玄武岩类形成的大地构造环境的Th/Hf—Ta/Hf图解判别

汪云亮 张成江 等. 玄武岩类形成的大地构造环境的Th/Hf—Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3): 413-421.
引用本文: 汪云亮 张成江 等. 玄武岩类形成的大地构造环境的Th/Hf—Ta/Hf图解判别[J]. 岩石学报, 2001, 17(3): 413-421.
WANG YunLiang,ZHANG ChengJiang and XIU ShuZhi3th Department of Chengdu University of Technology,Chengdu 610059,China. Th/Hf-Ta/Hf identification of tectonic setting of basalts[J]. Acta Petrologica Sinica, 2001, 17(3): 413-421.
Citation: WANG YunLiang,ZHANG ChengJiang and XIU ShuZhi3th Department of Chengdu University of Technology,Chengdu 610059,China. Th/Hf-Ta/Hf identification of tectonic setting of basalts[J]. Acta Petrologica Sinica, 2001, 17(3): 413-421.

玄武岩类形成的大地构造环境的Th/Hf—Ta/Hf图解判别

  • 基金项目:

    本文为四川省地学核技术重点实验室开放基金项目(HD-01)研究成果之一.

Th/Hf-Ta/Hf identification of tectonic setting of basalts

  • Th,Ta,Hf是一组耐熔强亲岩浆元素,由于地球化学性质的相似性,其相互之间的比值关系能将深部作用的地球化学过程较好地恢复出来,玄武岩类,是原始玄武岩浆形成的岩石的Ta/Hf及Th/Hf比值,能较好地反映其源区的Th,Ta,Hf之间的分异特征,在一般情况下,这一特征与某种确定的大地构造环境有密切关系和确定的因果联系,可用来判别玄武岩类形成的大地构造环境及其源区Th,Ta,Hf分异特征,本文根据典型大地构造环境玄武岩类的Th,Ta,Hf数据,提出了玄武岩类形成的大地构造环境判别的Th/Hf-Ta/Hf双对数图及判别方法。
  • 加载中
  • [1]

    [1]Arndt NT and Christensen V. 1992. The role of lithospheric mantle in continental flood volcanism. J. Geophys. Res.,97:10967-10981

    [2]

    [2]Astis GD and Volpe LL. 1997. Volcanological and petrological evolution of volcanoisland (Aeolian Arc, Southern Tyrrhenian Sea). J. Geophys. Res. , 102(B4):8021-8050

    [3]

    [3]Bach W, Hegner E, Erzinger E et al. 1984. Chemical and isotopic variations alongthe superfast spreading East Pasific Rise from6° to 30°S. Contrib. Mineral. Petrol.,116:365-380

    [4]

    [4]Bednarz U and Schmincke HU. 1994. Petrological and chemical evolution of thenortheastern Troodos extensive series, Cyprus. Journal of Petrology, 35(2) :489-523

    [5]

    [5]Bindeman IN and Bailey JC. 1994. A mode of reverse differentiation at Dikii GrebenVolcano, Kamchatka: progresive basic magma vesiculation in a silicic magma chamber.Contrib. Mineral. Petrol. , 117(3):263-278

    [6]

    [6]Budahn JR and Schmitt RA. 1985. Petrogenetic modeling of Hawaiian tholeiiticbasalts: A geochemical approach. Geochim. Cosmochim. Acta, 49(1): 67-87

    [7]

    [7]Chi Jishang et al. 1988. The Study of Cenozoic basalts and upper mantle in EasternChina, enclosed kimberlites. Wuhan: The Publishing House of China University ofGeosciences. (in Chinese)

    [8]

    [8]Clague DA and Frey FA. 1982. Petrology and trace element geochemistry of theHonolulu volcanics. Oahu: implications for the oceanic mantle below Hawaii. Journal ofPetrology, 23:447-504

    [9]

    [9]Class C et al. 1994. Geochemistry of Pliocene to Quaternary alkali basalts from theHuri Hills, northern Kenya. Chemical Geology, 113(1/2): 1 -22

    [10]

    [10]Davis J and Hawkesworth C. 1993. The petrogenesis of 30~20 Ma basic andintermediate volcanics from the Mogollon-DatilVolcanic Field, New Mexico, U. S. A.Contrib. Miner. Petrol. , 115:165-183

    [11]

    [11]Dosso L et al. 1993. Geochemical morphology of the North-Mid Atlantic Ridge, 10~ 40°N. Trace element isotope complementarity. Earth. Planet. Sci. Lett., 120:443-462

    [12]

    [12]Dupuy C et al. 1993. Basalts from Mururoa, Fangataufa and Gambier islands (FrenchPolynesia): Geochemical dependece on the age of the lithosphere. Earth Planet. Sci. Lett.,117:89-100

    [13]

    [13]Eggler DH. 1978. The effect of CO2 upon partical melting of peridotite in thesystem Na2O - CaO - Al2O3 - MgO - SiO2 -CO2 to 35 kb, with an analysis of melting in aperidotite-H2O-CO2 system. Am. J. Sci., 278:305-343

    [14]

    [14]Ellen RM and Hawkesworth CJ. 1988. Elemental and isotopic variations in subductionrelated basalts: evidence for three component model. Contrib. Mineral. Petrol., 98:72-80

    [15]

    [15]Elliott T, Plank T, Zindler A et al. 1997. Element transport from slab to volcanicfront at the Mariana arc. J. Geophys. Res. ,102 (B7): 14991 - 15019

    [16]

    [16]Frey FA et al. 1994. Geochemical characteristics of Koolau volcano:Implications ofintershield geochemical differences among Hawaian volcanoes. Geochim. Cosmochim. Acta, 58:1441-1462

    [17]

    [17]Furman T et al. 1992. Petrogenesis of evolved basalts and rhyolites at Austurhorn,Southeastern Iceland: The role of fractional crystallization. Journal of Petrology, 33(6): 1105- 1445

    [18]

    [18]Gerlach DC et al. 1988. Recent volcanism in the Pugeliecordon Canlla region, SouthAndes Chile (40. 55) petrogenesis of evolyed lava. Journal of Petrology, 29(2) :351-359

    [19]

    [19]Green DH. 1973. Experimental melting studies on a model upper mantle compositionat high pressure under water-saturated and water-unsaturated conditions. Earth Planet.Sci. Lett., 19:370-53

    [20]

    [20]Hawkesworth CJ, O′ Nions RK, Pankhurst RJ et al. 1977. A geochemical study ofisland-arc and back-arc tholeiites from Scotia Sea. Earth Planet. Sci. Lett. , 36:253-262

    [21]

    [21]Hofmann AW. 1997. Mantle geochemistry: The message from oceanic volcanism. Nature,385:219- 229Hofmann AW. 1988. Chemical differentiation of the Earth: The relationshipbetween mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. ,90:297-314

    [22]

    [22]Hou Zengqian, Lu Jiren, Wang Yunliang et al. 1999. Emei large igneous rocksprovince: characteristics and origin. Geological Review, 45(Sup):885-891 (in Chinese withEnglish abstract)

    [23]

    [23]Hughes SS et al. 1986. Trace element and Sr-Nd isotopic on the compositions oflithospheric primary source of Serra Geral continental flood basalts, southern BrazilGeochemical Journal, 20:173-189

    [24]

    [24]Kyle PL et al. 1992. Petrologic evolution of anorthoclase phonolite lavas at MountErebus Ross Island, Antractica. Journal of Petrology, 33 (4): 849- 875

    [25]

    [25]Lange RA and Carmechael ISE. 1990. Hydrous basaltic andesides associated withminette and related lave in western Mixico. Journal of Petrology, 31:1225- 1259

    [26]

    [26]Liu YG and Schimitt RA. 1984. Chemical profiles in sediment and basalt samplesfrom deep sea drilling project leg 74, Hole 525A, Walvis Ridge, Init. Repts. DSDP, vol.LXXIU, 74:731-730, Government Printing Office, Washington

    [27]

    [27]Lonsdale P et al. 1992. The RRR triple junction at the southern end of thePacific-Cocos East Pacific Rise. Earth Planet. Sci. Lett., 109:73-85

    [28]

    [28]Loubet M et al. 1988. Mantle heeterogeneities: a combined isotope and traceelement approch and evidence for recycled contiinental crust material in some OIB source.Earth Planet. Sci. Lett. 89:299-315

    [29]

    [29]Lu Jiren. 1996. The dynamic characteristics of Emei mantle plume. Acta GeoscientiaSinica, 17 (4): 424 - 438 (in Chinese with English abstract)

    [30]

    [30]Maaloe S et al. 1992. The koloa volcanic suite of Kauai, Hawaii. Journal ofPetrology, 33 (4): 761 - 784

    [31]

    [31]Mahoney JJ, Sinton JM, Kurz DM et al. 1994. Isotopic and trace elementcharacteristics of a super-fast spreading ridge: East Pacific Rise, 13~23°S. EarthPlanet Sci. Lett., 121:173-193

    [32]

    [32]Mahotkim IL, Gibson SA, Thompson RN et al. 2000, Late Devonian diamondiferouskimberlite and alkaline picrite (protokimberlite)magmatism in the Arkhangelsk region. J.Petrol. ,41(2):201-222

    [33]

    [33]McCulloch MT and Gamble JA. 1989. Depleted source for volcanic arc basalts:constraints from basalts of Kemadec-Taupo volcanic zone based on trace elements, isotopesand subduction chemical geodynamics. In: Continental Magmatism. Into Volcanic Conf.-Abstr.New Mexico. Bur. Miner, Resour. Bull. 131,180

    [34]

    [34]Mckenzie D and Bickle MJ. 1988. The volume and composition of melt generated byextension of the lithosphere, J. Petrol. 29:625-679

    [35]

    [35]McKenzie D and Onions RK. 1991. Partial melt distributions from inversion of rareearth element concentrations. J. Petrology.32:1021- 1091

    [36]

    [36]Miklius A et al. 1991. Geochemistry of lavas from Taal volcano, southwesternLuzon, Philippines: Evidence for multiple magma supply systems and mantle sourceheterogeneity. Journal of Petrology, 32(3) :593-627

    [37]

    [37]Nakada S et al. 1994. Origin of phenocrysts and compositional diversity inpre-Mazama rhyodacite lavas, Creter Lake, Oregon. Journal of Petrology, 35 (1): 127- 162

    [38]

    [38]Niu Y and Batiza R. 1997. Trace element evidence from seamounts for recycledoceanic crust in the eastern Pacific mantle. Earth Planet. Sci, Lett. , 148:471-483

    [39]

    [39]Niu Y and Collerson KD. 1999. Origin of enriched-type mid-ocean ridge basalt atridges far from mantle plume: The East Pacific Rise at 11°20′N. J. Geophys. Res. ,104(B4):7067-8087

    [40]

    [40]Ormerod DS, Rogers NW and Hawkesworth CJ. 1991. Melting in the lithosphericmantle. Inverse modelling of alkali olivine basalt from the Big Pine volcanic field,California. Contrib. Miner. Petrol., 108:305-317

    [41]

    [41]Oxburgh ER. 1964. Petrological evidence for the presence of amphibole in the uppermantle and its petrogenetic and geophysical implications. Geol. Mag. , 101:1- 19

    [42]

    [42]Pearce JA. 1982. Trace element characteristics of Lava from destructive plateboundaries. In: Thorpe R S. (ed.) Andesites, orogenic andesites and related rocks. NewYork. Jehn willey and Suns: 525-548

    [43]

    [43]Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determinedusing trace element analysis. Earth Planet. Sci. Lett. , 19..290-300

    [44]

    [44]Pearce LG, De Bari SM and Sleep NH. 1990. Mass balance calculations for twosections of island arc crust and implications for the formation of continents. EarthPlanet. Sci. Lett. , 96:427-442

    [45]

    [45]Presnall DC and Hoover JD. 1987. High pressure phase equilibrium constraints onthe origin of mid-ocean ridge basalts. In: Mysen B O (ed.). Magmatic processes.Physicochemical Principles. Spec. Publ. Geochem. Soc. I, 75-89

    [46]

    [46]Rogers NW et al. 1992. An enriched mantle source for potassic basanites: evidencefrom Karisimbi volcano, Virunga volcanic province, Rwanda. Contrib. Mineral. Petrol.,111(4):543-556

    [47]

    [47]Romick JD et al. 1992. The influence of amphibole fractionation on the evolutionof calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska. Contrib.Mineral. Petrol. , 112 (1):101-118

    [48]

    [48]Shinjo R, Chung SL, Karo Y et al. 1999. Geochemical and Sr-Nd isotopiccharacteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc.. Implicationsfor the evolution of a young, intracontinental back arc basin. J. Geophys, Res. , 104(B5):10591- 10608

    [49]

    [49]Saunders AD and Tarney J. 1979. The geochemistry of basalts from a back-arcspreading center in the East Scotia Sea. Geochim. Cosmochim. Acta. , 43:552-572

    [50]

    [50]Sawyer EW. 1991. Disequilibrium melting and the rate of melt residuum seperationduring migmatization of mafic rock from the Grenville Front, Quebec. Journal of Petrology,32:701- 738

    [51]

    [51]Schiano P et al. 1993. Application of element concentration variability to thestudy of basalt alteration (Fangataufa atoll, French Plynesia). Chemical Geology,104(1/4): 99- 124

    [52]

    [52]Shirey SB et al. 1994. Temporal change in the sources of flood basalts: Isotopicand trace element evidence from the 1100Ma old Keweenawa Mamainse Point Formation,Ontario, Canada. Geochim. Cosmochim. Acta, 58:4475-4490

    [53]

    [53]Sun-Lin Chung and Bor-Ming Jaho. 1995. Plume-lithosphere interaction in generationof the Emei flood basalts at PermianTriassic boundary, Geology, 23(10) :889-892

    [54]

    [54]Taylor RN, Thirwall MF, Morton BJ et al. 1997. Isotopic constraints on theinfluence of the Icelandic plume. Earth Planet. Sci. Lett. , 148:E1-E8

    [55]

    [55]Taylor S. R. and McLeannan S. 1985. The continental crust:Composition andevolution. Blackwell Scientific Publications,54:209-372

    [56]

    [56]Tronnes RG et al. 1999. Recent volcanic rocks from Jan Mayen:Low-degree meltfractions of enriched northeast Atlantic mantle. J. Geophy. Res., 104(B4):7153-7168

    [57]

    [57]Vadim SK, John LE, Anthony J et al. , 2000. Enriched end-menber of primitive MORBmelts: Petrology and Geochemistry of glasses from Macquarie Island (SW Pacific). J.Petrol., 41(3):411-430

    [58]

    [58]Vallier TL et al. 1991. Subalkaline andesite from Valu Fa Ridge, a back-arcspreading center in southern Lau Basin: Petrogenesis, comparative chemistry and tectonicimplications. Chemical Geology, 91(3) :227-256

    [59]

    [59]Vannucci R et al. 1993. Ophiolitic magmatism in the Ligurian Tethys: an ionmicroprobe study of basaltic clinopyroxenes. Contrib. Mineral. Petrol., 115(2):123-137

    [60]

    [60]Viereck LG, Flower MFJ, Hertogen J et al. 1989. The genesis and significance ofN-MORB Sub-types. Contr. Miner. Petrol. ,102:112-126

  • 加载中
计量
  • 文章访问数:  40923
  • PDF下载数:  14800
  • 施引文献:  0
出版历程
修回日期:  2000-07-14
刊出日期:  2001-08-31

目录