CMF模式的排他性依据和造山型银矿实例:东秦岭铁炉坪银矿同位素地球化学

陈衍景,隋颖慧,Franco PIRAJNO. CMF模式的排他性依据和造山型银矿实例:东秦岭铁炉坪银矿同位素地球化学[J]. 岩石学报, 2003, 19(3): 551-568.
引用本文: 陈衍景,隋颖慧,Franco PIRAJNO. CMF模式的排他性依据和造山型银矿实例:东秦岭铁炉坪银矿同位素地球化学[J]. 岩石学报, 2003, 19(3): 551-568.
Yanjing CHEN,YingHui SUI and Franco PIRAJNO Key Laboratory of Oregen and Crust Evolution,Peking University,Beijing 100871,China Division of Geqfluid and Earth Interior,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China Department of Geology,Pelting University,Beijing 100871,China Geological Survey of Western Australia,100 Plain Street,Perth,WA 6004,Australia. Exclusive evidences for CMF model and a case of orogenic silver deposits: Isotope geochemistry of the Tieluping silver deposit, east Qinling orogen.[J]. Acta Petrologica Sinica, 2003, 19(3): 551-568.
Citation: Yanjing CHEN,YingHui SUI and Franco PIRAJNO Key Laboratory of Oregen and Crust Evolution,Peking University,Beijing 100871,China Division of Geqfluid and Earth Interior,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550002,China Department of Geology,Pelting University,Beijing 100871,China Geological Survey of Western Australia,100 Plain Street,Perth,WA 6004,Australia. Exclusive evidences for CMF model and a case of orogenic silver deposits: Isotope geochemistry of the Tieluping silver deposit, east Qinling orogen.[J]. Acta Petrologica Sinica, 2003, 19(3): 551-568.

CMF模式的排他性依据和造山型银矿实例:东秦岭铁炉坪银矿同位素地球化学

  • 基金项目:

    科学院百人计划,教育部跨世纪人才培养计划,国家攀登预研(95-Pre-39-04),国家自然科学基金(49972035)

  • 河南熊耳山区的铁炉坪银矿定位于高级变质基底中的NE向断裂带中,是熊耳山脉状造山型金、银、铅锌矿床的重要组成部分。成矿作用包括了早、中、晚3个阶段,分别形成石英-黄铁矿,多金属硫化物和碳酸盐脉3类矿物组合。早阶段成 矿温度大约为373℃左右,成矿流体δD=-90‰,δ~(13)C_(co_2)=2.0‰,δ~(18)O=9‰,来源较深;晚阶段流体温度<203℃,δD=70‰,δ~(13)C_(co_2)=-1.3‰,δ~(18)O=-2‰,属于浅源大气降水热液;中阶段流体均一温度210~249℃,δD=-109‰,δ~(13)C_(co_2)=0.1‰,δ~(18)O=2‰,是深源与浅源流体的混合。对比讨论表明,熊耳山区的早前寒武纪变质基底、熊耳群火山岩和燕山期花岗岩类的三者之一或它们的混合物,均无法提供具有早阶段流体D-O-c同位素组成(高δ~(18)O和δ~(13)C,低δD)的成矿流体,表明早阶段流体来自栾川群和管道口群的碳酸盐-页岩-硅质岩建造的变质脱水作用。矿石硫同位素组成较低,铅同位素比值较高,同样不可能来自熊耳山的主要地质体,更不可能来自其下伏的地幔和下地壳,指示成矿物质和流体应主要来自栾川群和管道口群。尽管栾川群和管道口群地层的同位素地球化学研究尚待补充,铁炉坪银矿的同位素地球化学特征似乎只能借助碰撞造山成岩成矿与流体作用模式才能合理解释。即华南与华
  • 加载中
  • [1]

    [1]Bierlein FP, Maher S. 2001. Orogenic disseminated gold in Phanerozoic fold belts-examples from Victoria, Australia and elsewhere. Ore Geol. Rev., 18:113-148

    [2]

    [2]Bird P. 1978. Initiation of intracontinental subduction in the Himalaya. J. Geophys. Res., 83: 4975-4987

    [3]

    [3]Chen H. 1996. Hydrogen isotope fractionation in the evolution of the earth. Scientia Geologica Sinica, 31: 238-249 (in Chinese with English abstract)

    [4]

    [4]Chen HY, Bao JX, Zhang ZJ, Liu YL, Ni P, Ling HF. 2000a. Isotope indication to source of ore materials and fluids of the Wangfeng gold deposit in Tianshan: a case study of metallogenesis during collisional orogenesis. Sci. China (Ser. D), 43 (supp.): 156-166

    [5]

    [5]Chen HY, Chen YJ, Liu YL. 2001. Metallogenesis of the Ertix gold belt, Xinjiang and its relationship to Central Asia-type orogenesis. Sci. China (Ser. D), 44: 245-255

    [6]

    [6]Chen JF, Jahn BM. 1999. Nd-Sr-Pb isotopic Indications and crustal evolution of Southeast China continent. In: Zheng YF (ed.). Chemical Geodynamics. Beijing: Science Press, 262- 287 (in Chinese)

    [7]

    [7]Chen W, Guo SR, Cui B. 1996. Isotopic geochemistry of the Tieluping and Haopinggou deposits in the Mount Xiong\'er area, western Henan. Geological Exploration for Non-ferrous Metals, 5: 213-218 (in Chinese)

    [8]

    [8]Chen YJ. 1996. A new understanding on the relation between natures of volcanic formation and tectonic setting: Implication of the study on the Xiong\'er Group and its comparison of DI-histograms with typical volcanic formations of the world. In: Chen YJ, Lu B, Hao ZG (eds.). China\'s Postdoctors\' Contributions to the 30th International Geological Congress. Beijing: China Petroleum Industry Press, 134-143

    [9]

    [9]Chen YJ. 1997. Mineralization during collisional orogenesis and its control of the distribution of gold deposits in Junggar mountains, Xinjiang, China. Acta Geol. Sin. 71: 69-79

    [10]

    [10]Chen YJ. 1998. Fluidization model for continental collision in special reference to study on oreforming fluid of gold deposits in the eastern Qinling Mountains, China. Prog. Nat. Sci., 8: 385-393

    [11]

    [11]Chen YJ, Chen HY, Liu YL, Guo GJ. 2000b. Progress and records in the study of endogenetic mineralization during collisional orogenesis. Chin. Sci. Bull., 45: 1-10

    [12]

    [12]Chen YJ, Fu SG. 1992. Gold Mineralization in West Henan, China. Beijing: Seismological Press, 234 (in Chinese)

    [13]

    [13]Chen YJ, Fu SG, Chen ZM, Sun WD. 1990. Tectonic model for metallogenesis of gold deposits in Henan Province. Geol. Inform. Henan, (2): 9-14 (in Chinese)

    [14]

    [14]Chen YJ, Guo GJ, Li X. 1998. Metallogenic geodynamic background of gold deposits in granite-greenstone terrains of North China Craton. Sci. China (Ser. D), 41: 113-120

    [15]

    [15]Chen YJ, Zhao YC. 1997. Geochemical characteristics and evolution of REE in the Early Precambrian sediments: evidences from the southern margin of the North China craton. Episodes, 20: 109-116

    [16]

    [16]Clark AH, Farrar E, Kontak DJ, Langridge RJ, France LJ, McBride SL, Woodman PL, Wasteneys HA, Sademan HA, Archibald DA.1990. Geologic and geochronologic constraints on the metrallogenic evolution of the Andes of southeastern Peru. Econ. Geol., 85:1520-1583

    [17]

    [17]Clayton RE, Spiro B. 2000. Sulphur, carbon and oxygen isotope studies of early Variscan mineralization and Pb-Zn vein deposits in the Cornubian orefield: implication for the scale of fluid movements during Variscan deformation. Miner. Deposita, 35:315-331

    [18]

    [18]Cox SF. 1999. Deformational controls on the dynamics of fluid flow in mesothermal gold systems. In: McCaffrey KJW, Lonergan L, Wilkinson JJ (eds.). Fractures, Fluid Flow and Mineralization. Special Pub. Geol. Soc. London, 155: 123-140

    [19]

    [19]Cox SF, Knackstedt MA, Braun J. 2001. Principles of structural control on permeability and fluid flow in hydrothermal system. SEG Reviews, 14: 1-24

    [20]

    [20]Cui B. 1991. Lead isotope compositions of non-ferrous and precious metallic deposits at the southern margin of the North China Platform. Miner. Dep. Explor., (2): 30-41 (in Chinese)

    [21]

    [21]Ding TP. 1988. Stable Isotope Studies on Several Typical Deposits in China. Beijing: Beijing Science & Technology Publishing House, 71pp (in Chinese with English abstract)

    [22]

    [22]Fan HR, Xie YH, Wang YL. 1993. The properties of magmatic hydrothermal fluid of Hushan granitic batholith in western Henan Province and their relationship to gold mineralization. Acta Petrologica Sinica, 9: 136-145 (in Chinese with English abstract)

    [23]

    [23]Fan HR, Xie YH, Wang YL. 1998. Fluid-rock interaction during mineralization of the Shanggong structure-controlled alteration-type gold deposit in western Henan province, Central China. Acta Petrologica Sinica. 14: 529-541 (in Chinese with English abstract)

    [24]

    [24]Fan HR, Xie YH, Zhai MG, Jin CW, 2003. A three-stage fluid flow model for Xiaoqinling lode gold metallogenesis in He\'nan and Shaanxi provinces, central China. Acta Petrologica Sinica, 19: 260-266. (in Chinese with English abstract)

    [25]

    [25]Fan HR, Xie YH, Zhao R, Wang YL. 1994. Stable isotope geochemistry of rocks and gold deposits in Xion\'ershan area, Western Henan. Collections of Geology and Exploration, 9: 54-64 (in Chinese)

    [26]

    [26]Faure G. 1986. Principles of Isotope Geology (Second Edition). John Wiley & Sons, New York, 589p

    [27]

    [27]Fritz P. 1969. The oxygen and carbon isotopic composition of carbonates from the Pine Point lead-zinc ore deposits. Econ. Geol., 64:733-742

    [28]

    [28]Frutos J, Pincheira M. 1985. Metalogenesis y yacimientos metalliferos chilenos, in Frutos J, Oyarzun Munoz R, Pincheira M (eds.). Geologia y recursos minerales de Chile. Editorial Univ Concepcion, Inscripcion No. 63765: 470-487

    [29]

    [29]Giuliani G, France-Lanord C, Coget P, Schwarz D, Cheilletz A, Branquet Y, Giard D, Martin-Izard A, Alexandrov P, Piat DH. 1998. Oxygen isotope systematics of emerald: relevance for its origin and geological significance. Miner. Deposita, 33: 513-519

    [30]

    [30]Goldfarb RJ, Groves DI, Cardoll S. 2001. Orogenic gold and geologic time: a global synthesis. Ore Geol Rev., 18:1-75

    [31]

    [31]Groves DI. 1993. The crustal continuum model for late-Archean lode-gold deposits of the Yilgarn Block, Western Australia. Miner. Deposita, 28: 366-374

    [32]

    [32]Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F. 1998. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev., 13: 7-27

    [33]

    [33]Gu LX, Hu SX, Chu Q. 1999. Pre-collision granites and post-collision intrusive assemblage of the Kelameili-Harlik orogenic belt. Acta Geol. Sin., 73: 316-329

    [34]

    [34]Guo SR. 1995. Study on zonational wallrock alteration of the Tieluping Ag-Pb deposit, Henan. Geol. Henan, 23: 23-28 (in Chinese)

    [35]

    [35]Hagemann SG, Cassidy KF. 2000. Archean orogenic lode gold deposits. SEG Reviews, 13: 9-68

    [36]

    [36]HBGENM(Henan Bureau of Geological Exploration for Nonferrous Metals). 1997. Report of Exploration of Tieluping Silver Deposit. Unpublished, 240 (in Chinese)

    [37]

    [37]Henan Institute of Geology. 1985. Study on Metallogenic Conditions and Types of Gold Deposits in Henan Province. Unpublished Research Report, 165p (in Chinese)

    [38]

    [38]Hoefs J. 1997. Stable Isotope Geochemistry (Forth Edition). Springer-Verlag, Berlin, 201pp

    [39]

    [39]Hsu KJ. 1979. Thin-skinned plate tectonics during Neo-Alpine orogenesis. Am. J. Sci., 279: 353-366

    [40]

    [40]Hsu KJ, Sun S, Wang QC. 1998. Sketch Map of Tectonic Facies of China (1/4000000) and its Guide. Beijing: Science Press, 188

    [41]

    [41]Hu SX, Lin QL, Chen ZM, Li SM. 1988. Geology and Metallogeny of the Collision Belt Between the North and the South China Plates. Nanjing: Nanjing University Press, 558 (in Chinese)

    [42]

    [42]Hu SX, Wang HN, Wang DZ, Zhang JY. 1998. Geology and Geochemistry of Gold Deposits in East China. Beijing: Science Press, 343p (in Chinese)

    [43]

    [43]Hu SX, Zhao YY, Xu JF, Ye Y. 1997. Geology of Gold Deposits in North China Platform. Beijing: Science Press, 220p (in Chinese)

    [44]

    [44]Ionov DV, Hoefs J, Wedepohl KH, Wiecher U. 1992. Content and isotopic composition of sulphur in ultramafic xenoliths from central Asia. Earth Planet. Sci. Lett., 111:269-286

    [45]

    [45]Jamieson RA. 1991. P-T-t paths of collisional orogenesis. Geologie Rundschau, 180: 321-332

    [46]

    [46]Jia CZ, Shi YS, Guo LZ. 1988. Plate Tectonics of Eastern Qinling Mountains of China. Nanjing: Nanjing University Press, 130p (in Chinese)

    [47]

    [47]Jin SW. 1988. Discussion on problems pertaining to the Erlangping Group. Geol. Henan, 16(4): 21-26. (in Chinese)

    [48]

    [48]Kay SM, Mpodozis C. 2001. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, 11: 1-10

    [49]

    [49]Kerrich R. 1993. Perspectives on genetic models for lode gold deposits. Miner. Deposita, 28: 362-365

    [50]

    [50]Kerrich R, Fryer BJ. 1981. The separation of rare elements from abundant base metals in Archean lode gold deposits: implications of low water/rock source regions. Econ. Geol., 76:160-166

    [51]

    [51]Kerrich R, Goldfarb R, Groves D, Garwin S, Jia YF. 2000. The characteristics, origins and geodynamic settings of supergiant gold metallogenic provinces. Sci. China (Ser. D), 43(supp.): 1-68

    [52]

    [52]Li C, Chen YJ, He SD. 2001. East Qinling-Dabieshan lithosphere delaminating age, mechanism and direction( petrological evidences and stipulation. Chinese J. Geochem., 20: 59-72

    [53]

    [53]Li SM. 1987. Isotope geochemical characteristics of the Shanggong gold deposit, Luoning County, Henan Province. Geol. W. Henan, 1: 1-29. (in Chinese)

    [54]

    [54]Li SM, Qu LQ, Li XM, Li DT. 1996. The mineralizing conditions and regularities of altered-structural type gold deposits in the Xiong\'er Mountain. In: Geology and Metallogeny of the Southern Margin of the North China Platform. Wuhan: Publishing House of China University of Geology, 161-189 (in Chinese)

    [55]

    [55]Liu HY, Hu SX, Zhou SZ. 1998. A study of rock-controlling and ore-controlling role of the Machaoying fault in Western Henan. Mineral Deposit, 17: 70-81 (in Chinese)

    [56]

    [56]McCuaig TC, Kerrich R. 1998. P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systems. Ore Geol. Rev., 12:381-453

    [57]

    [57]McInnes BIA, McBride JS, Evans NJ, Lambert DD, Andrew AS. 2002. Osmium isotope constraints on ore metal recycling in subduction zones. Science, 286: 512-520

    [58]

    [58]Mitchell AHG. 1973. Metallogenic belts and angle of dip of Benioff zones. Nature, 245:49-52

    [59]

    [59]Ni P, Fan JG, Tian JH. 2000. Mesozoic tectonic-hydrothermal activity driven gold metallogenesis in Dandong area, south Liaoning: evidence from FIP. Acta Petrologica Sinica, 16: 506-512 (in Chinese with English abstract)Ohmotto H, Rye RO. 1979. Isotopes of sulphur and carbon. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. John Wiley, New York, 509-567

    [60]

    [60]Pettke T, Diamond LW, Kramers JD. 2000. Mesothermal gold lodes in the north-western Alps: A review of genetic constraints from radiogenic isotopes. Eur. J. Mineral. 12,:213-230

  • 加载中
计量
  • 文章访问数:  16583
  • PDF下载数:  8638
  • 施引文献:  0
出版历程
修回日期:  2003-06-10
刊出日期:  2003-08-31

目录