埃达克岩:关于其成因的一些不同观点

MarcJDEFANT 许继峰 等. 埃达克岩:关于其成因的一些不同观点[J]. 岩石学报, 2002, 18(2): 129-142.
引用本文: MarcJDEFANT 许继峰 等. 埃达克岩:关于其成因的一些不同观点[J]. 岩石学报, 2002, 18(2): 129-142.
Marc J DEFANT,XU JiFeng,Pavel KEPEZHINSKAS,WANG Qiang,ZHANG Qi and XIAO Long 1. Department of Geology,University of South Florida,Tampa,FL 33620,USA2. Guangzhou Institute of Geochemistry,Chinese Academy of Science,Guangzhou 510640,P.O.Box 1131,China3. Geoprospects International Inc.,9302 Brookhurst Court,Tampa,FL 33647,USA4. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,P. O. Box 9825,China. Adakites: some variations on a theme[J]. Acta Petrologica Sinica, 2002, 18(2): 129-142.
Citation: Marc J DEFANT,XU JiFeng,Pavel KEPEZHINSKAS,WANG Qiang,ZHANG Qi and XIAO Long 1. Department of Geology,University of South Florida,Tampa,FL 33620,USA2. Guangzhou Institute of Geochemistry,Chinese Academy of Science,Guangzhou 510640,P.O.Box 1131,China3. Geoprospects International Inc.,9302 Brookhurst Court,Tampa,FL 33647,USA4. Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,P. O. Box 9825,China. Adakites: some variations on a theme[J]. Acta Petrologica Sinica, 2002, 18(2): 129-142.

埃达克岩:关于其成因的一些不同观点

  • 基金项目:

    This work was partially funded by the National Natural Science Foundation of China(grant No.40172028), and the Major State Basic Research Program of the Peoples Republic of China (No.G1999043202).

  • 埃达克岩的概念是十多年前提出来的,指由俯冲的年轻洋壳熔融形成的火成岩。自从最初在现代岛弧近十几个地方报道埃达克岩以来,新近又在几个地方发现有埃达克岩(如日本西南部,外墨西哥火山岩带,等等)。但是,过去十 多年的研究也表明,埃达克岩可以由俯冲期间的其它过程产生(例如,沿俯冲板片的撕裂边,留在上地幔中的板片残余等)。另外,埃达克岩似乎与一些岩石呈共生组合,这些岩石包括高镁安山岩、富Nb的弦玄武岩(NEAB),还可能有玻安岩(几个研究者已在玻安岩中发现有埃达克岩的组分)。高镇安山岩不是来自埃达克与地幔的相互作用(Adak-type),就是来自此相互作用期间地幔的熔融(Piip-type);富Nb的弦玄武岩,据认为是来自一种被埃达我岩广泛交代的地幔的部分熔融。作为一个新的岩套,埃达克岩交代火山岩系列已被建议用来解释各种岩石组合。此外,大量的富Pb弧玄武岩也已被发现包含有超镁铁质的地幔包体,而这些包体有高亏损地幔与埃达克反应的明显证据。关于主要与下地壳熔而不是冲板片有关的埃达克岩的起源已提出几种假说,一个模型认为,下地壳熔融出现在玄武质岩浆底侵下地壳时。但是,有许多理由似乎可以排除这种模式。另一种模型认为,在大陆地壳很厚的区域,下地壳可能变成榴辉岩,从而拆离并下沉到地幔中(拆沉)。这个拆沉过程将导致下地壳下中拆沉的下地壳的上部与相对热的地幔接触,进而可引起下地壳熔融和埃达克岩的形成。这使我们认为,在中国东部发现的与俯冲作用无关的白垩纪埃达克可能是下地壳熔融与拆沉作用的产物。我们 还要强调,如果下地壳熔融与拆沉作用真能形成埃达克岩,那么埃达克岩这一术语不应该仅仅局限于与板片熔融有关的过程,而应包括那些与下地壳熔融有关的过程。太古宙的大陆地壳主要由奥长花岗岩、英云闪长岩和英安岩(TTD)组成。这种大陆地壳是来自板片熔融还是下地壳熔融仍是有争议的。然而,我们认为,太古宙期间地幔的较高温度会导致较多的洋中脊的形成,从而产生比今天“更多”的年轻洋壳的俯冲。据此,我们认为,太古宙TTD大陆地宙主要由板片熔融形成。我们也注意到,太古宙是广泛金矿化的时期。有些研究者还发现,金和铜的矿化与埃达克质交代火山岩系列有关。因此,该火山岩系列可能会寻找金属矿床的一个重要标志。
  • 加载中
  • [1]

    [1]Atherton M P and Petford N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 362: 144-146.

    [2]

    [2]Barker F, Arth J G, Hudson T. 1981. Tonalites in crustal evolution. Royal Soc. Lond. Phil. Trans. Ser. A, 301:293-303.

    [3]

    [3]Bebout G, Ryan J G, Leeman W P and Bebout A E. 1999. Fractionation of trace elements during subduction-zone metamorphism - effect of convergent margin thermal evolution. Earth Planet. Sci. Lett., 171:63-81.

    [4]

    [4]Carroll M R and Wyllie P J. 1989. Experimental phase relations in the system tonalite-peridotite-H2O at 15 kb: Implications for assimilation and differentiation processes near the crust-mantle boundary. J. Petrol., 30:1351-1382.

    [5]

    [5]de Boer J Z, Drummond M S, Borderlon M, Defant M J, Bellon H and Maury R C. 1995. Cenozoic magmatic phases of the Costa Rican island arc (Cordillera de Talamanca). In: Mann P (ed.). Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America. Geol. Soc. Am. Special Pap, 295:35-56.

    [6]

    [6]Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347:662-665.

    [7]

    [7]Defant M J and Drummond M S. 1993. Mount St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geol., 21:547-550.

    [8]

    [8]Defant M J and Kepezhinskas P. 2001. Evidence suggests slab melting in arc magmas: EOS, 82:69.

    [9]

    [9]Defant M J and Kepezhinskas P. 2001. Adakites: A review of slab melting and the case for a slab melt component in arcs. In: Symposium on adakite-like rocks and their geodynamic significance. Beijing, China, 4-7.

    [10]

    [10]Defant M J, Kepezhinskas P K and de Boer J. 2000. Slab Melting at the Southern Terminus of the Lesser Antilles Arc: The Petrology, Geochemistry and tectonics of the Grenada Region. EOS, 81.

    [11]

    [11]Defant M J, Jackson T E, Drummond M S, de Boer J Z, Bellon H, Feigenson M D and Stewart R H. 1992. The geochemistry of recent volcanism throughout western Panama and southeastern Costa Rica: An overview. J. Geol. Soc. Lond., 149: 569-579.

    [12]

    [12]Deng W. 1998. Cenozoic interaplate volcanic rocks in the northern Qinghai-Xizang Plateau. Beijing: Geological Press. 1-179. (in Chinese with English abstract).

    [13]

    [13]Deng J, Ye D, Zhao H and Tang D. 1992. Volcanism, deep internal processes and basin formation in the lower reaches of the Yangtze River. Wuhan: China University of Geosciences Publishing House. 1992, 1-184 (in Chinese with English abstract).

    [14]

    [14]Desonie D L. 1992. Geologic and geochemical reconnaissance of Isla San Esteban: Post-subduction orogenic volcanism in the Gulf of California. J. Volcanol. Geotherm. Res., 52:123-140.

    [15]

    [15]Drummond M S and Defant M J. 1990. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting. J. Geophys. Res., 95: 21503-21521.

    [16]

    [16]Drummond M S, Defant M J and Kepezhinskas P K. 1996. Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. In: Brown et al., (eds.), Origin of Granites and Related Rocks. The Third Hutton Symposium, The Royal Soc. Edinburgh Special, Special Paper 315, 205-215.

    [17]

    [17]Gutscher M A, Maury R C, Eissen J P and Bourdon E. 2000. Can slab melting be caused by flat subduction? Geology, 28: 535-538.

    [18]

    [18]Hochstaedter A, Kepezhinskas P, Defant, Drummond M S and Koloskov A. 1996. Insights into the volcanic arc mantle wedge from magnesian lavas from the Kamchatka arc. J. Geophys. Res., 101:697-712.

    [19]

    [19]Johnston A D and Wyllie P J. 1989. The system tonalite-peridotite-H2O at 30 kbar with applications to hybridization in subduction zone magmatism. Contrib. Mineral. Petrol., 102:257-264.

    [20]

    [20]Kay R W. 1978. Aleutian magnesian andesites: Melts from subducted Pacific oceanic crust. J. Volcan. Geotherm. Res., 4:117-132.

    [21]

    [21]Kay S M, Ramos V A and Marquez M. 1993a. Evidence in Cerro Pampa volcanic rocks for slab melting prior to ridge-trench collision in southern South America. J. Geol., 101:703-714.

    [22]

    [22]Kay S M, Ramos V A and Marquez Y M. 1993b. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. J. Geol., 101:703-714.

    [23]

    [23]Kay S M and Mpodozis C. 1999. Setting and origin of Miocene giant ore and deposits in the central Andes. In: Pacrim\'99, Australian Institute of Mining and Metallurgy Pub. Ser. 4/99, 5-12.

    [24]

    [24]Kay S M and Mpodozis. 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, 11(3):4-9.

    [25]

    [25]Kay S M, Mpodozis C and Coira B. 1999. Magmatism, tectonism, and mineral deposits of the Central Andes (22° - 33°S latitude). In: Skinner B (ed.). Geology and Ore Deposits of the Central Andes. Soc. Econ. Geol. Special Pub.(SG), (7):27-59.

    [26]

    [26]Kay S M, Coira B and Viramonte J. 1994. Young mafic back-arc volcanic rocks as guides to lithospheric delamination beneath the Argentine Puna Plateau, Central Andes. J. Geophys. Res., 99:14323-14339.

    [27]

    [27]Kepezhinskas P K and Defant M J. 1996. Contrasting styles of mantle metasomatism above subduction zones: Constraints from ultramafic xenoliths in Kamchatka. In: Bebout G et al., (eds.) Subduction Top to Bottom: AGU Geophysical Monograph Monograph Series 96, 307-314.

    [28]

    [28]Kepezhinskas P and Defant M J. 2001. Nonchondritic Pt/Pd ratios in arc mantle xenoliths: Evidence for platinum enrichment in depleted island-arc mantle sources. Geol., 29:851-854.

    [29]

    [29]Kepezhinskas P, Defant M J and Widom E. 2002. Abundance and distribution of PGE and Au in the island-arc mantle: Implications for sub-arc metsomatism. Lithos, 60(3-4):113-128.

    [30]

    [30]Kepezhinskas P K, Defant M J and Drummond M S. 1995. Na metasomatism in the island-arc mantle by slab melt-peridotite interaction: Evidence from mantle xenoliths in the north Kamchatka arc, Russia. J. Petrol., 36:1505-1527.

    [31]

    [31]Kepezhinskas P, Defant M J and Drummond M S. 1996. Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochim. Cosmochim. Acta, 60: 1217-1229.

    [32]

    [32]Kepezhinskas P K, McDermott F, Defant M J, Hochstaedter F G, Drummond M S, Hawkesworth C J, Koloskov A, Maury R C and Bellon H. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geochim. Cosmochim. Acta, 61:577-600.

    [33]

    [33]Lapierre H, Jahn B M, Chavet J and Yu Y W. 1997. Mesozoic felsic arc magmatism and continental olivine tholeiites in Zhejiang province and their relationship with the tectonic activity in southeastern China. Tectonophys., 274: 321-338.

    [34]

    [34]Luhr J F. 2000. The geology and petrology of Volcan San Juan Nayarit, Mexico and the compositionally zoned Tepic Pumice. J. Volcanol. Geotherm. Res., 95: 109-156.

    [35]

    [35]Martin H. 1986. Effect of steeper Archaean geothermal gradient on geochemistry of subduction-zone magmas. Geol., 14: 753-756.

    [36]

    [36]Martin H. 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46:411-429.

    [37]

    [37]Maury R C, Defant M J and Joron J-L. 1992. Metasomatism of the sub-arc mantle inferred from trace elements in Philippine xenoliths. Nature, 360: 661-663.

    [38]

    [38]Maury R C, Sajona F G, Pubellier M, Bellon H and Defant M J. 1996. Fusion de la cro?te oc閍nique dans les zones de subduction/collision r閏entes: l\'example de Mindanao (Philippines). Bull. Soc. G閛l. France, 167:579-595.

    [39]

    [39]Maury R, Defant M J, Bellon H, Jacques D, Joron J-L, McDermott F and Vidal P. 1998. Temporal geochemical trends in northern Luzon arc lavas (Philippines): Implications on metasomatic processes in the island arc mantle. Bull. Soc. G閛l. France., 169:69-80.

    [40]

    [40]Morris P A. 1995. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geol., 23:395-398.

    [41]

    [41]Morris J D and Hart S R. 1983. Isotopic and incompatible element constraints of the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure. Geochim. Cosmochim. Acta, 47:2015-2030.

    [42]

    [42]Nockholds S R and Allen R. 1953. The geochemistry of some igneous rock series: Geochim. Cosmochim. Acta, 4:105-142

    [43]

    [43]Peacock S M. 1990. Fluid processes in subduction zones. Sci., 248:329-337.

    [44]

    [44]Peacock S M, Rushmer T and Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth Planet. Sci. Lett., 121:227-244.

    [45]

    [45]Pearce J A, van der Laan S R, Arculus R J, Murton B J and Ishii T. 1992. Boninite and harzburgite ODP Leg 125 (Bonin-Mariana forearc): A case study of magma genesis during the initial stages of subduction. In: Fryer P, Pearce J A and Stokking L B (eds.). Proceeding ODP Sci. Results, Leg 125, 623-659.

    [46]

    [46]Pe-Piper G and Piper J W. 1994. Miocene magnesian andesites and dacites, Evia, Greece: Adakites associated with subducting slab detachment and extension. Lithos, 31:125-140.

    [47]

    [47]Rapp R P. 2001. A review of experimental constraints on adakite petrogenesis. In: Symposium on adakite-like rocks and their geodynamic significance. Beijing, China, 10-13.

    [48]

    [48]Rapp R P, Shimizu N, Norman M D and Applegate G S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 Gpa. Chem. Geol., 160:335-356.

    [49]

    [49]Reagan M K and Gill J B. 1989. Coexisting calcalkaline and high-niobium basalts from Turrialba volcano, Costa Rica: Implications for residual titanate phases in arc magma sources. J. Geophys. Res., 94:4619-4633.

    [50]

    [50]Ryerson F J and Watson E B. 1987. Rutile saturation in magmas: Implications for Ti-Nb-Ta depletion in island arc basalts. Earth Planet. Sci. Lett., 86:225-239.

    [51]

    [51]Sajona F G and Maury R C. 1998. Association of adakites with gold and copper mineralization in the Philippines. Cr. Acad. Sci II, A326:27-34.

    [52]

    [52]Sajona F G, Bellon H, Maury R C, Pubillier M, Quebral R D, Cotten J, Bayon F E, Pagado E and Pamatian P. 1997. Tertiary and Quaternary magmatism in Mindanao and Leyte (Philippines): Geochronology, geochemistry and tectonic setting. J. Asian Earth Sci., 15: 121-153.

    [53]

    [53]Sajona F G, Bellon H, Maury R C, Pubillier M, Cotten J and Rangin C. 1994. Magmatic response to abrupt changes in tectonic setting: Pliocene-Quaternary calc-alkaline lavas and Nb-enriched basalts of Leyte and Mindanao (Philippines). Tectonphys., 237: 47-72.

    [54]

    [54]Sajona F G, Maury R C, Bellon H, Defant M J, Cotten J, Pubillier M, Rangin C. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geol., 21:1007-1010.

    [55]

    [55]Schiano P, Clocciatti R, Shimizu N, Maury R C, Jochum K-P, Hofmann A W. 1995. Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted lavas. Nature, 377: 595-600.

    [56]

    [56]Sen C and Dunn T. 1994. Dehydration melting of a basalitic composition amphibolite at 1.5 and 2.0 Gpa: Implications for the origin of adakites. Contrib. Mineral. Petrol., 117:394-409.

    [57]

    [57]Sigmarsson O, Martin H and Knowles J. 1998. Melting of a subducting oceanic crust from U-Th disequilibria in the austral Andean lavas. Nature, 394:566-569.

    [58]

    [58]Stern C R, Futa K, Muehlenbachs K. 1984. Isotope and trace element data for orogenic andesites from the Austral Andes. In: Harmon R S and Barriero B A (eds.). Andean Magmatism - Chemical and Isotopic Constraints. Cheshire: Shiva, 31-46.

    [59]

    [59]Stolz A, Jochum K, Spettel B, Hofmann A. 1996. Fluid- and melt-related enrichment in the subarc mantle evidence from Nb/Ta variations in island arc basalts. Geol., 24: 587-590.

    [60]

    [60]Taylor R N, Nesbitt R W, Vidal P, Harmon R S, Auvray B and Croudace I W. 1994. Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. J. Petrol., 35:577-617.

  • 加载中
计量
  • 文章访问数:  34927
  • PDF下载数:  13952
  • 施引文献:  0
出版历程
修回日期:  2002-01-10
刊出日期:  2002-05-31

目录