华北克拉通阜平杂岩中~2.7GaTTG片麻岩的厘定及其地质意义

路增龙, 宋会侠, 杜利林, 任留东, 耿元生, 杨崇辉. 华北克拉通阜平杂岩中~2.7GaTTG片麻岩的厘定及其地质意义[J]. 岩石学报, 2014, 30(10): 2872-2884.
引用本文: 路增龙, 宋会侠, 杜利林, 任留东, 耿元生, 杨崇辉. 华北克拉通阜平杂岩中~2.7GaTTG片麻岩的厘定及其地质意义[J]. 岩石学报, 2014, 30(10): 2872-2884.
LU ZengLong, SONG HuiXia, DU LiLin, REN LiuDong, GENG YuanSheng, YANG ChongHui. Delineation of the ca2.7Ga TTG gneisses in the Fuping Complex, North China Craton and its geological significance[J]. Acta Petrologica Sinica, 2014, 30(10): 2872-2884.
Citation: LU ZengLong, SONG HuiXia, DU LiLin, REN LiuDong, GENG YuanSheng, YANG ChongHui. Delineation of the ca2.7Ga TTG gneisses in the Fuping Complex, North China Craton and its geological significance[J]. Acta Petrologica Sinica, 2014, 30(10): 2872-2884.

华北克拉通阜平杂岩中~2.7GaTTG片麻岩的厘定及其地质意义

  • 基金项目:

    本文受中国地质调查项目(1212011120152)和国家自然科学基金项目(41172171、41203025)联合资助。

详细信息

Delineation of the ca2.7Ga TTG gneisses in the Fuping Complex, North China Craton and its geological significance

More Information
  • 通过详细的地质工作,本文从阜平杂岩中厘定出一套~2.7Ga的条带状TTG片麻岩系,其原岩主要为英云闪长岩,经历了强烈的变形和深熔改造。该片麻岩可分为岩石主体和条带,按条带形态和成分可分为三种:细小的暗色条带、深熔浅色条带和后期注入的长英质脉体。用LA-MC-ICPMS法对英云闪长岩中锆石进行了原位U-Pb年龄测试,其形成年龄为2669.2±9.7Ma。该片麻岩SiO2=64.32%~70.02%,具有高铝(Al2O3=14.00%~15.87%)富钠(Na2O=3.85%~4.22%)贫钾(K2O=1.13%~2.42%)及低K/Na比值的特点,Mg#指数为39.5~49.6。该片麻岩具有中等-强烈程度的稀土元素分异[(La/Yb)N=3.67~51.38],Eu异常不明显。其富集Sr(303×10-6~431×10-6)、Ba(191×10-6~696×10-6)等大离子亲石元素,亏损Nb(4.70×10-6~9.78×10-6)、Ta(0.19×10-6~0.75×10-6)、Ti(1378×10-6~3259×10-6)、P(174.6×10-6~960.6×10-6)等高场强元素,Cr(5.87×10-6~119.4×10-6)、Ni(6.72×10-6~45.75×10-6)等相容元素含量也较低。Yb(0.31×10-6~1.75×10-6)和Y(3.61×10-6~18.88×10-6)含量低,Sr/Y比值高(16.0~119.1),属于高铝的TTG,与高硅埃达克岩特征相似。推断是热的太古宙新生洋壳部分熔融而成。阜平地区~2.7Ga TTG片麻岩的厘定,进一步证实了华北克拉通在新太古代早期经历了强烈的陆壳增生,并为华北克拉通早期岩浆事件与世界范围的岩浆事件的对比提供了新的依据,为华北克拉通早期陆块及绿岩带的划分提供了新的限定。
  • 加载中
  • [1]

    Andersen T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol., 192(1-2): 59-79

    [2]

    Arndt NT and Goldstein SL. 1989. An open boundary between lower continental crust and mantle: Its role in crust formation and crustal recycling. Tectonophysics, 161(3-4): 201-212

    [3]

    Arth JG and Hanson GN. 1972. Quartz diorites derived by partial melting of eclogite or amphibolite at mantle depths. Contributions to Mineralogy and Petrology, 37(2): 161-174

    [4]

    Arth JG and Hanson GN. 1975. Geochemistry and origin of the Early Precambrian crust of northeastern Minnesota. Geochimica et Cosmochimica Acta, 39(3): 325-362

    [5]

    Barker F and Arth JG. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4(10): 596-600

    [6]

    Barker F. 1979. Trondhjemites, Dacites, and Related Rocks. Amsterdam: Elsevier, 1-659

    [7]

    Bickle MJ, Bettenay LF, Chapman HJ, Groves DI, McNaughton NJ, Campbell IH and De Laeter JR. 1993. Origin of the 3500~3300Ma calc-alkaline rocks in the Pilbara Archaean: Isotopic and geochemical constraints from the Shaw Batholith. Precambrian Research, 60(1-4): 117-149

    [8]

    Black LP, Kamo SL, Allen CM, Aleinikoff JK, Davis DW, Korsch RJ and Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chem. Geol., 200: 155-170

    [9]

    Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114

    [10]

    Cao GQ. 1996. Early Precambrian Geology of Western Shandong. Beijing: Geological Publishing House, 1-193 (in Chinese)

    [11]

    Cheng YQ, Yang CH, Wan YS, Liu ZX, Zhang XP, Du LL, Zhang SG, Wu JS and Gao JF. 2004. Early Precambrian Geological Characters and Anatectic Reconstruction of Crust in North Part of Middle Taihang Mountain. Beijing: Geological Publishing House, 1-191 (in Chinese)

    [12]

    Compton P. 1978. Rare earth evidence for the origin of the Nk gneisses Buksefjorden region, southern West Greenland. Contrib. Mineral. Petrol., 66(3): 283-294

    [13]

    Condie KC and Howard HL. 1971. Trace element geochemistry of the Louis lake batholith of Early Precambrian age, Wyoming. Geochim. Cosmochim. Acta, 35(11): 1099-1119

    [14]

    Condie KC. 1981. Archaean Greenstone Belts. Amsterdam: Elsevier Science Ltd, 1-434

    [15]

    Condie KC. 1986. Origin and early growth rate of continents. Precambrian Research, 32(4): 261-278

    [16]

    Condie KC. 1993. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol., 104(1-4): 1-37

    [17]

    Condie KC, Beyer E, Belousova E, Griffin WL and O'Reilly SY. 2005. U-Pb isotopic ages and Hf isotopic composition of single zircons: The search for juvenile Precambrian continental crust. Precambrian Research, 139(1-2): 42-100

    [18]

    Condie KC, Belousova E, Griffin WL and Sircombe KN. 2009. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Research, 15(3-4): 228-242

    [19]

    Defant MJ, Xu JF, Kepezhinskas P, Wang Q, Zhang Q and Xiao L. 2002. Adakites: Some variations on a theme. Acta Petrologica Sinica, 18(2): 129-142

    [20]

    Diwu CR, Sun Y, Lin CL and Wang HL. 2010. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton. Chinese Science Bulletin, 55(23): 2557-2571

    [21]

    Dong XJ, Xu ZY, Liu ZH and Sha Q. 2012. 2.7Ga granitic gneiss in the northern foot of Daqingshan Mountain, central Inner Mongolia, and its geological implications. Earth Science, 37(Suppl.): 20-27 (in Chinese with English abstract)

    [22]

    Du LL, Zhuang YX, Yang CH, Wan YS, Wang XS, Wang SJ and Zhang LF. 2003. Characters of zircons in the Mengjiatun Formation in Xintai of Shandong and their chronological significance. Acta Geologica Sinica, 77(3): 359-366 (in Chinese with English abstract)

    [23]

    Du LL, Yang CH, Zhuang YX, Wei RZ, Wan YS, Ren LD and Hou KJ. 2010. Hf isotopic compositions of zircons from 2.7Ga metasedimentary rocks and biotite plagioclase gneiss in the Mengjiatun Formation complex, western Shandong Province. Acta Geologica Sinica, 84(7): 991-1001 (in Chinese with English abstract)

    [24]

    Faure M, Trap P, Lin W, Monie P and Bruguier O. 2007. Polyorogenic evolution of the Paleoproterozoic trans-north China belt: New insights from the Luliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes, 30(2): 96-107

    [25]

    Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China Craton. Nature, 432(7019): 892-897

    [26]

    Geng YS, Wu JS and Jin LG. 1986. Geochemistry and origin of amphibolites from the Fuping Group in the middle Taihang Mountains. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, 15: 110-122 (in Chinese with English abstract)

    [27]

    Geng YS, Wan YS and Shen QH. 2002. Early Precambrian basic volcanism and crustal growth in the North China craton. Acta Geologica Sinica, 76(2): 199-208 (in Chinese with English abstract)

    [28]

    Geng YS, Shen QH and Ren LD. 2010. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton. Acta Petrologica Sinica, 26(7): 1945-1966 (in Chinese with English abstract)

    [29]

    Geng YS, Du LL and Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China craton: Constraints from zircon Hf isotopes. Gondwana Research, 21(2-3): 517-529

    [30]

    Gower CF, Crocket JH and Kabir A. 1983. Petrogenesis of Archean granitoid plutons from the Kenora area, English River Subprovince, Northwest Ontario, Canada. Precambrian Research, 22(3-4): 245-270

    [31]

    Green TH and Pearson NJ. 1986. Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P, T. Chemical Geology, 54(3-4): 185-201

    [32]

    Guan H, Sun M, Wilde SA, Zhou XH and Zhai MG. 2002. SHRIMP U-Pb zircon geochronology of the Fuping complex: Implications for formation and assembly of the North China craton. Precambrian Research, 113(1-2): 1-18

    [33]

    Han BF, Xu Z, Ren R, Li LL, Yang JH and Yang YH. 2012. Crustal growth and intracrustal recycling in the middle segment of the trans-north China orogen, North China Craton. Geological Magazine, 149(4): 729-742

    [34]

    Hanson GN and Goldich SS. 1972. Early Precambrian rocks in the Saganaga lake, northern Light lake area, Minnesota-Ontario part 2: Petrogenesis. In: Doe BR and Smith DK (eds.). Studies in Mineralogy and Precambrian Geology. Geological Society of America Memoir, 135: 179-192

    [35]

    Hunter DR, Barker F and Millard HT. 1978. The geochemical nature of the Archean ancient gneiss complex and granodiorite suite, Swaziland: A preliminary study. Precambrian Research, 7(2): 105-127

    [36]

    Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69

    [37]

    Jahn BM, Glikson AY, Peucat JJ and Hickman AH. 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara block, Western Australia: Implications for the early crustal evolution. Geochimica et Cosmochimica Acta, 45(9): 1633-1652

    [38]

    Jahn BM, Auvray B, Shen QH, Liu DY, Zhang ZQ, Dong YJ, Ye XJ, Zhang QZ, Cornichet J and Mace J. 1988. Archean crustal evolution in China: The Taishan complex, and evidence for juvenile crustal addition from long-term depleted mantle. Precambrian Research, 38(4): 381-403

    [39]

    Jahn BM, Liu DY, Wan YS, Song B and Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science, 308(3): 232-269

    [40]

    Jayananda M, Moyen JF, Martin H, Peucat JJ, Auvray B and Mahabaleswar B. 2000. Late Archaean (2550~2520Ma) juvenile magmatism in the eastern Dharwar craton, southern India: Constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Research, 99(3-4): 225-254

    [41]

    Jiang N, Liu YS, Zhou WG, Yang JH and Zhang SQ. 2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochimica et Cosmochimica Acta, 71(10): 2591-2608

    [42]

    Krner A, Compston W, Zhang GW, Guo AL and Todt W. 1988. Age and tectonic setting of Late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology, 16: 211-215

    [43]

    Krner A and Layer PW. 1992. Crust formation and plate motion in the Early Archean. Science, 256(5062): 1405-1411

    [44]

    Krner A, Wilde SA, Li JH and Wang KY. 2005. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577-595

    [45]

    Li HK, Zhu SX, Xiang ZQ, Su WB, Lu SN, Zhou HY, Geng JZ, Li S and Yang FJ. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract)

    [46]

    Liu DY, Wilde SA, Wan YS, Wang SY, Valley JW, Kita N, Dong CY, Xie HQ, Yang CX, Zhang YX and Gao LZ. 2009. Combined U-Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern north China craton reveal multiple events in the Late Mesoarchean-Early Neoarchean. Chemical Geology, 261(1-2): 140-154

    [47]

    Liu F. 2010. Geochemistry study of petrogenesis of the Late Archean Huai'an TTG gneisses terrane in the North China craton. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences (in Chinese with English Summary)

    [48]

    Liu JH, Liu FL, Liu PH, Wang F and Ding ZJ. 2011. Polyphase magmatic and metamorphic events from Early Precambrian metamorphic basement in Jiaobei area: Evidences from the zircon U-Pb dating of TTG and granitic gneisses. Acta Petrologica Sinica, 27(4): 943-960 (in Chinese with English abstract)

    [49]

    Liu SW. 1996. Study on the P-T path of granulites in Fuping area, Hebei Province. Geological Journal of Universities, 2(1): 75-84 (in Chinese with English abstract)

    [50]

    Liu SW. 1997. Study on fluid-rock equilibrium systems of Fuping gneiss complex, Taihang Mountains. Science in China (Series D), 40(3): 239-245

    [51]

    Liu SW and Liang HH. 1997. Metamorphism of Al-rich gneisses in Taihang Mountain Archean metamorphic complex. Acta Petrologica Sinica, 13(3): 303-312 (in Chinese with English abstract)

    [52]

    Liu SW, Li JH, Pan YM, Zhang J and Li QG. 2002a. An Archean Metamorphic block in the Taihangshan and Hengshan regions: Constraints from geochronology and geochemistry. Progress in Natural Science, 12(8): 568-576

    [53]

    Liu SW, Pan YM, Li JH, Li QG and Zhang J. 2002b. Geological and isotopic geochemical constraints on the evolution of the Fuping complex, North China craton. Precambrian Research, 117(1-2): 41-56

    [54]

    Liu SW, Pan YM, Xie QL, Zhang J, Li QG and Yang B. 2005. Geochemistry of the Paleoproterozonic Nanying granitic gneisses in the Fuping complex: Implications for the tectonic evolution of the central zone, North China craton. Journal of Asian Earth Sciences, 24(5): 643-658

    [55]

    Lu SN, Chen ZH and Xiang ZQ. 2008. Geochronological Framework of Ancient Intrusions in Taishan Geopark, China. Beijing: Geological Publishing House, 1-90 (in Chinese)

    [56]

    Ludwig KR. 2003. User's Manual for Isoplot/Ex, Version 3. 00. In: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center: Special Publication, No.4: 1-70

    [57]

    Ma MZ, Xu ZY, Zhang LC, Dong CY, Dong XJ, Liu SJ, Liu DY and Wan YS. 2013. SHRIMP dating and Hf isotope analysis of zircons from the Early Precambrian basement in the Xi Ulanbulang area, Wuchuan, Inner Mongolia. Acta Petrologica Sinica, 29(2): 501-516 (in Chinese with English abstract)

    [58]

    Ma XY, You ZD, Tan YJ and Cai XL. 1963. Tectonic pattern in Precambrian of East China. Acta Geologica Sinica, 43(1): 27-52 (in Chinese)

    [59]

    Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14(9): 753-756

    [60]

    Martin H. 1987. Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: Major and trace element geochemistry. Journal of Petrology, 28(5): 921-953

    [61]

    Martin H. 1993. The mechanisms of petrogenesis of the Archaean continental crust: Comparison with modern processes. Lithos, 30(3-4): 373-388

    [62]

    Martin H. 1994. Archean grey gneisses and the genesis of the continental crust. In: Condie KC (ed.). Archean Crustal Evolution. Amsterdam: Elsevier, 205-259

    [63]

    Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429

    [64]

    Rapp RP, Watson EB and Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1-4): 1-25

    [65]

    Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931

    [66]

    Ren LD, Geng YS, Du LL, Wang YB, Liu P and Guo JJ. 2011. Anatexis and migmatization of the Fuping complex, North China craton. Acta Petrologica Sinica, 27(4): 1056-1066 (in Chinese with English abstract)

    [67]

    Shen QH, Geng YS, Song B and Wan YS. 2005. New information from the surface outcrops and deep crust of Archean rocks of the North China and Yangtze blocks, and Qinling-Dabie orogenic belt. Acta Geologica Sinica, 79(5): 616-627 (in Chinese with English abstract)

    [68]

    Sun Y, Yu ZP and Krner A. 1994. Geochemistry and single zircon geochronology of Archaean TTG gneisses in the Taihua high-grade terrain, Lushan area, central China. Journal of Southeast Asian Earth Sciences, 10(3-4): 227-233

    [69]

    Tang J, Zheng YF, Wu YB, Gong B and Liu XM. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research, 152(1-2): 48-82

    [70]

    Taylor SR and McClennan SM. 1985. The Continental Crust: Its Composition and Evolution. London: Blackwell Scientific Publications, 57-72

    [71]

    Wan YS, Dong CY, Wang W, Xie HQ and Liu DY. 2010. Archean basement and a Paleoproterozoic collision orogen in the Huoqiu area at the southeastern margin of North China craton: Evidence from sensitive high resolution ion micro-probe U-Pb zircon geochronology. Acta Geologica Sinica, 84(1): 91-104

    [72]

    Wan YS, Dong CY, Liu DY, Krner A, Yang CH, Wang W, Du LL, Xie HQ and Ma MZ. 2012. Zircon ages and geochemistry of Late Neoarchean syenogranites in the North China craton: A review. Precambrian Research, 222-223: 265-289

    [73]

    Wang KY, Li JL and Liu RQ. 1991. Origin of the Fuping gneisses, Scientia Geologica Sinica, 3: 255-267 (in Chinese with English abstract)

    [74]

    Wang W, Yang EX, Wang SJ, Du LL, Xie HQ, Dong CY and Wan YS. 2009. Petrography of the metamorphic pillow basalt and SHRIMP U-Pb dating of zircons from the intruding trondhjemite in Archean Taishan "Group", western Shandong. Geological Review, 55(5): 737-744 (in Chinese with English abstract)

    [75]

    Wilde SA, Cawood PA and Wang KY. 1997. The relationship and timing of granitoid evolution with respect of felsic volcanism in the Wutai Complex, North China Craton. Proceeding of the 30th IGC: Precambrian Geol. Metamorph. Petrol. 17: 75-88

    [76]

    Wilde SA, Cawood PA, Wang K et al. 2005. Granitoid evolution in the Late Archean Wutai Complex, North China Craton. Journal of Asian Earth Sciences, 24(5): 597-613

    [77]

    Wu JS, Geng SY, Xu HF, Jin LG, He SY and Sun SW. 1989. Metamorphic geology of the Fuping Group. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, 19: 1-213 (in Chinese with English abstract)

    [78]

    Xiong XL, Adam J and Green TH. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chemical Geology, 218(3-4): 339-359

    [79]

    Xiong XL. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 34(11): 945-948

    [80]

    Xiong XL, Keppler H, Audétat A, Gudfinnsson G, Sun WD, Song MS, Xiao WS and Yuan L. 2009. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. American Mineralogist, 94(8-9): 1175-1186

    [81]

    Yang CH, Du LL, Ren LD, Song HX, Wan YS, Xie HQ and Liu ZX. 2011. Petrogenesis and geodynamic setting of Jiandeng potassic granite at the end of the Neoarchean in Zanhuang complex, North China Craton. Earth Science Frontiers, 18(2): 62-78 (in Chinese with English abstract)

    [82]

    Yang CH, Du LL, Ren LD, Song HX, Wan YS, Xie HQ and Geng YS. 2013. Delineation of the ca. 2.7Ga TTG gneisses in the Zanhuang complex, North China Craton and its geological implications. Journal of Asian Earth Sciences, 72: 178-189

    [83]

    Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25

    [84]

    Zhang SG, Jin LG and Xiao QH. 1983. Structural style and deformational history of the Fuping Archean domal composite fold group. Regional Geology of China, (6): 97-110 (in Chinese with English abstract)

    [85]

    Zhao GC, Wilde SA, Cawood PA and Lu LZ. 2000. Petrology and P-T path of the Fuping mafic granulites: Implications for tectonic evolution of the central zone of the North China Craton. Journal of Metamorphic Geology, 18: 375-391

    [86]

    Zhao GC, Wilde SA, Cawood PA and Sun M. 2002. SHRIMP U-Pb zircon ages of the Fuping complex: Implications for Late Archean to Paleoproterozoic accretion and assembly of the North China Craton. American Journal of Science, 302(3): 191-226

    [87]

    Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202

    [88]

    Zhu XY, Zhai MG, Chen FK, Lyu B, Wang W, Peng P and Hu B. 2013. ~2.7Ga crustal growth in the North China craton: Evidence from zircon U-Pb ages and Hf isotopes of the Sushui complex in the Zhongtiao terrane. The Journal of Geology, 121: 239-254

    [89]

    Zhuang YX, Wang XS, Xu HL, Ren ZK, Zhang FZ and Zhang XM. 1997. Main geological events and crustal evolution in Early Precambrian of Taishan region. Acta Petrologica Sinica, 13(3): 313-330 (in Chinese with English abstract)

    [90]

    曹国权. 1996. 鲁西早前寒武纪地质. 北京: 地质出版社, 1-193

    [91]

    程裕淇, 杨崇辉, 万渝生, 刘增校, 张西平, 杜利林, 张寿广, 伍家善, 高吉凤. 2004. 太行山中北段早前寒武纪地质和深熔作用对地壳岩石的改造. 北京: 地质出版社, 1-191

    [92]

    董晓杰, 徐仲元, 刘正宏, 沙茜. 2012. 内蒙古大青山北麓2.7Ga花岗质片麻岩的发现及其地质意义. 地球科学, 37(增刊): 20-27

    [93]

    杜利林, 庄育勋, 杨崇辉, 万渝生, 王新社, 王世进, 张连峰. 2003. 山东新泰孟家屯岩组锆石特征及其年代学意义. 地质学报, 77(3): 359-366

    [94]

    杜利林, 杨崇辉, 庄育勋, 韦汝征, 万渝生, 任留东, 侯可军. 2010. 鲁西新泰孟家屯2.7Ga变质沉积岩与黑云斜长片麻岩锆石Hf同位素特征. 地质学报, 84(7): 991-1001

    [95]

    耿元生, 伍家善, 金龙国. 1986. 太行山中段阜平群角闪质岩石的地球化学特征及其成因. 中国地质科学院地质研究所所刊, 15: 110-122

    [96]

    耿元生, 万渝生, 沈其韩. 2002. 华北克拉通早前寒武纪基性火山作用与地壳增生. 地质学报, 76(2): 199-208

    [97]

    耿元生, 沈其韩, 任留东. 2010. 华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制. 岩石学报, 26(7): 1945-1966

    [98]

    李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140

    [99]

    刘富. 2010. 华北克拉通晚太古代怀安TTG片麻岩地体的岩石成因地球化学研究. 博士学位论文. 北京: 中国科学院地质与地球物理研究所

    [100]

    刘建辉, 刘福来, 刘平华, 王舫, 丁正江. 2011. 胶北早前寒武纪变质基底多期岩浆-变质热事件: 来自TTG片麻岩和花岗质片麻岩中锆石U-Pb定年的证据. 岩石学报, 27(4): 943-960

    [101]

    刘树文. 1996. 阜平地区麻粒岩的P-T路径研究. 高校地质学报, 2(1): 75-84

    [102]

    刘树文, 梁海华. 1997. 太行山太古宙变质杂岩中富铝片麻岩的变质作用. 岩石学报, 13(3): 303-312

    [103]

    陆松年, 陈志宏, 相振群. 2008. 泰山世界地质公园: 古老侵入岩系年代格架. 北京: 地质出版社, 1-90

    [104]

    马铭株, 徐仲元, 张连昌, 董春艳, 董晓杰, 刘守偈, 刘敦一, 万渝生. 2013. 内蒙古武川西乌兰不浪地区早前寒武纪变质基底锆石SHRIMP定年及Hf同位素组成. 岩石学报, 29(2): 501-516

    [105]

    马杏垣, 游振东, 谭应佳, 蔡学林. 1963. 中国东部前寒武纪大地构造发展的样式. 地质学报, 43(1): 27-52

    [106]

    任留东, 耿元生, 杜利林, 王彦斌, 刘平, 郭进京. 2011. 华北克拉通阜平杂岩的深熔和混合岩化作用. 岩石学报, 27(4): 1056-1066

    [107]

    沈其韩, 耿元生, 宋彪, 万渝生. 2005. 华北和扬子陆块及秦岭-大别造山带地表和深部太古宙基底的新信息. 地质学报, 79(5): 616-627

    [108]

    王凯怡, 李继亮, 刘如琦. 1991. 阜平片麻岩之成因. 地质科学, (3): 255-267

    [109]

    王伟, 杨恩秀, 王世进, 杜利林, 颉颃强, 董春艳, 万渝生. 2009. 鲁西泰山岩群变质枕状玄武岩岩相学和侵入的奥长花岗岩SHRIMP 锆石U-Pb年代学. 地质论评, 55(5): 737-744

    [110]

    伍家善, 耿元生, 徐惠芬, 金龙国, 贺绍英, 孙世伟. 1989. 阜平群变质地质. 中国地质科学院地质研究所所刊, 19: 1-213

    [111]

    杨崇辉,杜利林,任留东,宋会侠,万渝生,颉颃强,刘增校. 2011. 赞皇杂岩中太古宙末期菅等钾质花岗岩的成因及动力学背景. 地学前缘,18(2): 62-78

    [112]

    张寿广, 金龙国, 肖庆辉. 1983. 阜平太古宙穹状复合褶皱群的构造样式及变形史. 中国区域地质, (6): 97-110

    [113]

    庄育勋, 王新社, 徐洪林, 任志康, 张富中, 张锡明. 1997. 泰山地区早前寒武纪主要地质事件与陆壳演化. 岩石学报, 13(3): 313-330

  • 加载中
计量
  • 文章访问数:  6354
  • PDF下载数:  4900
  • 施引文献:  0
出版历程
收稿日期:  2013-11-29
修回日期:  2014-02-21
刊出日期:  2014-10-31

目录