班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约

李金祥,李光明,秦克章,肖波. 班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J]. 岩石学报, 2008, 24(3).
引用本文: 李金祥,李光明,秦克章,肖波. 班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约[J]. 岩石学报, 2008, 24(3).
Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt, Tibet: Constraints on metailogenic tectonic settings[J]. Acta Petrologica Sinica, 2008, 24(3).
Citation: Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt, Tibet: Constraints on metailogenic tectonic settings[J]. Acta Petrologica Sinica, 2008, 24(3).

班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约

  • 基金项目:

    青藏973项目斑岩铜矿课题 , 自然科学基金项目

Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt, Tibet: Constraints on metailogenic tectonic settings

  • 西藏多不杂铜矿床是班公湖-怒江带北侧新近发现的具有超大型远景的、典型的富金斑岩型铜矿床.本文对含矿斑岩、玄武质火山岩进行了系统的地球化学分析,甄别出三套岩石系列:埃达克岩、高Nb玄武岩和正常的岛弧玄武安山岩.三套岩石SiO2含量47%~68%,Al2O3含13%~18%,MgO含量1.4%~8.5%,FeOt含量2.3%~8.1%和CaO含量2.1%~10%,属于钙碱系列.MgO、CaO和FeOt与SiO2呈负相关,K2O与SiO2基本呈正相关.高Nb玄武岩和正常的岛弧玄武安山岩富Na,Na2O/K2O在0.9~7之间,而埃达克岩是相对富K,Na2O/K2O比为0.8.稀土元素总量∑REE为29×10-6-203×10-6,从基性到酸性岩乏REE是逐渐减小的,高Nb玄武岩的稀土元素含量最高,而埃达克岩最低.球粒陨石标准化配分曲线为轻稀土富集型,LREE/HREE为7.0~12.4,(La/Yb)N为3.2~13,δEu为0.9~2.1.埃达克岩和正常的岛弧玄武岩富集大离子亲石元素(LILE:如Rb、Ba、K、Sr)和活泼的高场强元素(如:U、Th),相对亏损其它高场强元素(HFSE:如Nb、Ta、Zr、Hf、Ti),表明具有俯冲带之上岛弧岩浆的特征.而高Nb玄武岩具有明显Nb、Ta正异常,且TiO2含量高(>2%),(La/Nb)PM<2.微量元素地球化学特征和Sr、Nd同位素结果表明该区埃达克岩直接来源于俯冲洋壳的部分熔融,但可能有俯冲沉积物成分的加入;而高Nb的玄武岩则可能来源于埃达克质熔体交代或者超临界流体交代而产生富Nb、Ta的地幔源区,可能有软流圈地幔的加入;而正常的岛弧火山岩则来源于俯冲流体交代过的地幔楔.另外,多不杂矿区埃达克岩和高Nb玄武岩(HNB)空间共生的"埃达克质岩浆交代的火山岩系列",表明多不杂铜矿床形成于典型的岛弧俯冲构造背景.对与成矿密切相关的花岗闪长斑岩进行精确的SHRIMP锆石U-Pb年代学研究,其锆石具有明显的岩浆结晶环带,Th/U比值范围为0.51~0.90,均大于0.1,为岩浆成因锆石,其SHRIMP U-Pb年龄为121.6±1.9Ma,表明至少在大约120Ma期间班公-怒江洋盆正在向北俯冲,洋盆闭合时间应晚于早白垩世中期.
  • 加载中
  • [1]

    Aguillon-Robles A, Calmus T, Benoit M, Bellon H, Maury RC, Cotten J, Bourgois J and Michaud F. 2001. Late Miocene adakites and Nb- enriched basahs from Vizcaino Peninsula, Mexico : Indicators of East Pacif ic Rise subduction below southern Baja California? Geology, 29. 531 -534

    [2]

    Bailey JC, Frolova TI and Burikova IA. 1987. Mineralogy, geochemistry and petrogenesis of Kurile island-arc basalts. Contributions to Mineralogy and Petrology, 102 : 265 - 280

    [3]

    Boynton WV. 1984. Cosmoehemistry of the earth elements: meteorite studies. Rare Earth element geoehemlstry. In: Henderson R (eds.). Developments in geochemistry 2. Elsevier, Amsterdam,89 -92

    [4]

    Castillo PR, Solidum RU and Punonghayan RS. 2002. Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited. Geology, 30 : 707 - 710

    [5]

    Castillo PR. 2006. An overview of adakite petrogenesis. Chinese Science Bulletin, 51 ( 6 ) : 617 - 627

    [6]

    Castillo PR, Righy SJ and Solidum RU. 2007. Origin of high field strength element enrichment in volcanic arcs: Geochemical evidence from the Sulu Are, southern Philippines. Lithos, 97:271 - 288

    [7]

    Chen FK, Siebel W, Satir M, Terzioglu N and Saka K. 2002. Geochoronology of the Karedere basement (NW Turkey ) and implication for the geological evolution of the Istanbul zone. International Journal of Earth Sciences, 91:469 -481

    [8]

    Condie KC. 2005. TI\\'Gs and adakites: Are they both slab melts? Lithos, 80:33 -44

    [9]

    David K, Schiano P and Allegre CJ. 2000. Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. Earth and Planetary Science Letters, 178: 285 - 301

    [10]

    Defant MJ and Drummond MS. 1990. Derivation of some modem arc magmas by melting of young subducted lithosphere. Nature, 347: 662 - 665

    [11]

    Defant MJ and Drummond MS. 1993. Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic are. Geology, 21:541 -550

    [12]

    Defant MJ and Kepezhinskas P. 2001. Evidence suggests slab melting in arc magmas. Eos, Transactions of the American Geophysical Union, 82:67 - 70

    [13]

    Defant M J, Richerson M, de Boer JZ, Stewart RH, Maury RC, Bellon H, Drummond MS, Feigenson MD and Jackson TE. 1991. Dacite genesis via both slab melting and differentiation: Petrogenesis of La Yeguada volcanic complex, Panama. Journal of Petrology, 32:1101 - 1142

    [14]

    Defant M J, Jackson TE, Drummond MS, de Boer JZ, Bellon H, Feigenson MD, Maury RC and Stewart RH. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. Journal of the Geological Society ( London), 149:569 - 579

    [15]

    Ding L,Kapp P,Yin A,Deng WM and Zhong DL. 2003. Early Tertiary volcanism in the Qiangtang terrane of central Tibet: Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44 : 1833 - 1865

    [16]

    Femando C, John MH, Paul WOH, and Peter K. 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53:469 -500

    [17]

    Ferrari L, Petrone CM and Francalanci L. 2001. Generation of oceanicisland basalt-type vocanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting. Geology, 29(6) :507 -510

    [18]

    Foley S, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417 : 837 - 840

    [19]

    Gill JB. 1981. Orogenic Andesites and Plate Tectonics. Berlin, Springer- Verlag, 358

    [20]

    Guo TY, Liang DY and Zhang YZ. 1991. Geology. of Ngari, Tibet (Xizang). Wuhan : The China University of Geosciences Press, 464

    [21]

    Hawkesworth CJ, Hergt JM, Ellam RM and McDermott F. 1991. Element fluxes associated with subduction related magmatism. Philosophical Transactions of the Royal Society of London , 335:393 - 405

    [22]

    Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F. 1993. Mantle and slab contributions in arc magmas. Annual Review of Earth and Planetary Sciences,21 : 175 - 204

    [23]

    Hollings P. 2002, Archean Nb-enriehed basalts in the northern Superior Province. Lithos, 64 : 1 - 14

    [24]

    Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX. 2004. Origin of adakitic intrusives generated during mid-Miocene East-west extension in southern Tibet. Earth and Planetary Science Letters, 220:139 - 155

    [25]

    Huang JQ and Chen BW. 1987. Geological evolution of Tethys sea around China and its adjacent areas. Beijing: Geological Publishing House, 1 -78

    [26]

    Ionov DA and Hofmann. 1995. Nb-Ta-rich mantle amphiboles and micas: Implication for subduetion-related metasomatie trace element fraetionations. Earth and Planetary Science Letters, 131:341 - 356

    [27]

    Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8 : 523 - 548

    [28]

    Kapp P, Murphy M A, Yin A, Harrison, Mark T, Ding L and Guo J H. 2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 22(4) : 1029

    [29]

    Kelemen PB, Johnson KTM, Kinzler RJ and lrving AJ. 1990. High-field-strength element depletions in arc basahs due to mantle-magma interaction. Nature, 345:521 - 524

    [30]

    Kelemen PB, Shimizu N and Dunn T. 1993. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth and Planetary Science Letters, 120:111 -133

    [31]

    Kepezhinskas PK, Defant MJ and Drummond MS. 1996. Progressive enhancement of island arc mantle by meh-peridotite interaction inferred from Kamchatka adakites. Geochimica et Cosmochimica Acta, 60:1217 - 1229

    [32]

    Keppler H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature, 380:237 -240

    [33]

    Kessel R, Schmidt M W, Ulmer P and Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120 - 180km depth. Nature, 437:724 -727

    [34]

    Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks basedon the total alkali-silica diagram. Journal of Petrology, 27 : 745 - 750

    [35]

    LiG M, Li J X, Qin K Z, Zhang T P and Xiao B. 2007. High temperature, salinity and strong oxidation ore-forming fluid at Duobuza gold-rich porphyry copper in the Bangonghu tectonic belt, Tibet: Evidence from fluid inclusions study. Acta Petrologica Sinica, 23 ( 5 ) :935 - 952

    [36]

    Liu HT, Zhang Q, Liu JM, Ye J, Zeng QD and Yu CM. 2004. Adakite versus porphyry copper and epithermal gold deposits: A possible metallogenetic specialization of magmatism required in-deep assessment. Acta Petrologica Sinica, 20:205 - 218

    [37]

    Liu QH, Xiao ZJ, Cao SH, Liao LG and Xiao YB. 2004. A preliminary study of the spatio-temporal framework of the archipelagic Arc-basin systems in the western part of the Bangong-Nujiang suturezone, Xizang. Sedimentary. Geology. and Tethyan Geology,24(3) : 15 - 21

    [38]

    Martin H. 1999. Adakitic magmas: Modem analogues of Archaean granitoids. Lithos, 46:411 - 429

    [39]

    Mo XX, Dong GC, Zhao ZD, Zhou S, Wang LL, Qiu RZ and Zhang FQ. 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese ,Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11(3):281 -290

    [40]

    Mungall J E. 2002. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30:915 -918

    [41]

    Murphy MA, Harrison TM, Durr SB, Chen Z, Ryerson FJ, Kidd WSF, Wang X and Zhou X. 1997. Significant crustal shortening in southcentral Tibet prior to the Indo-Asian collision. Geology,25:719 -722

    [42]

    Oyarzun R, Maroueza, Lollo J, Lopez I and Rivera S. 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile : Adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 6(7) : 94-798

    [43]

    Pan GT, Wang LQ and Zhu DC. 2004. Thoughts on some important scientific problems in regional geological survey of the Qinghai-Tibet Plateau. Geological Bulletin of China, 23:12 - 19

    [44]

    Pan GT,Chen ZL,Li XZ,Yang YJ,Xu XS,Xu Q,Jiang XS,Wu YL,Luo JN,Zhu TX and Peng YM. 1997. Geological-tectonic evolution in the eastern Tethys. Beijing: Geological Publishing House, 1 -218

    [45]

    Pearee, JA, Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences,23, 251 - 285

    [46]

    Pearce JA., Kempton PD, Nowell GM and Noble SR. 1999. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems. Journal of Petrology, 40 : 1579 - 1611

    [47]

    Polat A and Kerrich R. 2002. Nd-isotope systematics of 2.7 Ga adakites, magnesian andesites, and arc basahs, Superior Province: Evidence for shallow crustal recycling at Archean subduction zones. Earth Planet Sci Lett ,202:345 - 360

    [48]

    Qin KZ, Tosdal R, Li GM, Zhang Q and Li JL. 2005. Formation of the Miocene porphyry Cu (-Mo-Au) deposits in the Gangdese arc, southern Tibet, in a transitional tectonic setting. In: Zhao Caisheng and Guo Baojian (eds.). Mineral Deposit Research. Meeting the Global Challenge. Beijing: China land publishing House, Volume 3:44 -47

    [49]

    Qin K Z. 1993. On the major ore-controlling factors over large-superlarge copper deposits. Exploration of Geoseienees,8 : 39 - 45

    [50]

    Qin KZ, Li GM, Zhang Q,Li JX, Miao Y, Xiao B, Zhang TP, Duo J, Li JG and Lu Y. 2006. Metallogenic conditions and possible occurrences for epithermal gold mineralizations in Gangdese and Bangonghu Belts, Tibet--in view of porphyry-epithermal Cu-Au metallogenetic systematics. Proceedings of 8th National Conference of Mineral Deposits, China. Beijing: Geological Publishing House, 666 -670

    [51]

    Qiu RZ, Zhou S, Deng JF, Li JF, Xiao QH and Cai ZY. 2004. Dating of gabbro in the Shemalagou ophiolite in the western segment of the Bangonghu-Nujiang ophiolite belt, Tibet-with a discussion of the age of the Bangonghu-Nujiang ophiolite belt. Geology in China, 31 (3) : 262 -268

    [52]

    Qu XM and Xin HB. 2006. Ages and tectonic environment of the Bangong Co porphyry copper belt in western Tibet, China. Geological Bulletin of China, 25 (7) : 792 - 799

    [53]

    Qu XM, Hou ZQ and Li YG. 2004. Melt components derived from a subducted slah in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibeten plateau. Lithos, 74 : 131 - 148

    [54]

    Reagan MK and Gill JB. 1989. Coexisting calkalkaline and high niobium basalts from Turrialba volcano, Costa Rica: Implications for residual fitanites in arc magma sources. Journal of Geophysical Research,94: 4619 -4633

    [55]

    Ren J X and Xiao L W. 2004. Lifting the mysterious veil of the tectonics of the Qinghai-Tibet Plateau by 1 : 250000 geological mapping. Geological Bulletin of China, 23 ( 1 ) : 1 - 11

    [56]

    Sajona FG, Maury RC, Bellon H, Cotten J, Defant MJ and Pubellier M. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21 : 1007 - 1010

    [57]

    Sajona FG, Bellon H, Maury RC, Pubellier M, Cotten J and Rangin C. 1994. Magmatic response to abrupt changes in tectonic setting: Pliocene-Quaternary calc-alkaline lavas and Nb-enriched basalts of Leyte and Mindanao (Philippines). Tectonophysics, 237 :41-72

    [58]

    Sajona FG, Maury RC, Bellon H, Cotten J and Defant MJ. 1996. High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). Journal of Petrology, 37,693 -726

    [59]

    Sajona FG, Maury RC, Pubellier M, Leterrier J, Bellon H and Cotten J. 2000. Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao (Philippines). Lithos, 54: 173 - 206

    [60]

    Samuel A, Bowring and Mark D Schmitz. 2003. High-precision U-Pb zircon geochronology and the stratigraphic record. Reviews in Mineralogy and Geochemistry, 53:305 - 326

  • 加载中
计量
  • 文章访问数:  11287
  • PDF下载数:  13836
  • 施引文献:  0
出版历程
刊出日期:  2008-03-31

目录