岩带 主要为铜-钼,并伴生金和银,已圈出铜、钼矿体3 条 矿石品位较高 其中的块状辉钼矿矿石和块状铜 矿石最高品位分别达 26% 和 59%。不同地段的成 矿元素组合变化较大,很可能是由于被交代的围岩 岩性不同 因此 ,它们的金属成矿物质来源不一样。 野外观察表明_SK-I号矽卡岩带被交代岩石主要为 滩间山群大理岩和基性火山岩,铁、铜、锌等成矿元 素主要来自火山岩 ,这与区域北部柴达木盆地北缘 的青龙滩含铜黄铁矿矿床围岩岩性和元素组合相一 致 张德全等 2005a) SK-Ⅲ号矽卡岩带被交代岩石 为滩间山群大理岩,铅、锌、银等成矿物质来源与柴 达木盆地北缘的锡铁山铅锌矿床类似 ,均来自大理 岩(张德全等 ,2005b) ;而 SK-Ⅲ号矽卡岩带铜、钼矿 化则与下盘直接为花岗岩体和开采深度较大有关。 该类矿化矿物组成较为复杂 ,金属矿物有黄铜矿、斑 铜矿、辉铜矿、黝铜矿、铜蓝、黄铁矿、磁铁矿、针铁 矿、闪锌矿、方铅矿、硬锰矿、磁黄铁矿等,脉石矿物 包括石英、钾长石、斜长石、绢云母等。 矽卡岩化蚀 变作用强烈,发育透辉石、绿泥石、绿帘石、阳起石、 石榴子石、方解石等。上述不同元素组合矿化类型 应由同一构造-岩浆活动在不同阶段、不同深度和不 同部位发生成矿作用造成。由于矽卡岩型多金属矿 化矿石中的流体包裹体少且个体小 因此 本次重点 开展斑岩型铜矿石的流体包裹体研究。

2 流体包裹体研究

2.1 样品和流体包裹体测试方法

本次共选择 6 件含铜石英脉样品用于流体包裹体研究,其中,KQTC1-W3 和 KQTC1-W1 采自矿区 西北部最北侧的破碎蚀变带的探槽中,KQZ03-W1 取自 ZK03 钻孔中,KQN01-W1、KQB19-W2 和 KQB14-W1分别取自最北侧破碎蚀变带中的矿体。

图 2 卡尔却卡多金属矿区斑岩型铜矿的流体包裹体显微照片

a. KQTC1-W1 样品中的气液两相包裹体;b. KQTC1-W1 样品中的富气相包裹体;c. KQTC1-W1 样品中的富气相、纯气相和含子矿物 三相包裹体;d. KQZ03-W1 样品中的富气相和含子矿物三相包裹体;L—液相;G—气相;H—子矿物

Fig. 2 Microscope photos of fluid inclusions from porphyry copper mineralization in the Kaerqueka polymetallic ore district a. Two-phase inclusions in KQTC1-W1; b. Vapor-rich inclusions in KQTC1-W1; c. Vapor-rich, vapor and daughter mineral-bearing three-phase inclusions in KQTC1-W1; d. Vapor-rich and daughter mineral-bearing three-phase inclusions in KQZ03-W1; L—Liquid G—Vapor; H—Solid

研究工作在吉林大学地球科学学院地质流体实验室 完成。将样品磨制成厚 0.25~0.3 mm 的包裹体 片 首先进行流体包裹体岩相学观察 然后选择有代 表性的原生包裹体进行显微测温实验和激光拉曼探 针成分分析。流体包裹体显微测温所用仪器为英国 Linkam 生产的 THMS-600 型显微冷热台。测试前 用人造纯 H₂O 及 25%的 H₂O-CO₂包裹体(国际标 样)进行系统校正,温度在30℃以下,测试精度为 ±0.1℃。温度在 30℃以上时 测试精度为±1℃。测 试时,为防止包裹体爆裂,采取先冷冻后升温的方 法。流体包裹体成分分析采用 Renisha System-1000 型激光拉曼光谱仪,试验条件为 514 nm Ar⁺离子激 光器 扫描范围 4 500~850 cm⁻¹ 狭缝宽度 20 µm, 积分时间 150 s ,精度 1 cm^{-1} ,成分相对含量最低检 测限为 0.n%。通过对 H₂O、CO₂、CH₄、N₂、H₂等拉 曼光谱积分面积 结合这些气体组分本身的性质 ,计 算出流体包裹体中的气相组成的相对摩尔百分含 量 ,详细内容请参见 Burke(2001)。

2.2 流体包裹体类型

流体包裹体岩相学研究表明,所测石英样品中 发育较丰富的原生流体包裹体,根据它们在室温条 件下的相态特征,可分为 I型(气液两相包裹体).Ⅱ 型(富气相包裹体).Ⅲ型(含子矿物三相包裹体).Ⅳ 型(纯液相包裹体)和 V型(纯气相包裹体).6种,以前 3种类型为主。其中,I型和Ⅱ型两者约占80%,Ⅲ 型约占10%,Ⅳ型和 V型两者约占10%,这些类型 在不同样品中的发育程度也不一样。总体上,这些 包裹体的形态较为规则,空间上大多随机分布,不同 类型包裹体常共生于同一石英颗粒内(图2),反映出 它们为同阶段捕获的产物。

Ⅱ型包裹体由盐水溶液和气泡两相构成,气相 百分数在5%~55%,大部分为20%~40%,加热后 均一到液相。包裹体形态有椭圆形、眼球形、长条形 及不规则形,大小在5~24 μm(图2a,b),该类包裹 体约占包裹体总数的40%。Ⅲ型包裹体为富气相包 裹体,亦由盐水溶液和气泡两相构成,气相百分数在

60%~95%,大部分60%~80%,加热后均一到气 相。包裹体形态有圆形、椭圆形和不规则形 ,大小在 6~30 µm(图 2b、2c、2d),这类包裹体约占包裹体总 数的 40%。Ⅲ型包裹体由盐水溶液、气泡和子矿物 三相组成,气相百分数介于15%~80%,大部分在 20%~40%。大多数包裹体只含一个子矿物,极少 含2个子矿物。子矿物颜色呈灰白色—白色,立方 体晶形,与石盐子晶特点吻合(张文淮等,1993; Shepherd et al., 1985)。升温过程中,大部分此类包 裹体气泡先消失 ,最后子矿物消失而完全均一到液 相。包裹体形态主要为不规则长条状,大小在6~34 um(图 2c、2d)。这类包裹体约占包裹体总数的 10%。 [] 型纯液相包裹体由单一盐水溶液组成 ,形 态常呈椭圆形、不规则长条形成群分布,大小多在5 ~10 µm。该类包裹体较少,约占包裹体总数的 5%。 Ⅴ型包裹体由单一气相组成,常见形态有椭圆 形、圆形和四边形,大小悬殊,大部分为6~40 µm (图 2c)约占包裹体总数的 5%。

2.3 流体包裹体显微测温结果

利用 Linkam THMS-600 型冷热台共对 123 个 主要类型的流体包裹体进行了冷冻法和均一法测温 工作,其中包括 I型(气液两相包裹体)81 个、II型 (富气相包裹体)30 个、III型(含子矿物三相包裹体) 12 个(表 1)。统计结果表明,I型包裹体的均一温 度集中在 320~400℃,平均值为 353℃;II型包裹体 的均一温度众值为 320~440℃,平均值为 402℃;III 型包裹体的均一温度众值与 I 型包裹体一致,也在 320~400℃之间,但其平均值略高,为 367℃(图 3a)。总体来看,上述 3 种主要类型流体包裹体的均 一温度范围比较一致,介于 320~440℃之间,属中-高温热液流体体系。

由表 1 可见 根据 31 个冰点温度,应用 Hall 等 (1988)的盐度计算公式计算出] 型气液两相包裹体 (包括 2 个富气相包裹体)的盐度 $w(NaCl_m)$ 为 2.24%~22.16%,平均值为7.99%,集中在4%~ 10%(图 3b)。用所获得的该类包裹体的均一温度和 盐度数据,应用刘斌等(1987)的经验公式计算出其 流体密度为 0.48~0.96 g/cm³, 平均 0.72 g/cm³, 属中低盐度、低密度流体。依据 12 个子矿物消失温 度 应用 Hall 等(1988)的盐度计算公式计算出Ⅲ型 含子矿物三相包裹体的盐度 w(NaClea)为 40.31% ~50.4%,平均值为43.09%,多数集中于40%~ 44% 依均一温度及包裹体中各相比例 按相关公式 (Shepherd et al., 1985)计算出其流体密度为 1.07~ 1.11 g/cm³ 属高盐度、较高密度流体。图 3b 反映出 的气液两相与含子矿物三相流体包裹体的盐度差异 明显,可能为流体演化过程中不均匀捕获的结果。

2.4 流体包裹体气相成分的激光拉曼探针分析

为进一步确定包裹体成分,对部分样品中的气 液两相包裹体、富气相包裹体和纯气相包裹体的气 相成分进行了激光拉曼探针分析。从表2可见,流 体包裹体的气相成分主要为H₂O和CO₂,其次为

~表1 卡尔却卡矿区斑岩型铜矿化的流体包裹体特征及参数

 Table 1 Microthermometric data and characteristics of fluid inclusions in porphyry copper mineralization of the Kaerqueka polymetallic ore district

样品号	类型	数量/个	大小/ μm	ự(气相)/%	t m ∕° C	<i>t</i> _h /℃	re(NaCl _{eq})/ %	$\rho / (g \cdot cm^{-3})$	<i>p</i> ∕MPa	估算深度/km
KQN01-W1]型	17	6~24	20~45	$-4.5 \sim -1.8$	322.6~369.3	3.06~7.17	0.64~0.75	86.1~96.0	7.60~9.79
KQN01-W1	型	3	8~16	$60 \sim 70$	$-2.1 \sim -1.3$	342.4~348.5	2.24~3.55	$0.63 \sim 0.65$	88.7~91.2	7.73~7.84
KQN01-W1	Ⅲ型	5	10~32	20~40		332.5~353.1	40.31~41.73	1.07	93.9~99.8	$7.98 \sim 8.24$
KQZ03-W1]型	12	6~10	25~55	$-6.9 \sim -5.7$	293.6~478.4	8.81~10.36	$0.48 \sim 0.82$	80.8~131.6	7.34~9.56
KQZ03-W1	Ⅲ型	8	6~14	60~90		388.1~488.6				
KQTC1-W3]型	12	7~12	$10 \sim 40$	$-18.6 \sim -5.1$	136.2~427.8	7.99~21.65	$0.66 \sim 0.91$	58.1~104.3	6.11~8.45
KQTC1-W3	型	3	$8 \sim 10$	$60 \sim 80$		374.9~438.6				
KQTC1-W1]型	14	$7 \sim 14$	5~40	$-19.3 \sim -3.9$	156.7~417.9	6.29~22.16	$0.66 \sim 0.96$	42.5~107.8	5.16 - 8.60
KQTC1-W1	型	1	12	60		330.2				
KQB19-W2]型	14	6~24	$15 \sim 40$	$-6.3 \sim -4.4$	310.8~473.1	$7.02 \sim 9.60$	0.72~0.76	90.9~93.5	7.83~7.95
KQB19-W2	型	2	6~30	$60 \sim 65$		369.3				
KQB19-W2	Ⅲ型	3	6~34	15~30		345.0	44.70~50.40	$1.08 {\sim} 1.11$	109.3~125.9	8.66~9.34
KQB14-W1]型	12	$5 \sim 18$	5~45	$-4.6 \sim -1.7$	$295.4 \sim 488.4$	2.90 - 7.31	$0.55 {\sim} 0.77$	$80.9 \sim 104.1$	7.34~8.34
KQB14-W1	Ⅲ型	13	7~12	60~95		294.2~474.8				
KQB14-W1	Ⅲ型	4	9~20	25~80		342.7~372.2	41.00~43.30	1.07	96.8~105.2	8.11~8.48

注: ፲ 型—气液两相包裹体; Ⅲ 型—富气相包裹体; Ⅲ 型—含子矿物三相包裹体; ∢ 气相)—气相百分数。

图 3 卡尔却卡矿区斑岩型铜矿的流体包裹体均一温度图(a)和盐度直方图(b) Fig. 3 Histogram showing homogenization temperatures(a) and salinities(b) of fluid inclusions in porphyry copper mineralization of the Kaerqueka polymetallic ore district

 CH_4 、 N_2 、 H_2 和 H_2S , 另含有少量的 C_2H_6 、 C_6H_6 、 C_2H_4 和微量的 C_3H_8 、CO 等组分。表现在激光拉曼图谱 上(图 4),流体包裹体的主要气相成分出现较强的 CO_2 、 H_2O 和 CH_4 峰及微弱的 N_2 和 H_2S 峰。综合前 述流体包裹体类型、显微测温结果和激光拉曼探针 分析,成矿流体为一套以 H_2O - CO_2 -NaCl- CH_4 - N_2 为 主,含有 H_2S 、 H_2 及多种烃类的复杂组分体系。

3 讨 论

- WWW
- 3.1 流体性质及成矿的物理化学条件 以上对流体包裹体的研究表明,共存于同一铜

矿化石英脉中的气液两相和含子矿物三相流体包裹体的盐度差异明显,但它们的均一温度比较一致(320~440℃),反映出在成矿流体演化过程中发生了强烈的流体不混溶,对成矿起了重要作用。激光拉曼探针分析结果表明,流体包裹体气相成分主要为H₂O和CO₂,其次为CH₄、N₂、H₂和H₂S,并含有少量的C₂H₆、C₆H₆、C₂H₄和微量的C₃H₈及CO等组分,具有岩浆热液流体的特征(芮宗瑶等,2003)。另外,有些流体包裹体中含有一个或两个子矿物,根据子矿物形态和均一特征推测,应为石盐和钾盐子晶,说明含矿流体富含K、Na等成分,这种富K、Na高盐度流体的来源应以岩浆来源为主。

表 2 卡尔却卡矿区斑岩型铜矿化的流体包裹体气相成分的激光拉曼光谱分	折结果
------------------------------------	-----

 Table 2
 Laser Raman spectrum analyses of gas phase fluid inclusions in porphyry copper mineralization of the Kaerqueka polymetallic ore district

	包裹体类型						$x B \gamma \%$					
样品号		H_2O	CO ₂	CH_4	H_2S	H_2	CO	N_2	C_6H_6	C_2H_4	C_2H_6	C_3H_8
KQTC1-W3	⊥型	47.62	35.06	2.46	3.11		0.93	7.04	0.57	1.37	1.43	0.41
KQTC1-W3	Ⅲ型	82.15	12.80	0.34	0.72		0.00	2.71	0.39	0.00	0.28	0.25
KQTC1-W1	V 型	40.21	28.50	6.40	5.23	5.71	0.00	10.80	0.85	1.33	0.00	0.97
KQTC1-W1	⊥型	80.86	5.71	2.57	1.66		0.00	8.07	1.14	0.00	0.00	0.00
KQB19-W2	王型	68.21	28.48						2.39		1.58	
KQB19-W2	Ⅲ型	45.19	35.48			4.17		15.16				
KQN01-W1	Ⅲ型	18.33	57.24	8.43		2.71		12.25	1.03			
KQN01-W1	Ⅲ型	12.30	67.55	5.92		4.89		8.41			0.93	
KQB14-W1	Ⅲ型	19.78	57.79	2.15	1.58			15.73		2.97		
KQB14-W1	Ⅲ型	26.45	62.56	1.84	1.43	6.9				0.82		
KQZ03-W1	王型	34.83	45.33	11.90						5.58	2.36	
KQZ03-W1	V 型	19.68	46.71	23.89			9.72					

注 : Ⅰ 型—气液两相包裹体 ; Ⅱ 型—富气相包裹体 ; Ⅴ 型—纯气相包裹体。空白处未检出。

沸腾包裹体群的均一温度可以近似地看作为捕获温度(卢焕章等 2004),流体包裹体显微测温结果 表明,I、II、II型包裹体的均一温度比较一致,介于 320~440℃之间,即代表了成矿的温度。根据流体 包裹体的均一温度和流体盐度,利用邵洁连(1988) 计算流体压力的经验公式计算出气液两相包裹体的 流体压力为 42.5~131.6 MPa(表1),平均 91.7 MPa 主要集中在 80~110 MPa 之间。根据高盐度 NaCl-H₂O 体系 *t-p* 相图(Shepherd et al., 1985),估 算出含子矿物三相包裹体的流体压力为 95.3~ 125.9 MPa(表1),平均 103.8 MPa,主要集中在 92 ~108 MPa。根据孙丰月等(2000)关于脉状热液矿 床成矿深度和压力分段拟合公式,计算出其成矿深 度为 5.16~9.79 km,平均 8.04 km,主要在 7.5~ 8.5 km,属中等深度矿床。

3.2 矿床成因

卡尔却卡矿区西北部的铜矿化,近地表表现为

受产于似斑状黑云母二长花岗岩中构造破碎蚀变带 控制的黄铜矿-石英脉矿体,向深部为细脉-浸染状黄 铜矿化花岗闪长斑岩、黑云母花岗斑岩低品位矿体, 发育钾化、硅化、绢英岩化、高岭石化等蚀变,具有典 型的花岗斑岩类矿床蚀变分带和矿化特征,在成矿 特征、成矿条件等方面与本区东侧的乌兰乌珠尔斑 岩型铜矿(佘宏全等 2006)非常相似,应为斑岩型铜 矿床。

前述流体包裹体岩相学、显微测温和激光拉曼 探针成分分析结果表明,产于岩体断裂破碎蚀变带 中的黄铜矿-石英脉矿体富含 CO₂ 包裹体和含子矿 物三相包裹体,代表性样品的流体包裹体气相成分 以 CO₂、CH₄ 为主,另外还含有 N₂、H₂S 及烃类 等,气液两相、富气相和含子矿物三相流体包裹体的 均一温度范围集中在 320~440℃。可见,本区铜矿 化的流体包裹体与一般典型斑岩铜矿的流体特征相 似(Bodnar, 1995; Hezarkhani et al., 1998; Meinert et al. , 2003).

区内黄铜矿-石英脉矿体主要产在二叠纪浅肉 红色中粗粒似斑状二长花岗岩的断裂破碎带中,铜 矿化显然晚于似斑状二长花岗岩的形成。根据钻孔 资料,于下部的花岗闪长斑岩、黑云母花岗斑岩中出 现细脉浸染状全岩黄铜矿化,矿化厚度可达140多 米,斑岩体普遍发育黄铁矿化、绢云母化,可见,铜成 矿作用与斑岩体侵位密切相关。目前虽然还没有花 岗斑岩体的直接年代学数据,但矿区内与矽卡岩型 铜铅锌多金属成矿作用密切相关的花岗闪长岩全岩 K-Ar 法年龄为219 Ma 左右^①。鉴于区内不同矿化 类型总体应为同一构造-岩浆活动在不同阶段、不同 深度和不同部位发生成矿作用的产物,故推断斑岩 型铜矿化时代可能为印支期,正是东昆仑地区发生 强烈壳-幔相互作用并导致产生大量岩浆-热液活动 和成矿作用的时期^④。

4 结 论

(1)卡尔却卡矿区西北部的铜矿化表现为近地 表产于似斑状黑云母二长花岗岩构造破碎蚀变带中 的黄铜矿-石英脉矿体和深部细脉-浸染状黄铜矿化 花岗斑岩矿体,发育钾化、硅化、绢英岩化、高岭石化 等蚀变,具有典型的花岗斑岩类矿床蚀变分带和矿 化特征。

(2)矿区西北部黄铜矿-石英脉矿体和细脉-浸染 状铜矿体中发育气液两相、富气相、含子矿物三相、 纯液相和纯气相5类包裹体,不同类型、不同盐度的 包裹体共存,而它们的均一温度基本一致,介于 320 ~440℃,表明流体在演化过程中发生了强烈的不混 溶,对成矿起重要作用。利用有关公式,估算的流体 压力集中在 80~110 MPa,计算出的成矿深度主要 为7.5~8.5 km。激光拉曼探针分析表明,流体包 裹体气相成分主要为 H₂O 和 CO₂,其次为 CH₄、N₂、 H₂、H₂S 和烃类,显示为岩浆热液流体特征。综合上 述,矿区西北部近地表产于黑云母二长花岗岩断裂 破碎蚀变带中的黄铜矿-石英脉矿体和深部细脉-浸 染状花岗闪长斑岩全岩铜矿化应为与高中温岩浆热 液作用有关的斑岩型铜矿化。

References

- Bodnar R J. 1995. Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits[J]. Mineralogical Association of Canada Short Course Series , 23:139-152.
- Burke E A J. 2001. Raman microspectrometry of fluid inclusions J J. Lithos , 55 : 139-158.
- Hall D L , Sterner S M and Bodnar R J. 1988. Freezing point depression of NaCl-KCl-H₂O solutions [J]. Econ. Geol. , 83 : 197-202.
- Hezarkhani A and Williams-Jones A E. 1998. Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran Evidence from fluid inclusions and stable isotopes [J]. Econ. Geol., 93:651-670.
- Liu B and Duan G X. 1987. The density and isochoric formulae for Na-Cl-H₂O fluid inclusions(salinity ≤ 25 %) and their applications[J]. Acta Mineralogica Sinica ,7(4):345-352(in Chinese with English abstract).
- Lu H Z , Fan H R , Ni P , Ou G X , Shen K and Zhang W H. 2004. Fluid inclusions[M] Beijing : Science Press. 201-229 (in Chinese).
- Meinert L D , Hedenquist J W and Satoh H. 2003. Formation of anhydrous versus hydrous skarn in Cu-Au ore deposits by magmatic fluids [J]. Econ. Geol. , 98 :147-156.
- Rui Z Y , Li Y Q , Wang L S and Wang Y T. 2003. Approach to oreforming conditions in light of ore fluid inclusions J J. Mineral Deposits , 22(1):13-23(in Chinese with English abstract).
- Shao J L. 1988. Prospecting mineralogy of gold deposit [M]. Wuhan : China Univ. Geosci. Press. 38-45 (in Chinese with English abstract).
- She H Q, Zhang D Q, Jing X Y, Guan J, Zhu H P, Feng C Y and Li D X. 2007. Geological characteristics and genesis of the Ulan Uzhur porphyry copper deposit in Qinghai [J]. Geology in China, 34(2): 306-314(in Chinese with English abstract).
- Shepherd T J , Rankin A H and Alderton D H M. 1985. A practicguide to fluid inclusion studies [M]. Blackie & Son Limited. 1-239.
- Sun F Y , Jin W , Li B L and Peng X L. 2000. Considerations on the mineralizing depth of hydrothermal lode gold deposits[J]. J . Changchun Univ. Sci. & Technol. ,30 (Supp.):27-30 (in Chinese with English abstract).
- Zhang D Q , Dang X Y , Li D X , Feng C Y , She H Q and Li J W. 2005a. Two types of massive sulfide deposits along northern margin of Qaidam basin ,Qinghai Province : [] . Qinglongtan-style VHMS Cu-S deposits [J]. Mineral Deposits , 24(6) :575-583(in Chinese with English abstract).
- Zhang D Q , Wang F C , Li D X , Feng C Y , She H Q and Li J W. 2005b. Two types of massive sulfide deposits on northern margin of Qaidam basin ,Qinghai Province : I . Xitieshan-style SEDEX leadzinc deposits [J]. Mineral Deposits , 24(5):471-480(in Chinese with English abstract).

(下接382页)

[●]青海省地质调查研究院. 2004. 布喀大板峰幅 1:25 万区域地质调查报告. 内部资料.

❷ 孙丰月,陈国华,迟效国,等. 2003. 新疆-青海东昆仑成矿带成矿规律和找矿方向. 研究报告.