西藏罗布莎不同类型铬铁矿的特征及成因模式讨论

熊发挥, 杨经绥, 巴登珠, 刘钊, 徐向珍, 冯光英, 牛晓露, 许继峰. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论[J]. 岩石学报, 2014, 30(8): 2137-2163.
引用本文: 熊发挥, 杨经绥, 巴登珠, 刘钊, 徐向珍, 冯光英, 牛晓露, 许继峰. 西藏罗布莎不同类型铬铁矿的特征及成因模式讨论[J]. 岩石学报, 2014, 30(8): 2137-2163.
XIONG FaHui, YANG JingSui, BA DengZhu, LIU Zhao, XU XiangZhen, FENG GuangYing, NIU XiaoLu, XU JiFeng. Different type of chromitite and genetic model from Luobusa ophiolite, Tibet[J]. Acta Petrologica Sinica, 2014, 30(8): 2137-2163.
Citation: XIONG FaHui, YANG JingSui, BA DengZhu, LIU Zhao, XU XiangZhen, FENG GuangYing, NIU XiaoLu, XU JiFeng. Different type of chromitite and genetic model from Luobusa ophiolite, Tibet[J]. Acta Petrologica Sinica, 2014, 30(8): 2137-2163.

西藏罗布莎不同类型铬铁矿的特征及成因模式讨论

  • 基金项目:

    本文受国家行业专项(SinoProbe-05-02)、国家自然科学基金重点项目(40930313)、国家自然科学基金创新群体项目(41221061)、国家自然科学基金项目(41202036、40921001)和中国地质调查局工作项目(1212011121263、12120114061801)联合资助.

详细信息

Different type of chromitite and genetic model from Luobusa ophiolite, Tibet

More Information
  • 蛇绿岩地幔橄榄岩中产出的豆荚状铬铁矿是铬的主要来源。已有的研究表明,豆荚状铬铁矿形成于洋中脊或俯冲带的浅部地幔环境。但随着近些年在豆荚状铬铁矿及围岩地幔橄榄岩中不断发现金刚石等深部矿物,人们也开始质疑豆荚状铬铁矿的浅部成因理论。本文系统研究了西藏雅鲁藏布江蛇绿岩带东段的罗布莎豆荚状铬铁矿床,识别出两类铬铁矿,一类以方辉橄榄岩为围岩的致密块状铬铁矿(Cr1#),另一类是以纯橄岩壳为围岩的浸染状铬铁矿(Cr2#)。两类铬铁矿在铬尖晶石的矿物化学成分、PGE和Re-Os同位素特征上存在较大差别,属不同演化过程的结果。地幔橄榄岩的地球化学特征指示罗布莎橄榄岩中存在由低铬且轻稀土亏损和高铬且轻稀土富集的两类方辉橄榄岩。在此基础上,提出豆荚状铬铁矿为多阶段形成的新认识,经历了早期俯冲至地幔过渡带(410~660km)的陆壳和洋壳物质被脱水和肢解,过渡带产生的热和流体促成了地幔的熔融和Cr的释放和汇聚;铬铁矿浆在地幔柱/地幔对流驱动下,运移至过渡带顶部冷凝固结,并有强还原性的流体进入,后者携带了深部形成的金刚石、斯石英等高压矿物,并进入"塑性-半塑性地幔橄榄岩"中;随着物质向上移动,深度降低,早期超高压相矿物发生相变,如斯石英转变成柯石英,高压相的铬铁矿中出溶成柯石英和单斜辉石;在侵位过程和俯冲带环境,含水熔体与方辉橄榄岩反应形成了不含超高压矿物的规模相对较小的浸染状铬铁矿(Cr2#)及纯橄岩壳。
  • 加载中
  • [1]

    Ahmed AH, Arai S and Attia AK. 2001. Petrological characteristics of podiform chromitites and associated peridotites of the Pan African Proterozoic ophiolite complexes of Egypt. Mineralium Deposita, 36(1): 72-84

    [2]

    Arai S and Matsukage K. 1998. Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: A comparison between abyssal and alpine-type podiform chromitites. Lithos, 43(1): 1-14

    [3]

    Arai S, Okamura H, Kadoshima K, Tanaka C, Suzuki K and Ishimaru S. 2011. Chemical characteristics of chromian spinel in plutonic rocks: Implications for deep magma processes and discrimination of tectonic setting. Island Arc, 20(1): 125-137

    [4]

    Arai S. 2013. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: A good inference. Earth and Planetary Science Letters, 379: 81-87

    [5]

    Augé T. 1988. Platinum-group minerals in the Tiébaghi and Vourinos ophiolitic complexes: Genetic implications. Canadian Mineralogist, 26(1): 177-192

    [6]

    Augé T, Salpeteur I, Bailly L et al. 2002. Magmatic and hydrothermal platinum-group minerals and base-metal sulfides in the Baula complex, India. Canadian Mineralogist, 40(2): 277-309

    [7]

    Bai WJ, Yang JS, Shi NC, Fang QS, Dai MQ, Xiong M and Yan BG. 2004. A discovery of ultrahigh pressure minerals: wustite and native iron from the mantle ophiolite, at Luobusa, Xizang. Geological Review, 50(2): 184-188 (in Chinese with English abstract)

    [8]

    Bai WJ, Yang S, Fang QS, Yan BG and Zhang ZM. 2001. Study on a storehouse of ultra-pressure mantle minerals: Podiform chromite deposits. Earth Science Frontiers, 8(3): 111-121(in Chinese with English abstract)

    [9]

    Barnes SJ, Boyd R, Korneliussen A, Nilsson LP, Often M, Pedersen RB and Robins B. 1988. The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold, nickel and copper: Examples from Norway. In: Prichard HM, Potts PJ, Bowles JFW and Cribb SJ (eds.). Geo-Platinum 87. Netherlands: Springer, 113-143

    [10]

    Bird JM and Bassett WA. 1980. Evidence of a deep mantle history in terrestrial osmium-iridium-ruthenium alloys. Journal of Geophysical Research, 85(B10): 5461-5470

    [11]

    Borisov A, Palme H and Spettel B. 1994. Solubility of palladium in silicate melts: Implications for core formation in the Earth. Geochimica et Cosmochimica Acta, 58(2): 705-716

    [12]

    Bowles JFW. 1990. Platinum-iron alloys, their structural and magnetic characteristics in relation to hydrothermal and low temperature genesis. Mineralogy and Petrology, 43(1): 37-47

    [13]

    Cassard D, Nicolas A, Rabinpvitch M, Moutte J, Leblanc M and Prinzhofer A. 1981. Structural classification of chromite pods in southern New Caledonia. Economic Geology, 76(4): 805-831

    [14]

    Chou CL, Shaw DM and Crocket JH. 1983. Siderophile trace elements in the Earth's oceanic crust and upper mantle. Journal of Geophysical Research, 88(S02): A507-A518

    [15]

    Coleman RG. 1977. Ophiolites: Ancient Oceanic Lithosphere? New York: Spinger-Verlag, 1-229

    [16]

    Davies GF and Richards MA. 1992. Mantle convection. The Journal of Geology, 100(2): 151-206

    [17]

    Deines P. 2002. The carbon isotope geochemistry of mantle xenoliths. Earth Science Reviews, 58(3-4): 247-278

    [18]

    Dick HJB and Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76

    [19]

    Dobrzhinetskaya LF, Wirth R, Yang JS, Ian D, Hutcheon PK and Green HW. 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences of the United States of America, 106(46): 19233-19238

    [20]

    Duke JM. 1982. Ore deposit model 7: Magma segregation deposits of chromite. Geochimica et Cosmochimica Acta, 39: 1061-1074

    [21]

    Dymek RF, Brothers SC and Schiffries CM. 1988. Petrogenesis of ultramafic metamorphic rocks from the 3800Ma Isua Supracrustal Belt, west Greeland. Journal of Petrology, 29(6): 1353-1397

    [22]

    Frey FA, Suen CJ and Stockman HW. 1985. The Ronda high temperature peridotite: Geochemistry and petrogenesis. Geochimica et Cosmochimica Acta, 49(11): 2469-2491

    [23]

    Fukao Y, Maruyama S, Obayashi M and Inoue H. 1994. Geologic implication of the whole mantle P-wave tomography. The Journal of the Geological Society of Japan, 100: 4-23

    [24]

    Garuti G and Zaccarini F. 1997. In situ alteration of platinum-group minerals at low temperature: Evidence from serpentinized and weathered chromitite of the Vourinos complex, Greece. The Canadian Mineralogist, 35: 611-626

    [25]

    Gibson SA, Thompson RN, Leonardos OH, Dickin AP and Mitchell JG. 1995. The Late Cretaceous impact of the Trindade mantle plume: Evidence from large-volume, mafic, potassic magmatism in SE Brazil. Journal of Petrology, 36(1): 189-229

    [26]

    Griffiths RW and Campbell IH. 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99(1-2): 66-78

    [27]

    Hamlyn PR, Keays PR, Cameron WE, Crawford AJ and Waldron HM. 1985. Precious metals in magnesian low-Ti lavas: Implications for metallogenesis and sulfur saturation in primary magmas. Geochimica et Cosmochimica Acta, 49(8): 1797-1811

    [28]

    Harris DC and Cabri LJ. 1991. Nomenclature of platinum-group-element alloys: Review and revision. Canadian Mineralogist, 29: 231-237

    [29]

    Hartmann G and Wedepohl KH. 1993. The composition of peridotite tectonites from the Ivrea complex, northern Italy: Residues from melt extraction. Geochimica et Cosmochimica Acta, 57(8): 1761-1782

    [30]

    Hofmann AW and White WM. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters, 57(2): 421-436

    [31]

    Institute of Geology, Chinese Academy of Geological Sciences. 1981. The discovery of Alpine-type diamond bearing ultrabasic intrusions in Xizang (Tibet). Geological Review, 27(5): 445-447 (in Chinese with English abstract)

    [32]

    Irvine TN. 1967. Chromian spinel as a petrogenetic indicator. Part 2. Petrologic applications. Canadian Journal of Earth Sciences, 4(1): 71-103

    [33]

    Jaques AL and Green DH. 1980. Anhydrous melting of peridotite at 0~15kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology, 73(3): 287-310

    [34]

    Lago BL, Rabinowicz M and Nicolas A. 1982. Podiform chromite ore bodies: A genetic model. Journal of Petrology, 23: 103-125

    [35]

    Lawrence JF and Shearer PM. 2006. Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms. Geochemistry, Geophysics, Geosystems, 7(10)

    [36]

    Leblanc M and Nicolas A. 1992. Ophiolitic chromitites. International Geology Review, 34(7): 653-686

    [37]

    Leblanc M. 1980. Chromite growth, dissolution and deformation from a morphological view point: SEM investigations. Mineralium Deposita, 15: 201-210

    [38]

    Li J, Liang XR, Dong YH, Tu XL and Xu JF. 2007. Measurements of Re-Os isotopic composition in mafic-ultramafic rocks by multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS). Geochimica, 36(2): 153-160(in Chinese with English abstract)

    [39]

    Li J, Zhong LF, Tu XL, Hu GQ, Sun YM, Liang XR and Xu JF. 2011. Platinum group elements and Re-Os isotope analyses for geological samples using a single digestion procedure, Geochimica, 40(4): 372-380(in Chinese with English abstract)

    [40]

    Li JY. 2012. Genesis of mantle peridotite in the Luobusha, Tibet: The study of scientific drilling core (LSD-1). Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-170 (in Chinese with English summary)

    [41]

    Li JY, Yang JS, Ba DZ, Xu XZ, Meng FC and Li TF. 2012. Origin of different dunites in the Luobusa ophiolite, Tibet. Acta Petrologica Sinica, 28(6): 1829-1845 (in Chinese with English abstract)

    [42]

    Liou JG, Zhang RY and Ernst WG. 1998. High-pressure minerals from deeply subducted metamorphic rocks. Reviews in Mineralogy, 37: 33-96

    [43]

    Liu CZ, Wu FY, Chu ZY, Ji WQ, Yu LJ and Li JL. 2011. Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification. Journal of Asian Earth Sciences, 53: 38-50

    [44]

    Liu Z, Li Y, Xiong FH, Wu D and Liu F. 2011. Petrology and geochronology of MOR gabbro in the Purang ophiolite of western Tibet, China. Acta Petrologica Sinica, 27(11): 3269-3279(in Chinese with English abstract)

    [45]

    Loper DE and Stacey FD. 1983. The dynamical and thermal structure of deep mantle plumes. Physics of the Earth and Planetary Interiors, 33(4): 304-317

    [46]

    Loper DE. 1991. Mantle plumes. Tectonophysics, 187(4): 373-384

    [47]

    Lugovic B, Altherr R, Raczek I, Hofmann AW and Majer V. 1991. Geochemistry of peridotites and mafic igneous rocks from the Central Dinaric Ophiolite Belt, Yugoslavia. Contributions to Mineralogy and Petrology, 106(2): 201-216

    [48]

    Malpas JG, Zhou MF, Robinson PT and Reynolds P. 2003. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung-Zangbu ophiolites, Southern Tibet. In: Dilek Y and Robinson PT (eds.). Ophiolites through Earth History. Geological Society, London, Special Publications, 218: 191-206

    [49]

    Maruyama S, Santosh M and Zhao D. 2007. Superplume, supercontinent, and post-perovskite: Mantle dynamics and anti-plate tectonics on the core-mantle boundary. Gondwana Research, 11(1-2): 7-37

    [50]

    McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253

    [51]

    McElduff B and Stumpfl EF. 1991. The chromite deposits of the Troodos Complex, Cyprus: Eevidence for the role of a fluid phase accompanying chromite formation. Mineralium Deposita, 26(4): 307-318

    [52]

    Melcher F, Grum W, Simon G, Thalhammer TV and Stumpfl EF. 1997. Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite. Journal of Petrology, 38(10): 1419-1458

    [53]

    Melcher F, Meisel T, Puhl J and Koller F. 2002. Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: Constraints from geochemistry. Lithos, 65(1-2): 69-112

    [54]

    Merlini A, Grieco G, Ottolini L and Diella V. 2011. Probe and SIMS investigation of clinopyroxene inclusions in chromites from the Troodos chromitites (Cyprus): Implications for dunite-chromitite genesis. Ore Geology Reviews, 41(1): 22-34

    [55]

    Miller C, Thni M, Frank W, Schuster R, Melcher F, Meisel T and Zanetti A. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66(3-4): 155-172

    [56]

    Miura M, Arai S, Ahmed AH, Mizukami T, Okuno M and Yamamoto S. 2012. Podiform chromitite classification revisited: A comparison of discordant and concordant chromitite pods from Wadi Hilti, northern Oman ophiolite. Journal of Asian Earth Sciences, 59: 52-61

    [57]

    Nakagawa M and Franco HEA. 1997. Placer Os-Ir-Ru alloys and sulfides: Indicators of sulfur fugacity in an ophiolite? The Canadian Mineralogist, 35: 1441-1452

    [58]

    Neary CR and Brown MA. 1979. Chromites from Al'Ays complex, Int. Saudi Arabia and the Semail complex, Oman. Institute of Applied Geology, Kingdom of Saudi Arabia, 3: 193-205

    [59]

    Nicolas A and Prinzhofer A. 1983. Cumulative or residual origin for the transition zone in ophiolites: Structural evidence. Journal of Petrology, 24(2): 188-206

    [60]

    Nicolas A. 1989. Structures of Ophiolite and Dynamics of Oceanic Lithosphere. Doedrecht: Kluwer Academic Publishers, 223-252

    [61]

    Parlak O and Delaloye M. 1999. Precise 40Ar/39Ar ages from the metamorphic sole of the Mersin ophiolite (southern Turkey). Tectonophysics, 301(1): 145-158

    [62]

    Pearce JA, Barker PF, Edwards SJ, Parkinson IJ and Leat PT. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36-53

    [63]

    Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP and Howells MF (eds.). Marginal Basin Geology. Geological Society of London Special Publication. London, Blackwell Scientific Publications, 16(1): 77-94

    [64]

    Pilot J, Werner CD, Haubrich F and Baumann N. 1998. Palaeozoic and Proterozoic zircons from the Mid-Atlantic ridge. Nature, 393(6686): 676-679

    [65]

    Prichard HM and Tarkian M. 1988. Platinum and palladium minerals from two PGE rich localities in the Shetland ophiolite complexes. The Canadian Mineralogist, 26: 979-990

    [66]

    Proenza JAF, Gervilla JC and Melgarejo JLB. 1999. Al- and Cr-rich chromitites from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba): Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology, 94(4): 547-566

    [67]

    Qiu RZ, Deng JF, Zhou S, Li TD, Xiao QH, Guo TY, Cai ZY, Li GL, Huang GC and Men XJ. 2005. Ophiolite types in western Qinghai-Tibetan Plateau: Evidences from petrology and geochemistry. Earth Science Frontiers, 12(2): 277-291(in Chinese with English abstract)

    [68]

    Richard MA, Jones DL, Duncan RA and Depaolo DJ. 1991. A mantle plume initiation model for the Wrangellia flood basalt and other oceanic plateaus. Science, 254(5029): 263-267

    [69]

    Roberts SR. 1988. Ophiolitic chromitite formation: A marginal basin phenomenon? Economic Geology, 83(5): 1034-1036

    [70]

    Robinson PT, Bai WJ, Malpas J et al. 2004. Ultra-high pressure minerals in the Luobusa ophiolite, Tibet, and their tectonic implications. Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226(1): 247-271

    [71]

    Robinson PT, Trumbull R, Schmitt A, Yang JS, Li JW and Ma CQ. 2012. Crustal contamination of the upper mantle: Evidence from ophiolites. In: GSA Fall Meeting Abstracts

    [72]

    Rollinson H. 2005. Chromite in the mantle section of the Oman ophiolite: A New genetic model. Island Arc, 14(4): 542-550

    [73]

    Roy-Barman M and Allègre CJ. 1995. 187Os/186Os in oceanic island basalts: Tracing oceanic crust recycling in the mantle. Earth and Planetary Science Letters, 129(1-4): 145-161

    [74]

    Rudashevsky NS, Dmiirenko GG and Mochalov AG. 1987. Native metals and carbides in alpine type ultramafics of Koryak Highland. Mineral Zh., 9(4): 71-82

    [75]

    Ruskov T, Spirov I, Georgieva M, Yamamoto S, Green HW, Mccammon CA and Dobrzhineskaya LF. 2010. Mssbauer spectroscopy studies of the valence state of iron in chromite from the Luobusa massif of Tibet: Implications for a highly reduced deep mantle. Journal of Metamorphic Geology, 28(5): 551-560

    [76]

    Schiano P, Clocchiatti R, Lorand JP et al. 1997. Primitive basaltic melts included in podiform chromites from the Oman ophiolite. Earth and Planetary Science Letters, 146(3-4): 489-497

    [77]

    Shearer PM. 2000. Upper mantle discontinuities. In: Karato S, Forte AM, Liebermann RC, Masters G and Stixrude L (eds.). Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale, Geophysical Monograph Series, Vol. 117. Washington DC: AGU, 115-131

    [78]

    Shi RD, Zhi XC, Chen L and Ding BH. 2006. Comments on the progress on the applications of Re-Os isotopic study on the ophiolites. Acta Petrologica Sinica, 22(6): 1685-1695(in Chinese with English abstract)

    [79]

    Shi RD, Alard O, Zhi XC, O'Reilly SY, Pearson NJ, Griffin WL, Zhang M and Chen XM. 2007. Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru-Os-Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth and Planetary Science Letters, 261(1-2): 33-48

    [80]

    Shi RD, Griffin WL, O'Reilly SY, Huang QS, Zhang XR, Liu DL, Zhi XC, Xia QX and Ding L. 2012. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-tethyan ophiolite, northern Tibet. Gondwana Research, 21(1): 194-206

    [81]

    Smyth JR and Hazen RM. 1973. The crystal structures of forsterite and hortonolite at several temperatures up to 900℃. American Mineralogist, 58: 588-593

    [82]

    Snow JE and Dick HJB. 1995. Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 59(20): 4219-4235

    [83]

    Stachel T, Harris JW and Brey GP. 1998. Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania. Contributions to Mineralogy and Petrology, 132(1): 34-47

    [84]

    Stockman HW and Hlava PF. 1984. Platinum-group minerals in Alpine chromitites from southwestern Oregon. Economic Geology, 79(3): 491-508

    [85]

    Tamura A and Arai S. 2005. Unmixed spinel in chromitite from the Iwanai-dake peridotite complex, Hokkaido, Japan: A reaction between peridotite and highly oxidized magma in the mantle wedge. American Mineralogist, 90(2-3): 473-480

    [86]

    Trumbull RB, Yang JS, Robinson PT, Pierro SD, Vennemann T and Wiedenbeck M. 2009. The carbon isotope composition of natural SiC (moissanite) from the Earth's mantle: New discoveries from ophiolites. Lithos, 113(3-4): 612-620

    [87]

    Tsoupas G and Economou-Eliopoulos M. 2008. High PGE contents and extremely abundant PGE-minerals hosted in chromitites from the Veria ophiolite complex, northern Greece. Ore Geology Reviews, 33(1): 3-19

    [88]

    Uysal I, Tarkian M, Sadiklar MB et al. 2007. Platinum-group-element geochemistry and mineralogy of ophiolitic chromitites from the Kop Mountains, Northeastern Turkey. The Canadian Mineralogist, 45(2): 355-377

    [89]

    VanDecar JC, James DE and Assumpo M. 1995. Seismic evidence for a fossil mantle plume beneath South America and implications for plate driving forces. Nature, 378(6552): 25-31

    [90]

    Walter MJ, Kohn SC, Araujo D, Bulanova GP, Smith CB, Gaillou E, Wang J, Steele A and Shirey SB. 2011. Deep mantle cycling of oceanic crust: Evidence from diamonds and their mineral inclusions. Science, 334(6052): 54-57

    [91]

    Wang XB, Bao PS, Deng WM and Wang FG. 1987. Tibet Ophiolite. Beijing: Geological Publishing House, 1-336(in Chinese)

    [92]

    Wang XB, Bao PS and Rong H. 1995. Rare earth elements geochemistry of the mantle peridotite in the ophiolite suites of China. Acta Petrologica Sinica, 11(Suppl.): 24-41(in Chinese with English abstract)

    [93]

    Wirth R and Rocholl A. 2003. Nanocrystalline diamond from the Earth's mantle underneath Hawaii. Earth and Planetary Science Letters, 211(3-4): 357-369

    [94]

    Xiong FH, Yang JS, Liang FH, Ba DZ, Zhang J, Xu XZ, Li Y and Liu Z. 2011. Zircon U-Pb ages of the Dongbo ophiolite in the western Yarlung Zangbo suture zone and their geological significance. Acta Petrologica Sinica, 27(11): 3223-3238(in Chinese with English abstract)

    [95]

    Xiong FH. 2013. Formation process of the podiform chromitites. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-221(in Chinese with English summary)

    [96]

    Xiong FH, Yang JS and Liu Z. 2013. Multi-satge formation of the podiform chromitite. Geology in China, 40(3): 820-839(in Chinese with English abstract)

    [97]

    Xiong FH, Yang JS, Robinson PT, Xu XZ, Liu Z, Li Y, Li JY and Chen SY. 2014. Origin of podiform chromitite: A new model based on the Luobusa ophiolite, Tibet. Gondwana Research, doi:10.1016/j.gr.2014.04.008

    [98]

    Xu XZ. 2009. Origin of the Kangjinla podiform chromite deposit and mantle peridotite, South Tibet. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-165(in Chinese with English summary)

    [99]

    Xu XZ, Yang JS, Ba DZ, Guo GL, Robinson PT and Li JY. 2011. Petrogenesis of the Kangjinla peridotite in the Luobusa ophiolite, Southern Tibet. Journal of Asian Earth Sciences, 42(4): 553-568

    [100]

    Yamamoto S, Komiya T, Hirose K and Maruyama S. 2003. Interesting inclusions from podiform chromitites in Luobusa Ophiolite, Tibet. In: AGU Fall Meeting Abstracts

    [101]

    Yamamoto S, Komiya T, Hirose K and Maruyama S. 2009. Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos, 109(3-4): 314-322

    [102]

    Yang JS, Bai WJ, Wu CL, Hirata T, Maruyama S, Hirose K and Liou JG. 2001. SHRIMP U-Pb and Re-Os dating of mantle UHP minerals from the Luobusha chromitite, South Tibet. Eleventh Annual V. M. Goldschmidt Conference, 3087

    [103]

    Yang JS, Bai WJ, Fang QS, Yan BG, Rong H and Chen SY. 2004. Coesite Discovered from the podiform chromitite in the Luobusha ophiolite, Tibet. Earth Science, 29(6): 651-660(in Chinese with English abstract)

    [104]

    Yang JS, Dobrzhinetskaya L, Bai WJ, Fang QS, Robinson PT, Zhang JF and Green II HW. 2007. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35(10): 875-878

    [105]

    Yang JS, Bai WJ, Fang QS, Meng FC, Chen SY, Zhang ZM and Rong H. 2007. Discovery of diamond and an unusual mineral group from the podiform chromite, Polar Ural. Geology in China, 34(5): 950-952(in Chinese with English abstract)

    [106]

    Yang JS, Bai WJ, Fang QS and Rong H. 2008. Ultrahigh-pressure minerals and new minerals from the Luobusa ophiolitic chromitites in Tibet: A Review. Acta Geoscientica Sinica, 29(3): 263-274(in Chinese with English abstract)

    [107]

    Yang JS and Paul TR. 2011. In-situ diamonds and moissanite in podiform chromitites of the Luobusa and Ray-Iz ophiolites, Tibet and Russia. Goldschmidt Conference Abstracts, 2209

    [108]

    Yang JS, Robinson PT and Dilek Y. 2014. Diamonds in ophiolites: A little-known diamond occurrence. Elements, 10: 123-126

    [109]

    Zhang Q and Zhou GQ. 2001. Ophiolites of China. Beijing: Science Press, 85-89 (in Chinese with English abstract)

    [110]

    Zhao DP. 2004. Global tomographic images of mantle plumes and subducting slabs: Insight into deep earth dynamics. Physics of the Earth and Planetary Interiors, 146(1-2): 3-34

    [111]

    Zhong LF, Xia B, Zhou GQ, Zhang YQ, Wang R, Wei DL and Yang ZQ. 2006. SHRIMP age determination of the diabase in Luobusa ophiolite, Southern Xizang (Tibet). Geological Review, 52(2): 224-229 (in Chinese with English abstract)

    [112]

    Zhou MF and Bai WJ. 1994. The origin of th podiform chromite deposits. Mineral deposits, 13(3): 242-249(in Chinese with English abstract)

    [113]

    Zhou MF, Robinson PT, Malpas J and Li ZJ. 1996. Podiform chromitites in the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1): 3-21

    [114]

    Zhou MF, Robinson PT, Malpas J, Edwards SJ and Qi L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. Journal of Petrology, 46(3): 615-639

    [115]

    Zhou MF, Robinson PT, Su BX, Gao JF, Li JW, Yang JS and Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Research, 26(1): 262-283

    [116]

    Zhou S, Mo XX, Mahoney JJ et al. 2002. Geochronology and Nd and Pb isotope characteristics of gabbro dikes in the Luobusha ophiolite, Tibet. Chinese Science Bulletin, 47(2): 143-146

    [117]

    白文吉, 杨经绥, 方青松, 颜秉刚, 张仲明. 2001. 寻找超高压地幔矿物的储存库——豆荚状铬铁矿. 地学前缘, 8(3): 111-121

    [118]

    白文吉, 杨经绥, 施倪承, 方青松, 代明泉, 熊明, 颜秉刚. 2004. 西藏罗布莎蛇绿岩地幔岩中首次发现超高压矿物方铁矿和自然铁. 地质论评, 50(2): 184-188

    [119]

    李杰, 梁细荣, 董彦辉, 涂湘林, 许继峰. 2007. 利用多接收器电感耦合等离子体质谱仪(MC-ICPMS)测定镁铁-超镁铁质岩石中的铼-锇同位素组成. 地球化学, 36(2): 153-160

    [120]

    李杰, 钟立峰, 涂湘林, 胡光黔, 孙彦敏, 梁细荣, 许继峰. 2011. 利用同一化学流程分析地质样品中的铂族元素含量和铼-锇同位素组成. 地球化学, 40(4): 372-380

    [121]

    李金阳. 2012. 西藏罗布莎地幔橄榄岩的成因——科钻LSD-1岩心的研究. 博士学位论文, 北京: 中国地质科学院, 1-170

    [122]

    李金阳, 杨经绥, 巴登珠, 徐向珍, 孟繁聪, 李天福. 2012. 西藏罗布莎蛇绿岩中不同产出的纯橄岩及成因探讨. 岩石学报, 28(6): 1829-1845

    [123]

    刘钊, 李源, 熊发挥, 吴迪, 刘飞. 2011. 西藏西部普兰蛇绿岩中的MOR型辉长岩: 岩石学和年代学. 岩石学报, 27(11): 3269-3279

    [124]

    邱瑞照, 邓晋福, 周肃, 李廷栋, 肖庆辉, 郭铁鹰, 蔡志勇, 李国良, 黄圭成, 孟祥金. 2005. 青藏高原西部蛇绿岩类型: 岩石学与地球化学证据. 地学前缘, 12(2): 277-291

    [125]

    史仁灯, 支霞臣, 陈雷, 丁炳华. 2006. Re-Os同位素体系在蛇绿岩应用研究中的进展. 岩石学报, 22(6): 1685-1695

    [126]

    王希斌, 鲍佩声, 邓万明, 王方国. 1987. 西藏蛇绿岩. 北京: 地质出版社, 1-336

    [127]

    王希斌, 鲍佩声, 戎合. 1995. 中国蛇绿岩中变质橄榄岩的稀土元素地球化学. 岩石学报, 11(Z1): 24-41

    [128]

    熊发挥, 杨经绥, 梁凤华, 巴登珠, 张健, 徐向珍, 李源, 刘钊. 2011. 西藏雅鲁藏布江缝合带西段东波蛇绿岩中锆石U-Pb定年及地质意义. 岩石学报, 27(11): 3223-3238

    [129]

    熊发挥. 2013. 豆荚状铬铁矿的形成过程. 博士学位论文, 北京: 中国地质科学院, 1-221

    [130]

    熊发挥, 杨经绥, 刘钊. 2013. 豆荚状铬铁矿多阶段形成过程的讨论. 中国地质, 40(3): 820-839

    [131]

    徐向珍. 2009. 藏南康金拉豆荚状铬铁矿和地幔橄榄岩成因研究. 博士学位论文, 北京: 中国地质科学院, 1-165

    [132]

    杨经绥, 白文吉, 方青松, 颜秉刚, 戎合, 陈松永. 2004. 西藏罗布莎豆荚状铬铁矿中发现超高压矿物柯石英. 地球科学, 29(6): 651-660

    [133]

    杨经绥, 白文吉, 方青松, 孟繁聪, 陈松永, 张仲明, 戎合. 2007. 极地乌拉尔豆荚状铬铁矿中发现金刚石和一个异常矿物群. 中国地质, 34(5): 950-952

    [134]

    杨经绥, 白文吉, 方青松, 戎合. 2008. 西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述). 地球学报, 29(3): 263-274

    [135]

    张旗, 周国庆. 2001. 中国蛇绿岩. 北京: 科学出版社, 85-89

    [136]

    中国地质科学院地质研究所金刚石组. 1981. 西藏首次发现含金刚石的阿尔卑斯型岩体. 地质论评, 22(5): 455-457

    [137]

    钟立峰, 夏斌, 周国庆, 张玉泉, 王冉, 韦栋梁, 杨之青. 2006. 藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年. 地质论评, 52(2): 224-229

    [138]

    周美夫, 白文吉. 1994. 对豆荚状铬铁矿床成因的认识. 矿床地质, 13(3): 242-249

  • 加载中
计量
  • 文章访问数:  9090
  • PDF下载数:  11768
  • 施引文献:  0
出版历程
收稿日期:  2014-02-01
修回日期:  2014-05-11
刊出日期:  2014-08-31

目录