基于Diviner热红外数据的Apollo 15登陆区元素含量反演

马明, 陈圣波, 周超, 李健, 陆天启. 基于Diviner热红外数据的Apollo 15登陆区元素含量反演[J]. 岩石学报, 2016, 32(1): 144-150.
引用本文: 马明, 陈圣波, 周超, 李健, 陆天启. 基于Diviner热红外数据的Apollo 15登陆区元素含量反演[J]. 岩石学报, 2016, 32(1): 144-150.
MA Ming, CHEN ShengBo, ZHOU Chao, LI Jian, LU TianQi. Major element abundances at the Apollo 15 landing site: Results from Diviner data[J]. Acta Petrologica Sinica, 2016, 32(1): 144-150.
Citation: MA Ming, CHEN ShengBo, ZHOU Chao, LI Jian, LU TianQi. Major element abundances at the Apollo 15 landing site: Results from Diviner data[J]. Acta Petrologica Sinica, 2016, 32(1): 144-150.

基于Diviner热红外数据的Apollo 15登陆区元素含量反演

  • 基金项目:

    本文受国家自然科学基金项目(41372337、41490634)、国家863计划课题(2015AA123704)和科技基础性工作专项项目(Y2ZZ031000-04)联合资助.

详细信息

Major element abundances at the Apollo 15 landing site: Results from Diviner data

More Information
  • 月球元素含量的反演是了解月球物质成分的分布和月球矿产资源开发利用的依据。通过比较月球样品元素含量与不同粒径样品光谱CF值所建立模型的反演精度,确定10~20μm粒径样品最适用于月表元素含量反演。以Apollo 15登陆点附近为例,利用Diviner热红外数据得到了完整覆盖度和更高分辨率月球 CF值影像,反演了月表Al、Fe、Mn、Mg和Ca元素相对含量。与月球样品实测值进行了对比,均方根误差均小于3,验证了利用红外数据反演月表元素相对含量的可行性,为月表元素含量反演提供了新的思路。
  • 加载中
  • [1]

    Allen CC, Greenhagen BT, Donaldson Hanna KL et al. 2012. Analysis of lunar pyroclastic deposit FeO abundances by LRO Diviner. Journal of Geophysical Research: Planets, 117(E12): E00H28

    [2]

    Ban C, Zheng YC, Zhang F et al. 2014. Element abundances in Oceanus Procellarum: Data analysis of Chang'E-2 X-ray spectrometry. Earth Science Frontiers, 21(6): 62-73 (in Chinese)

    [3]

    Bandfield JL, Ghent RR, Vasavada AR et al. 2011. Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data. Journal of Geophysical Research: Planets (1991~2012), 116(E12): E00H02

    [4]

    Conel JE. 1969. Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums. Journal of Geophysical Research, 74(6): 1614-1634

    [5]

    Elphic RC, Teodoro LFA, Eke VR et al. 2011. Implications for the distribution of water ice and other volatiles from LCROSS and lunar orbital data. In: Wet A and Moon D (eds.). Exploring Volatile Reservoirs and Implications for the Evolution of the Moon and Future Exploration. LPI Contributions No. 1621, Houston, Texas, 15

    [6]

    Feldman WC, Lawrence DJ, Elphic RC et al. 2000. Chemical information content of lunar thermal and epithermal neutrons. Journal of Geophysical Research: Planets (1991~2012), 105(E8): 20347-20363

    [7]

    Greenhagen BT, Lucey PG, Wyatt MB et al. 2010. Global silicate mineralogy of the Moon from the Diviner Lunar Radiometer. Science, 329(5998): 1507-1509

    [8]

    Hasebe N, Yamashita N, Okudaira O et al. 2008. The high precision gamma-ray spectrometer for lunar polar orbiter SELENE. Advances in Space Research, 42(2): 323-330

    [9]

    Heiken G, Vaniman D, French BM et al. 1991. Lunar Sourcebook: A User's Guide to the Moon. Cambridge: Cambridge University Press

    [10]

    Korokhin VV, Kaydash VG, Shkuratov YG et al. 2008. Prognosis of TiO2 abundance in lunar soil using a non-linear analysis of Clementine and LSCC data. Planetary and Space Science, 56(8): 1063-1078

    [11]

    Lawrence DJ, Feldman WC, Barraclough BL et al. 1999. High resolution measurements of absolute thorium abundances on the lunar surface. Geophysical Research Letters, 26(17): 2681-2684

    [12]

    Lian Y. 2014. Inversion of composition and analysis of structure in the lunar subsurface from Chang'E microwave data. Ph. D. Dissertation. Changchun: Jilin University (in Chinese)

    [13]

    Lucey PG, Blewett DT and Jolliff BL. 2000. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. Journal of Geophysical Research: Planets (1991~2012), 105(E8): 20297-20305

    [14]

    Mendell WW and Low FJ. 1975. Infrared orbital mapping of lunar features. In: Proceedings of the 6th Lunar Science Conference. New York: Pergamon Press, Inc, 2711-2719

    [15]

    Narendranath S, Athiray PS, Sreekumar P et al. 2011. Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray Spectrometer (C1XS): Results from the nearside southern highlands. Icarus, 214(1): 53-66

    [16]

    Ouyang ZY. 2005. Introduction to Lunar Science. Beijing: China Astronautic Publishing House (in Chinese)

    [17]

    Paige DA, Foote MC, Greenhagen BT et al. 2010a. The lunar reconnaissance orbiter diviner lunar radiometer experiment. Space Science Reviews, 150(1-4): 125-160

    [18]

    Prettyman TH, Lawrence DJ, Vaniman DT et al. 2002. Classification of regolith materials from Lunar Prospector data reveals a magnesium-rich highland province. The Moon Beyond 2002: Next Steps in Lunar Science and Exploration, p. 49

    [19]

    Salisbury JW and Walter LS. 1989. Thermal infrared (2.5~13.5μm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces. Journal of Geophysical Research: Solid Earth (1978~2012), 94(B7): 9192-9202

    [20]

    Salisbury JW, Basu A and Fischer EM. 1997. Thermal infrared spectra of lunar soils. Icarus, 130(1): 125-139

    [21]

    Spudis PD, Bussey DBJ, Lichtenberg C et al. 2005. Mini-SAR: An imaging radar for the Chandrayaan-1 mission to the Moon. In: 36th Annual Lunar and Planetary Science Conference. League City, Texas, 1153

    [22]

    Tompkins S and Pieters CM. 1999. Mineralogy of the lunar crust: Results from Clementine. Meteoritics & Planetary Science, 34(1): 25-41

    [23]

    Vasavada AR, Paige DA and Wood SE. 1999. Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits. Icarus, 141(2): 179-193

    [24]

    班超, 郑永春, 张锋等. 2014. 月球风暴洋地区元素丰度研究: "嫦娥二号"X射线谱仪探测数据分析. 地学前缘, 21(6): 62-73

    [25]

    连懿. 2014. 基于嫦娥探月微波数据的月球浅表层成分反演与结构分析研究. 博士学位论文. 吉林大学

    [26]

    欧阳自远. 2005. 月球科学概论. 北京: 中国宇航出版社

  • 加载中
计量
  • 文章访问数:  4402
  • PDF下载数:  4805
  • 施引文献:  0
出版历程
收稿日期:  2015-06-11
修回日期:  2015-10-01
刊出日期:  2016-01-31

目录