阿尔泰可可托海伟晶岩中弧形石英白云母层的成因及意义

田野, 秦克章, 周起凤, 唐冬梅, 王春龙. 阿尔泰可可托海伟晶岩中弧形石英白云母层的成因及意义[J]. 岩石学报, 2015, 31(8): 2353-2365.
引用本文: 田野, 秦克章, 周起凤, 唐冬梅, 王春龙. 阿尔泰可可托海伟晶岩中弧形石英白云母层的成因及意义[J]. 岩石学报, 2015, 31(8): 2353-2365.
TIAN Ye, QIN KeZhang, ZHOU QiFeng, TANG DongMei, WANG ChunLong. The formation of curve shape quartz-muscovite layers in Koktokay pegmatite intrusions, Altay, and its implications[J]. Acta Petrologica Sinica, 2015, 31(8): 2353-2365.
Citation: TIAN Ye, QIN KeZhang, ZHOU QiFeng, TANG DongMei, WANG ChunLong. The formation of curve shape quartz-muscovite layers in Koktokay pegmatite intrusions, Altay, and its implications[J]. Acta Petrologica Sinica, 2015, 31(8): 2353-2365.

阿尔泰可可托海伟晶岩中弧形石英白云母层的成因及意义

  • 基金项目:

    本文受国家自然科学青年基金项目(41202151x)和国家"十二五"科技支撑计划新疆305项目(2011BAB06B03-04)联合资助.

详细信息

The formation of curve shape quartz-muscovite layers in Koktokay pegmatite intrusions, Altay, and its implications

More Information
  • 石英白云母层时常紧贴伟晶岩侵入体的边界出现且平行边界延伸。但是在新疆阿尔泰可可托海伟晶岩型稀有金属矿区伟晶岩体中石英白云母层出现了三种不同类型的弧形起伏,这些弧形形态仅用矿物的定向生长是难以解释的。弧形石英白云母层具有统一的"背地性"指向(弧形凸起顶端一律朝上)并且越靠近伟晶岩侵入体的顶部弧形凸起越明显,在侵入体侧部边界的石英白云母层不存在弧形凸起形态。这些形态特点与浮力作用下形成的形态具有可比性,暗示浮力与弧形石英白云母层间存在密切的成因联系。石英白云母层与石英钠长石层的间隔出现指示伟晶岩浆中挥发分含量的周期性增加。挥发分含量的周期性增加导致了挥发分不断加入未固结的剩余岩浆中并向伟晶岩体顶部上升,逐步在伟晶岩侵入体的顶部形成了弧形石英白云母层。弧形石英白云母层的大量出现不仅说明伟晶岩侵入体规模较大,也暗示存在有利的挥发分保存环境,对伟晶岩型稀有金属矿产的形成和稀有金属找矿预测起到非常重要的作用。
  • 加载中
  • [1]

    Aubele JC, Crumpler LS and Elston WE. 1988. Vesicle zonation and vertical structure of basalt flows. Journal of Volcanology and Geothermal Research, 35: 349-374

    [2]

    Breiter K, Müller A, Leichmann J and Gabašová A. 2005. Textural and chemical evolution of a fractionated granitic system: The Podlesí stock, Czech Republic. Lithos, 80(1-4): 323-345

    [3]

    Cao MJ, Zhou QF, Qin KZ, Tang DM and Evans NJ. 2013. The tetrad effect and geochemistry of apatite from the Altay Koktokay No.3 pegmatite, Xinjiang, China: Implications for pegmatite petrogenesis. Mineralogy and Petrology, 107(6): 985-1005

    [4]

    Černý P and Ferguson RB. 1972. The Tanco pegmatite at Bernic Lake, Manitoba. IV. Petalite and Spodumene relations. Canadian Mineralogist, 11: 660-678

    [5]

    Černý P. 1991. Rare-element granitic pegmatites. Part Ι: Anatomy and internal evolution of pegmatite deposits. Geoscience Canada, 18(2): 49-67

    [6]

    Cashman KV and Mangan MT. 1994. Physical aspects of magmatic degassing; Ⅱ, Constraints on vesiculation processes from textural studies of eruptive products. Reviews in Mineralogy and Geochemistry, 30: 447-478

    [7]

    Chen FW, Li HQ, Wang DH, Cai H and Chen W. 2000. New chronological evidence for Yanshanian diagenetic mineralization in China's Altay orogenic belt. Chinese Science Bulletin, 45(2): 108-114

    [8]

    Davison I, Alsop I, Birch P, Elders C, Evans N, Nicholson H, Rorison P, Wade D, Woodward J and Young M. 2000. Geometry and late-stage structural evolution of Central Graben salt diapirs, North Sea. Marine and Petroleum Geology, 17: 499-522

    [9]

    Goff F. 1996. Vesicle cylinders in vapor-differentiated basalt flows. Journal of Volcanology and Geothermal Research, 71(24): 167-185

    [10]

    Hönig S, Leichmann J and Novák M. 2010. Unidirectional solidification textures and garnet layering in Y-enriched garnet-bearing aplite-pegmatites in the Cadomian Brno Batholith, Czech Republic. Journal of Geosciences, 55(2): 113-129

    [11]

    Hoyt E. 2011. Rheological properties of folded layers during natural deformation as determined from auantitative geometric analysis of fold shape. Master Degree Thesis. Colby: Colby College, 1-53

    [12]

    Hu H, Wang RC, Zhang AC and Xu SJ. 2004. Compositional heterogeneity and magmatic-hydrothermal evolution of pollucite in No.3 rare metal pegmatite dyke of Altay, Xinjiang. Mineral Deposits, 23(4): 411-421 (in Chinese with English abstract)

    [13]

    Hu ZD. 2008. The geology and deep prospection of the No.3 pegmatite dyke, Koktokay, Xinjiang, China. Xinjiang Nonferrous Metals, (Suppl.2): 7-10 (in Chinese with English abstract)

    [14]

    Jahns RH. 1955. The study of pegmatites. Economic Geology, 50: 1025-1130

    [15]

    Jahns RH and Tuttle OF. 1963. Layered pegmatite-aplite intrusives. Mineralogical Society of American Special Paper, 1: 78-92

    [16]

    Jahns RH and Burnham CW. 1969. Experimental studies of pegmatite genesis: Ⅰ. A model for the derivation and crystallization of granitic pegmatites. Economic Geology, 64(8): 843-864

    [17]

    Jahns RH. 1982. Internal evolution of pegmatite bodies. In: Cěrny P (ed.). Granitic Pegmatites in Science and Industry. Canada: Mineralogical Association of Canada Short Course Handbook, 293-327

    [18]

    Jin LY, Qin KZ, Meng ZJ, Li GM, Song GX, Li ZZ, Lü KP, Kan XC, Zhao C and Zhang XN. 2014. Vein features and occurrences in Chalukou giant molybdenum-zinc-lead deposit, northern Great Xing'an Range, and its indications for mineralization. Mineral Deposits, 33(4): 742-760 (in Chinese with English abstract)

    [19]

    Kirkham RV and Sinclair WD. 1988. Comb quartz layers in felsic intrusions and their relationship to porphyry deposits. In: Taylor RP and Strong DF (eds.). Recent Advances in the Geology of Granite-Related Mineral Deposits. Canada: Canadian Institute of Mining and Metallurgy, Special Volume, 39: 50-71

    [20]

    Kleck WD and Foord EE. 1999. The chemistry, mineralogy, and petrology of the George Ashley Block pegmatite body. American Mineralogist, 84(5-6): 695-707

    [21]

    Li ZL, Zhang WL, Li W, Zhai W and Shi GY. 2000. Electronic microprobe study on the melt inclusions in pegmatite minerals from Ailaoshan and Keketuohai pegmatite deposits. Geological Journal of China Universities, 6(4): 509-522 (in Chinese with English abstract)

    [22]

    Li ZZ. 2014. Fluorine-rich and highly oxidized magmatic-hydrothermal evolution and metallogenesis of Chalukou giant porphyry Mo deposit in northern Great Xing'an Range. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, CAS, 1-248 (in Chinese with English summary)

    [23]

    Liu Y, Deng J, Shi GH, Sun X and Yang LQ. 2012a. Genesis of the Xuebaoding W-Sn-Be crystal deposits in Southwest China: Evidence from fluid inclusions, stable isotopes and ore elements. Resource Geology, 62(2): 159-173

    [24]

    Liu Y, Deng J, Shi GH and Sun DS. 2012b. Geochemical and morphological characteristics of coarse-grained tabular beryl from the Xuebaoding W-Sn-Be deposit, Sichuan Province, western China. International Geology Review, 54(14): 1673-1684

    [25]

    London D. 1992. The application of experimental petrology to the genesis and crystallization of granitic pegmatites. The Canadian Mineralogist, 30: 499-540

    [26]

    London D. 2009. The origin of primary textures in granitic pegmatites. The Canadian Mineralogist, 47(4): 697-724

    [27]

    Lowenstern JB and Sinclair WD. 1996. Exsolved magmatic fluid and its role in the formation of comb-layered quartz at the Cretaceous Logtung W-Mo deposit, Yukon Territory, Canada. Transactions of the Royal Society of Edinburgh: Earth Sciences, 87(1-2): 291-303

    [28]

    Lu HZ, Wang ZG and Li YS. 1997. Magma-fluid transition and the genesis of pegmatite dike No.3, Altay, Xinjiang, Northwest China. Chinese Journal of Geochemistry, 16(1): 43-52

    [29]

    Pollard DD and Fletcher RC. 2005. Fundamentals of Structural Geology. London: Cambridge University Press, 1-512

    [30]

    Qin KZ, Shen MD, Tang DM, Guo ZL, Zhou QF, Wang CL, Guo XJ, Tian Y and Ding JG. 2013. Types, intrusive and mineralization ages of pegmatite rare-element deposits in Chinese Altay. Xinjiang Geology, 31(Suppl.): 1-7 (in Chinese with English abstract)

    [31]

    Ramsay JG. 1967. Folding and Fracturing of Rocks. New York: McGraw-Hill Book Company, 1-581

    [32]

    Ren BQ, Zhang H, Tang Y and Lü ZH. 2011. LA-ICPMS U-Pb zircon geochronology of the Altai pegmatites and its geological significance. Acta Mineralogica Sinica, 31(3): 587-596 (in Chinese with English abstract)

    [33]

    Rockhold JR, Nabelek PI and Glascock MD. 1987. Origin of rhythmic layering in the Calamity Peak satellite pluton of the Harney Peak granite, South Dakota: The role of boron. Geochimica et Cosmochimica Acta, 51(3): 487-496

    [34]

    Shannon JR, Walker BM, Carten RB and Geraghty EP. 1982. Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado. Geology, 10(6): 293-297

    [35]

    Wang T, Tong Y, Jahn BM, Zou TR, Wang YB, Hong DW and Han BF. 2007. SHRIMP U-Pb zircon geochronology of the Altai No.3 pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews, 32(1-2): 325-336

    [36]

    Wang XJ, Zou TR, Xu JG, Yu XY and Qiu YZ. 1981. Mineralgy of Pegmatite Rocks in Altai Orogen. Beijing: Science Press, 1-140 (in Chinese)

    [37]

    Webber KL, Falster AU, Simmons WB and Foord EE. 1997. The role of diffusion-controlled oscillatory nucleation in the formation of line rock in pegmatite-aplite dikes. Journal of Petrology, 38(12): 1777-1791

    [38]

    Wu CN, Zhu JC, Liu CS, Yang SZ, Zhu BY and Xiong XL. 1994. A study on the inclusions in spodumenes from Altai pegmatite, Xinjiang. Geotectonica et Metallogenia, 18(4): 353-362 (in Chinese with English abstract)

    [39]

    Wu CN, Zhu JC and Liu CS. 1995a. A study on the inclusions in beryls from Kuwei and Keketuohai pegmatites, Altai, Xinjiang. Journal of Nanjing University (Natural Sciences Edition), 31(2): 350-356 (in Chinese with English abstract)

    [40]

    Wu CN, Zhu JC, Liu CS and Xiong XL. 1995b. Study of compositions of melting fluid inclusions in pegmatites, Altai, Xinjiang. Geochimica, 24(4): 351-358 (in Chinese with English abstract)

    [41]

    Yamamoto Y. 2014. Dewatering structure and soft-sediment deformation controlled by slope instability: Examples from the late Miocene to Pliocene Miura-Boso accretionary prism and trench-slope basin, central Japan. Marine Geology, 356: 65-70

    [42]

    Yang ZM, Hou ZQ, Li ZQ, Song YC and Xie YL. 2008. Direct record of primary fluid exsolved from magma: Evidence from unidirectional solidification texture (UST) in quartz found in Qulong porphyry copper deposit, Tibet. Mineral Deposits, 27(2): 188-199 (in Chinese with English abstract)

    [43]

    Yin R, Wang RC, Zhang AC, Hu H, Zhu JC, Rao C and Zhang H. 2013. Extreme fractionation from zircon to hafnon in the Koktokay No.1 granitic pegmatite, Altai, northwestern China. American Mineralogist, 98(10): 1714-1724

    [44]

    Zhou QF. 2013. The geochronology, mineralogy, melt-fluid evolution and metallogenesis of the Koktokay No.3 pegmatitic rare-element deposit, Altai. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, CAS, 1-222 (in Chinese with English summary)

    [45]

    Zhou QF, Qin KZ, Tang DM, Ding JG and Guo ZL. 2013. Mineralogy and significance of micas and feldspars from the Koktokay No.3 pegmatite rare element deposit, Altai. Acta Petrologica Sinica, 29(9): 3004-3022 (in Chinese with English abstract)

    [46]

    Zhou QF, Qin KZ, Tang DM, Wang CL, Tian Y and Sakyi PA. 2015a. Mineralogy of the Koktokay No.3 pegmatite, Altai, NW China: Implications for evolution and melt-fluid processes of rare-metal pegmatites. European Journal of Mineralogy, 27: 433-457

    [47]

    Zhou QF, Qin KZ, Tang DM, Tian Y, Cao MJ and Wang CL. 2015b. Formation age and evolution time span of the Koktokay No.3 pegmatite, Altai, NW China: Evidence from U-Pb zrcon and Ar40-Ar39 muscovite ages. Resource Geology, 65(3): 210-231

    [48]

    Zhu JC, Li RK, Zhou FY, Wang RC, Xiong XL and Xu HZ. 1996. Genesis of asymmetrically layered pegmatite-aplite dykes of Shuiximiao mine, Limu district, Guangxi. Geochimica, 25(1): 1-9 (in Chinese with English abstract)

    [49]

    Zhu JC, Li RK, Li FC, Xiong XL, Zhou FY and Huang XL. 2001. Topaz-albite granites and rare-metal mineralization in the Limu district, Guangxi Province, Southeast China. Mineralium Deposita, 36(5): 393-405

    [50]

    Zhu YF and Zeng YS. 2002. Rb-Sr isochron age of Keketuohai No.3 pegmatite. Mineral Deposits, 21(Suppl.): 1110-1111 (in Chinese)

    [51]

    Zou TR and Li QC. 2006. Rare Metal Deposits and Rare Earth Deposits in China. Beijing: Geological Publishing House, 1-284 (in Chinese)

    [52]

    胡欢, 王汝成, 张爱铖, 徐士进. 2004. 新疆阿尔泰3号伟晶岩脉中的铯沸石: 内部成分不均一性与岩浆-热液作用. 矿床地质, 23(4): 411-421

    [53]

    胡忠德. 2008. 可可托海稀有金属矿床3号脉地质特征及深部找矿方向. 新疆有色金属, (增刊2): 7-10

    [54]

    金露英, 秦克章, 孟昭君, 李光明, 宋国学, 李真真, 吕克鹏, 阚学胜, 赵超. 2014. 大兴安岭北段岔路口巨型钼锌铅矿床脉体特征、产状及其对成矿的指示. 矿床地质, 33(4): 742-760

    [55]

    李兆麟, 张文兰, 李文, 翟伟, 石贵勇. 2000. 云南哀牢山和新疆可可托海伟晶岩矿物中熔融包裹体电子探针研究. 高校地质学报, 6(4): 509-522

    [56]

    李真真. 2014. 大兴安岭北段岔路口巨型斑岩钼矿高氟高氧化岩浆-流体演化与成矿作用. 博士学位论文. 北京: 中国科学院地质与地球物理研究所, 1-248

    [57]

    秦克章, 申茂德, 唐冬梅, 郭正林, 周起凤, 王春龙, 郭旭吉, 田野, 丁建刚. 2013. 阿尔泰造山带伟晶岩型稀有金属矿化类型与成岩成矿时代. 新疆地质, 31(Z): 1-7

    [58]

    任宝琴, 张辉, 唐勇, 吕正航. 2011. 阿尔泰造山带伟晶岩年代学及其地质意义. 矿物学报, 31(3): 587-596

    [59]

    王贤觉, 邹天人, 徐建国, 于学元, 裘愉卓. 1981. 阿尔泰伟晶岩矿物研究. 北京: 科学出版社, 1-140

    [60]

    吴长年, 朱金初, 刘昌实, 杨升祖, 朱炳玉, 宁广进. 1994. 阿尔泰伟晶岩锂辉石中包裹体研究. 大地构造与成矿学, 18(4): 353-362

    [61]

    吴长年, 朱金初, 刘昌实, 杨升祖, 朱炳玉, 宁广进. 1995a. 新疆阿尔泰库威和可可托海伟晶岩绿柱石中包裹体研究. 南京大学学报(自然科学版), 31(2): 350-356

    [62]

    吴长年, 朱金初, 刘昌实, 熊小林. 1995b. 阿尔泰伟晶岩中流体熔融包裹体成分的研究. 地球化学, 24(4): 351-358

    [63]

    杨志明, 侯增谦, 李振清, 宋玉财, 谢玉玲. 2008. 西藏驱龙斑岩铜钼矿床中UST石英的发现: 初始岩浆流体的直接记录. 矿床地质, 27(2): 188-199

    [64]

    周起凤. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床年代学、矿物学、熔-流体演化与成矿作用. 博士学位论文. 北京: 中国科学院地质与地球物理研究所, 1-222

    [65]

    周起凤, 秦克章, 唐冬梅, 丁建刚, 郭正林. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义. 岩石学报, 29(9): 3004-3022

    [66]

    朱金初, 李人科, 周凤英, 王汝成, 熊小林, 许红忠. 1990. 广西栗木水溪庙组不对称层状伟晶岩-细晶岩岩脉的成因讨论. 地球化学, 25(1): 1-9

    [67]

    朱永峰, 曾贻善. 2002. 可可托海3号脉伟晶岩铷-锶同位素等时线年龄. 矿床地质, 21(增刊): 1110-1111

    [68]

    邹天人, 李庆昌. 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社, 1-284

  • 加载中
计量
  • 文章访问数:  4583
  • PDF下载数:  4782
  • 施引文献:  0
出版历程
收稿日期:  2014-11-28
修回日期:  2015-02-28
刊出日期:  2015-08-31

目录