首页 | 官方网站   微博 | 高级检索  
     


Continental Lithospheric Contribution to Alkaline Magmatism: Isotopic (Nd, Sr, Pb) and Geochemical (REE) Evidence from Serra de Monchique and Mount Ormonde Complexes
Authors:Bernard-Griffiths  Jean; Gruau  Gerard; Cornen  Guy; Azambre  Bernard; Mace  Joel
Affiliation:1 Géosciences Rennes UPR 4661 CNRS, Campus De Beaulieu, Avenue Du Général Leclerc, 35042 Rennes Cedex, France
2 Laboratoire De Pétrologie Structurale, UER Des Sciences De La Nature, Faculté Des Sciences De Nantes 2 Rue De La Houssinière, 44072 Nantes Cedex 03, France
3 Département De Pétrologie, Université P. ET M. Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
Abstract:Isotopic results (Sr, Nd, Pb), as well as concentrations ofmajor and trace elements (REE) are reported for whole-rock samplesand mineral separates from the onland alkaline complex of Serrade Monchique (South Portugal) and the offshore alkali basaltvolcanic suite of Mount Ormonde (Gorringe Bank). These two geneticallyrelated alkaline complexes were emplaced at the east Atlanticcontinent–ocean boundary during the Upper Cretaceous,i.e. 66–72 m.y. ago. Taken together, Serra de Monchiqueand Mount Ormonde may be seen as one of the few examples ofwithin-plate magmatism that straddles the continent–oceanboundary. Major and trace element compositions fail to revealany significant differences between onland and offshore complexes.This is particularly true regarding less differentiated samples(mg-number ≥ 0.40) which show the same progressive and continuousenrichment of their trace element patterns, with no specificanomaly (e.g. negative Nb anomaly) being present in samplesfrom the onland complex. Initial Pb and Sr isotopic compositionsalso do not allow any distinction to be made between Serra deMonchique and Mount Ormonde samples. Initial Pb isotope ratiosare moderately high (19.1 < 206Pb/204Pb < 19.8; 207Pb/204Pb= 15.6) in both cases. Moreover, once the effects of Sr contaminationby seawater are taken into account and the most contaminatedsamples discarded using data from fresh clinopyroxene separatesand results of leaching experiments, the initial Sr isotopiccompositions of Mount Ormonde samples are found to be unradiogenic(87Sr/86Sr = 0.7031±1) and identical to those obtainedat Serra de Monchique (87Sr/86Sr = 0.7032±1). In contrast,a systematic mean difference of 2 {varepsilon}Nd units is observed betweenSerra de Monchique {varepsilon}Nd(T) = +4.8] and Mount Ormonde {varepsilon}Nd(T) =+6.6] whole-rock samples. Surprisingly, a variation is alsoobserved at Mount Ormonde between the whole-rock samples andone of the two analysed clinopyroxene separates. Whereas MountOrmonde whole-rock samples invariably yielded {varepsilon}Nd(T) = +6.6 (meanvalue), a value of +0.5 is obtained for one clinopyroxene separate,whereas another gives +6.0. The above geochemical and isotopicresults make it possible to assign respective roles to the asthenosphere,lithosphere and crust in the petrogenesis of Serra de Monchiqueand Mount Ormonde complexes. We propose that both complexesshare a common mantle source whose isotopic characteristicsare very similar to the source of oceanic island basalts. Continentalmantle lithosphere, already characterized isotopically by studiesof peridotite massifs within the Iberian peninsula, acts asa contaminant which is evident onland on the whole-rock scale,and also present offshore as discrete clinopyroxene xenocrysts.The continental crust appears to play no role in the petrogenesisof the Serra de Monchique alkaline rocks. KEY WORDS: alkaline complexes; continental lithosphere; isotope geochemistry; passive continental margin; within-plate volcanics
Keywords:
本文献已被 Oxford(免费) 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号