雅鲁藏布江蛇绿岩带西段达机翁地幔橄榄岩组成特征及其形成环境分析

连东洋, 杨经绥, 熊发挥, 刘飞, 王云鹏, 周文达, 赵一珏. 雅鲁藏布江蛇绿岩带西段达机翁地幔橄榄岩组成特征及其形成环境分析[J]. 岩石学报, 2014, 30(8): 2164-2184.
引用本文: 连东洋, 杨经绥, 熊发挥, 刘飞, 王云鹏, 周文达, 赵一珏. 雅鲁藏布江蛇绿岩带西段达机翁地幔橄榄岩组成特征及其形成环境分析[J]. 岩石学报, 2014, 30(8): 2164-2184.
LIAN DongYang, YANG JingSui, XIONG FaHui, LIU Fei, WANG YunPeng, ZHOU WenDa, ZHAO YiJue. Composition characteristics and tectonic setting of the Dajiweng peridotite in the western Yarlung-Zangbo ophiolitic belt[J]. Acta Petrologica Sinica, 2014, 30(8): 2164-2184.
Citation: LIAN DongYang, YANG JingSui, XIONG FaHui, LIU Fei, WANG YunPeng, ZHOU WenDa, ZHAO YiJue. Composition characteristics and tectonic setting of the Dajiweng peridotite in the western Yarlung-Zangbo ophiolitic belt[J]. Acta Petrologica Sinica, 2014, 30(8): 2164-2184.

雅鲁藏布江蛇绿岩带西段达机翁地幔橄榄岩组成特征及其形成环境分析

  • 基金项目:

    本文受国家行业专项(SinoProbe-05-02)、国家自然科学基金重点项目(40930313)、国家自然科学基金创新群体项目(41221061)、国家自然科学基金项目(41202036、40921001)和中国地质调查局工作项目(1212011121263、12120114061801)联合资助.

详细信息

Composition characteristics and tectonic setting of the Dajiweng peridotite in the western Yarlung-Zangbo ophiolitic belt

More Information
  • 雅鲁藏布江蛇绿岩带自萨嘎以西分成南北两个亚带。对两个亚带蛇绿岩的各自特征及成因联系的研究,是探讨雅鲁藏布江西段的新特提斯洋构造演化的关键。北亚带蛇绿岩呈构造岩块产于冈底斯山前喀喇昆仑断裂带的南侧。其中,位于北亚带西北段的达机翁蛇绿岩,主要由地幔橄榄岩,玄武岩夹硅质岩组成,各单元间断层接触。对达机翁蛇绿岩的地幔橄榄岩开展的组成特征研究表明:(1)地幔橄榄岩主体为方辉橄榄岩,含少量的纯橄岩。方辉橄榄岩内产有豆荚状铬铁矿(呈豆状,块状以及浸染状),铬铁矿有一层纯橄岩的外壳;(2)达机翁方辉橄榄岩单斜辉石含量低,组成矿物以及全岩的地球化学特征均指示了这些样品经历了相对高的部分熔融作用;(3)方辉橄榄岩具有U型的球粒陨石标准化的稀土元素分配模式,Nb相对亏损,Ta,Zr和Hf具有弱的正异常,同时Sr和U具有强烈的正异常,这些特征可能与残余地幔和俯冲带熔/流体之间相互作用导致的轻稀土元素和部分微量元素的选择性富集有关。定量计算表明,达机翁地幔岩中的方辉橄榄岩来源于一个尖晶石相地幔源区的部分熔融,部分熔融程度大于25%,高于深海地幔橄榄岩的部分熔融程度(10%~22%)。这些橄榄岩形成时的氧逸度条件位于FMQ和FMQ+1之间,高于深海地幔橄榄岩(FMQ-1),与俯冲带环境的氧逸度条件一致。因此,我们认为达机翁蛇绿岩中的地幔橄榄岩形成于大洋中脊的环境,随后发生了洋内俯冲作用,位于俯冲带上部的地幔橄榄岩经历了俯冲带流/熔体的交代作用。
  • 加载中
  • [1]

    Aitchison JC, Davis AM, Liu J, Luo H, Malpas JG, McDermid IR, Wu H, Ziabrev SV and Zhou M. 2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth and Planetary Science Letters, 183(1): 231-244

    [2]

    Allegre CJ, Courtillot V, Tapponnier P, Hirn A, Mattauer M, Coulon C, Jaeger JJ, Achache J, Schrer U and Marcoux J. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17-22

    [3]

    Bao PS, Wang XB, Peng GY and Chen FY. 1999. Chromite Deposit in China. Beijing: Science Press, 108-135 (in Chinese)

    [4]

    Bédard é, Hébert R, Guilmette C, Lesage G, Wang CS and Dostal J. 2009. Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet: Evidence for an arc-back-arc origin. Lithos, 113(1-2): 48-67

    [5]

    Bezard R, Hébert R, Wang C, Dostal J, Dai J and Zhong H. 2011. Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet. Lithos, 125(1): 347-367

    [6]

    Crawford AJ, Beccaluva L and Serri G. 1981. Tectono-magmatic evolution of the West Philippine-Mariana region and the origin of boninites. Earth and Planetary Science Letters, 54(2): 346-356

    [7]

    Dai J, Wang C, Hébert R, Li Y, Zhong H, Guillaume R, Bezard R and Wei Y. 2011a. Late Devonian OIB alkaline gabbro in the Yarlung Zangbo Suture Zone: Remnants of the Paleo-Tethys? Gondwana Research, 19(1): 232-243

    [8]

    Dai J, Wang C, Hébert R, Santosh M, Li Y and Xu J. 2011b. Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chemical Geology, 288(3-4): 133-148

    [9]

    Dai J, Wang C, Polat A, Santosh M, Li Y and Ge Y. 2013. Rapid forearc spreading between 130~120Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet. Lithos, 172-173: 1-16

    [10]

    Dick HJ and Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76

    [11]

    Dick HJB and Natland JH. 1996. Late stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In: Mevel C, Gillis KM, Allan JF and Meyer PS (eds.). Proceedings of the Ocean Drilling Program. Scientific Results, 147: 103-134

    [12]

    Dubois-Cote V, Hebert R, Dupuis C, Wang CS, Li YL and Dostal J. 2005. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet. Chemical Geology, 214(3-4): 265-286

    [13]

    Dupuis C, Hébert R, Dubois-Cote V, Guilmette C, Wang CS, Li YL and Li ZJ. 2005. The Yarlung Zangbo Suture Zone ophiolitic mélange (southern Tibet): New insights from geochemistry of ultramafic rocks. Journal of Asian Earth Sciences, 25(6): 937-960

    [14]

    Frey FA, John Suen C and Stockman HW. 1985. The Ronda high temperature peridotite: Geochemistry and petrogenesis. Geochimica et Cosmochimica Acta, 49(11): 2469-2491

    [15]

    Gaetani GA and Grove TL. 1998. The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131(4): 323-346

    [16]

    Girardeau J, Mercier J and Yougong Z. 1985. Structure of the Xigaze ophiolite, Yarlung Zangbo suture zone, southern Tibet, China: Genetic implications. Tectonics, 4(3): 267-288

    [17]

    Girardeau J and Mercier J. 1988. Petrology and texture of the ultramafic rocks of the Xigaze ophiolite (Tibet): Constraints for mantle structure beneath slow-spreading ridges. Tectonophysics, 147(1-2): 33-58

    [18]

    Guilmette C, Hébert R, Dupuis C, Wang C and Li Z. 2008. Metamorphic history and geodynamic significance of high-grade metabasites from the ophiolitic melange beneath the Yarlung Zangbo ophiolites, Xigaze area, Tibet. Journal of Asian Earth Sciences, 32(5): 423-437

    [19]

    Guilmette C, Hébert R, Wang C and Villeneuve M. 2009. Geochemistry and geochronology of the metamorphic sole underlying the Xigaze ophiolite, Yarlung Zangbo Suture Zone, south Tibet. Lithos, 112(1): 149-162

    [20]

    Guo TY. 1991. Geology of Ngari Tibet (Xizang). Beijing: China University of Geoscience Press (in Chinese)

    [21]

    Hébert R, Bezard R, Guilmette C, Dostal J, Wang CS and Liu ZF. 2012. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Research, 22(2): 377-397

    [22]

    Huang GC, Xu DM, Lei YJ and Li XJ. 2007. Chromite prospects in the Daba-Xiugugabu ophiolite zone, southwestern Tibet. Geology in China, 34(4): 668-674 (in Chinese with English abstract)

    [23]

    Jaques AL and Green DH. 1980. Anhydrous melting of peridotite at 0~15kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology, 73(3): 287-310

    [24]

    Kelemen PB, Dick HJ and Quick JE. 1992. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 358(6388): 635-641

    [25]

    Kelemen PB and Dick HJ. 1995. Focused melt flow and localized deformation in the upper mantle: Juxtaposition of replacive dunite and ductile shear zones in the Josephine peridotite, SW Oregon. Journal of Geophysical Research, 100(B1): 423-438

    [26]

    Krishnakanta Singh A. 2013. Petrology and geochemistry of abyssal peridotites from the Manipur ophiolite complex, Indo-Myanmar orogenic belt, Northeast India: Implication for melt generation in mid-oceanic ridge environment. Journal of Asian Earth Sciences, 66: 258-276

    [27]

    Li WX, Zhao ZD, Zhu DC, Dong GC, Zhou S, Mo XX, DePaolo D and Dilek Y. 2012. Geochemical discrimination of tectonic environments of the Yalung Zangpo ophiolite in southern Tibet. Acta Petrologica Sinica, 28(5): 1663-1673 (in Chinese with English abstract)

    [28]

    Li Y, Yang JS, Liu Z, Jia Y and Xu XZ. 2011. The origins of Baer ophiolitic peridotite and its implication in the Yarlung Zangbo suture zone, southern Tibet. Acta Petrologica Sinica, 27(11): 3239-3254 (in Chinese with English abstract)

    [29]

    Liu CZ, Wu FY, Wilde SA, Yu LJ and Li JL. 2010. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos, 114(3): 413-422

    [30]

    Liu F, Yang JS, Chong SY, Li ZL, Lian DY, Zhou WD and Zhao W. 2013a. Geochemistry and Sr-Nd-Pb isotopic composition of mafic rocks in the west part of Yarlung Zangbo suture zone: Evidence for intra-oceanic supra-subduction within the Neo-Tethys. Geology in China, 40(3): 742-755 (in Chinese with English abstract)

    [31]

    Liu F, Yang JS, Chen SY, Liang FH, Niu XL, Li ZL and Lian DY. 2013b. Ascertainment and environment of the OIB-type basalts from the Dongbo ophiolite in the western part of Yarlung Zangbo Suture Zone. Acta Petrologica Sinica, 29(6): 1909-1932 (in Chinese with English abstract)

    [32]

    Liu Z, Li Y, Xiong FH, Wu D and Liu F. 2011. Petrology and geochronology of MOR gabbro in the Purang ophiolite of western Tibet, China. Acta Petrologica Sinica, 27(11): 3169-3279 (in Chinese with English abstract)

    [33]

    Malpas J, Zhou M, Robinson PT and Reynolds PH. 2003. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet. Geological Society, London, Special Publications, 218(1): 191-206

    [34]

    Matsuoka A, Yang Q, Kobayashi K, Takei M, Nagahashi T, Zeng Q and Wang Y. 2002. Jurassic-Cretaceous radiolarian biostratigraphy and sedimentary environments of the Ceno-Tethys: Records from the Xialu chert in the Yarlung-Zangbo Suture Zone, southern Tibet. Journal of Asian Earth Sciences, 20(3): 277-287

    [35]

    McDermid IR, Aitchison JC, Davis AM, Harrison TM and Grove M. 2002. The Zedong terrane: A Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology, 187(3-4): 267-277

    [36]

    McDonough WF and Sun S. 1995. The composition of the Earth. Chemical Geology, 120(3): 223-253

    [37]

    Melcher F, Meisel T, Puhl J and Koller F. 2002. Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: Constraints from geochemistry. Lithos, 65(1): 69-112

    [38]

    Miller C, Thni M, Frank W, Schuster R, Melcher F, Meisel T and Zanetti A. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66(3-4): 155-172

    [39]

    Mysen BO and Kushiro I. 1977. Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. American Mineralogist, 62(9-10): 843-856

    [40]

    Nicolas A, Girardeau J, Marcoux J et al. 1981. The Xigaze ophiolite (Tibet): A peculiar oceanic lithosphere. Nature, 294(5840): 414-417

    [41]

    Niu XL, Yang JS, Chen SY, Liu F, Xiong FH, Liu Z and Guo GL. 2013. The reformation of the Dongbo ultramafic rock massif in the western part of the Yarlung Zangbo suture zone by subduction-related fluids: Evidence from the platimun-group elements (PGE). Geology in China, 40(3): 756-766 (in Chinese with English abstract)

    [42]

    Niu Y. 1997. Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. Journal of Petrology, 38(8): 1047-1074

    [43]

    Niu Y and Hekinian R. 1997. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Letters to Nature, 385(6614): 328-328

    [44]

    Ohara Y and Ishii T. 1998. Peridotites from the southern Mariana forearc: Heterogeneous fluid supply in mantle wedge. Island Arc, 7(3): 541-558

    [45]

    Pan GT, Chen ZL and Li XZ. 1997. Geological-Tectonic Evolution of Eastern Tethys. Beijing: Geological Publishing House, 1-100 (in Chinese)

    [46]

    Parkinson IJ, Pearce JA, Thirlwall MEA, Johnson K and Ingram G. 1992. Trace element geochemistry of peridotites from the Izu-Bonin-Mariana forearc, Leg 125. In: Proceedings of the Ocean Drilling Program. Scientific Results, 125: 487-506

    [47]

    Parkinson IJ and Pearce JA. 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9): 1577-1618

    [48]

    Pearce JA and Wanming D. 1988. The ophiolites of the Tibetan geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 327(1594): 215-238

    [49]

    Pearce JA and Parkinson IJ. 1993. Trace element models for mantle melting: Application to volcanic arc petrogenesis. Geological Society, London, Special Publications, 76(1): 373-403

    [50]

    Pearce JA, Barker PF, Edwards SJ, Parkinson IJ and Leat PT. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36-53

    [51]

    Pearce JA. 2003. Supra-subduction zone ophiolites: The search for modern analogues. Special Papers-Geological Society of America: 269-294

    [52]

    Qiu RZ, Deng JF, Zhou S, Li TD, Xiao QH, Guo TY, Cai ZY, Li GL, Huang GC and Meng XJ. 2005. Ophiolite types in western Qinghai-Tibetan Plateau: Evidences from petrology and geochemistry. Earth Science Frontiers, 12(2): 277-291 (in Chinese with English abstract)

    [53]

    Salters VJ and Stracke A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5(5): 1-27

    [54]

    Savov IP, Ryan JG, D’Antonio M, Kelley K and Mattie P. 2005a. Geochemistry of serpentinized peridotites from the Mariana Forearc Conical Seamount, ODP Leg125: Implications for the elemental recycling at subduction zones. Geochemistry, Geophysics, Geosystems, 6(4): 1-24

    [55]

    Savov IP, Guggino S, Ryan JG, Fryer P and Mottl MJ. 2005b. Geochemistry of serpentinite muds and metamorphic rocks from the Mariana forearc, ODP Sites 1200 and 778-779, South Chamorro and Conical Seamounts. In: Shinohara M, Salisbury MH and Richter C (eds.). Proceedings of the Ocean Drilling Program. Scientific Results, 195: 1-49

    [56]

    Shi RD, Yang JS, Xu ZQ and Qi XX. 2005. Recognition of MOR- and SSZ-type ophiolites in the Bangong Lake ophiolite mélange, western Tibet: Evidence from two kinds of mantle peridotites. Acta Petrologica et Mineralogica, 24(5): 397-408 (in Chinese with English abstract)

    [57]

    Shi RD, Yang JS, Xu ZQ and Qi X. 2007. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone. Journal of Asian Earth Sciences, 32(5-6): 438-457

    [58]

    Sun GY and Hu XM. 2012. Tectonic affinity of Zhongba terrane: Evidences from the detrital zircon geochronology and Hf isotopes. Acta Petrologica Sinica, 28(5): 1635-1646 (in Chinese with English abstract)

    [59]

    Sun S and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345

    [60]

    Tamura A and Arai S. 2006. Harzburgite-dunite-orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos, 90(1-2): 43-56

    [61]

    Tapponnier P, Mercier JL, Proust F, Andrieux J, Armijo R, Bassoullet JP, Brunel M, Burg JP, Colchen M and Dupré B. 1981. The Tibetan side of the India-Eurasia collision. Nature, 294(5840): 405-410

    [62]

    Wang XB and Bao PS. 1987. The genesis of the pordiform chromite deposits: A case study of the Luobusa chromite deposit, Tibet. Acta Geologica Sinica, (2): 167-181 (in Chinese with English abstract)

    [63]

    Wang XB, Bao PS and Rong H. 1995. Rare earth elements geochemistry of the mantle peridotite in the ophiolite suites of China. Acta Petrologica Sinica, 11(Suppl.1): 24-41 (in Chinese with English abstract)

    [64]

    Wenk H. 1985. Preferred Orientation in Deformed Metals and Rocks, an Introduction to Modern Texture Analysis. Academic Press

    [65]

    Xia B. 1991. The geochemistry and origin of the Laangcuo ophiolite in Tibet. Xizang Geology, 5(1): 38-54 (in Chinese)

    [66]

    Xia B and Hong YT. 1997. Characteristics of lithogeochemistry and genesis for basaltic lava in Raka ophiolite, Tibet. Geology-Geochemistry, (1): 46-52 (in Chinese)

    [67]

    Xiong FH, Yang JS, Liang FH, Ba DZ, Zhang J, Xu XZ, Li Y and Liu Z. 2011. Zircon U-Pb ages of the Dongbo ophiolite in the western Yarlung Zangbo suture zone and their geological significance. Acta Petrologica Sinica, 27(11): 3223-3238 (in Chinese with English abstract)

    [68]

    Xiong FH, Yang JS, Liu Z, Guo GL, Chen SY, Xu XZ, Li Y and Liu F. 2013. High-Cr and high-Al chromitite found in western Yarlung-Zangbo suture zone in Tibet. Acta Petrologica Sinica, 29(6): 1878-1908 (in Chinese with English abstract)

    [69]

    Xu DM, Huang GC, Huang LQ, Lei YJ, Li LJ. 2006. The origin of mantle peridotites in the Daba-Xiugugabu ophiolite belt, SW Tibet. Geology and Mineral Resources of South China, 87(3): 10-18 (in Chinese with English abstract)

    [70]

    Xu DM, Huang GC and Lei YJ. 2008. Sm-Nd ages and Nd-Sr-Pb isotope signatures of the Xiugugabu ophiolite, southwestern Tibet. Geology in China, 35(3): 429-435 (in Chinese with English abstract)

    [71]

    Xu XZ, Yang JS, Ba DZ, Guo GL, Robinson PT and Li J. 2011. Petrogenesis of the Kangjinla peridotite in the Luobusa ophiolite, Southern Tibet. Journal of Asian Earth Sciences, 42(4): 553-568

    [72]

    Xu XZ, Yang JS, Guo GL and Li JY. 2011. Lithological research on the Purang mantle peridotite in western Yarlung-Zangbo suture zone in Tibet. Acta Petrologica Sinica, 27(11): 3179-3196 (in Chinese with English abstract)

    [73]

    Yamamoto S, Komiya T, Hirose K and Maruyama S. 2009. Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos, 109(3): 314-322

    [74]

    Yang J, Dobrzhinetskaya L, Bai W, Fang Q, Robinson PT, Zhang J and Green HW. 2007. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35(10): 875-878

    [75]

    Yang JS, Bai WJ, Fang QS, Yan BG, Rong H and Chen SY. 2004. Coesite discovered from the podiform chromitite in the Luobusha ophiolite, Tibet. Earth Science, 29(6): 651-660 (in Chinese with English abstract)

    [76]

    Yang JS, Bai WJ, Fang QS, Meng FC, Chen SY, Zhang ZM and Rong H. 2007. Discovery of diamond and an unusual mineral group from the podiform chromite, Polar Ural. Geology in China, 34(5): 950-952 (in Chinese with English abstract)

    [77]

    Yang JS, Bai WJ, Fang QS and Rong H. 2008. Ultrahigh-pressure minerals and new minerals from the Luobusa ophiolitic chromitites in Tibet: A review. Acta Geoscientica Sinica, 29(3): 263-274 (in Chinese with English abstract)

    [78]

    Yang JS, Ba DZ, Xu XZ and Li ZL. 2010. A restudy of podiform chromite deposits and their ore-prospecting vista in China. Geology in China, 37(4): 1141-1150 (in Chinese with English abstract)

    [79]

    Yang JS, Xiong FH, Guo GL, Liu F, Liang FH, Chen SY, Li ZL and Zhang LW. 2011. The Dongbo ultramafic massif: A mantle peridotite in the western part of the Yarlung Zangbo suture zone, Tibet, with excellent prospects for a major chromite deposit. Acta Petrologica Sinica, 27(11): 3207-3222 (in Chinese with English abstract)

    [80]

    Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280

    [81]

    Zhou EB, Yang ZS, Jiang W, Hou ZQ, Guo FS and Hong J. 2011. Study on mineralogy of Cr-spinel and genesis of Luobusha chromite deposit in South Tibet. Acta Petrologica Sinica, 27(7): 2060-2072 (in Chinese with English abstract)

    [82]

    Zhou MF and Robinson PT. 1994. High-Cr and high-Al podiform chromitites, western China: Relationship to partial melting and melt/rock reaction in the upper mantle. International Geology Review, 36(7): 678-686

    [83]

    Zhou MF and Bai WJ. 1994. The origin of the podiform chromite deposits. Mineral Deposits, 13(3): 242-249 (in Chinese with English abstract)

    [84]

    Zhou MF, Robinson PT, Malpas J and Li Z. 1996. Podiform chromitites in the Luobusa ophiolite (southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1): 3-21

    [85]

    Zhou MF, Robinson PT, Malpas J, Edwards SJ and Qi L. 2005. REE and PGE geochemical constraints on the formation of dunites in the Luobusa Ophiolite, Southern Tibet. Journal of Petrology, 46(3): 615-639

    [86]

    Zhou S, Mo X, Mahoney JJ, Zhang S, Guo T and Zhao Z. 2002. Geochronology and Nd and Pb isotope characteristics of gabbro dikes in the Luobusha ophiolite, Tibet. Chinese Science Bulletin, 47(2): 144-147

    [87]

    鲍佩声, 王希斌, 彭根永, 陈方远. 1999. 中国铬铁矿床. 北京: 科学出版社, 108-135

    [88]

    郭铁鹰. 1991. 西藏阿里地质. 北京: 中国地质大学出版社

    [89]

    黄圭成,徐德明,雷义均,李丽娟. 2007. 西藏西南部达巴-休古嘎布绿岩带铬铁矿的找矿前景. 中国地质,34(4): 668-674

    [90]

    李文霞, 赵志丹, 朱弟成, 董国臣, 周肃, 莫宣学, Depaolo D, Dilek Y. 2012. 西藏雅鲁藏布蛇绿岩形成构造环境的地球化学鉴别. 岩石学报, 28(5): 1663-1673

    [91]

    李源, 杨经绥, 刘钊, 贾毅, 徐向珍. 2012. 西藏雅鲁藏布江缝合带西段巴尔地幔橄榄岩成因及构造意义. 岩石学报, 27(11): 3239-3254

    [92]

    刘飞, 杨经绥, 陈松永, 李兆丽, 连东洋, 周文达, 张岚. 2013a. 雅鲁藏布江缝合带西段基性岩地球化学和Sr-Nd-Pb同位素特征: 新特提斯洋内俯冲的证据. 中国地质, 40(3): 742-755

    [93]

    刘飞, 杨经绥, 陈松永, 梁凤华, 牛晓露, 李兆丽, 连东洋. 2013b. 雅鲁藏布江缝合带西段东波蛇绿岩OIB型玄武岩的厘定及其形成环境. 岩石学报, 29(6): 1909-1932

    [94]

    刘钊, 李源, 熊发挥, 吴迪, 刘飞. 2011. 西藏西部普兰蛇绿岩中的MOR型辉长岩: 岩石学和年代学. 岩石学报, 27(11): 3269-3279

    [95]

    牛晓露, 杨经绥, 陈松永, 刘飞, 熊发挥, 刘钊, 郭国林. 2013. 雅鲁藏布江西段东波超镁铁岩体经历了俯冲带流体的改造: 来自铂族元素的证据. 中国地质, 40 (3): 756-766

    [96]

    潘桂棠, 陈智梁, 李兴振. 1997. 东特提斯地质构造形成演化. 北京: 地质出版社, 1-100

    [97]

    邱瑞照, 邓晋福, 周肃, 李廷栋, 肖庆辉, 郭铁鹰, 蔡志勇, 李国良, 黄圭成, 孟祥金. 2005. 青藏高原西部蛇绿岩类型: 岩石学与地球化学证据. 地学前缘, 12(2): 277-291

    [98]

    史仁灯, 杨经绥, 许志琴, 戚学祥. 2005. 西藏班公湖存在MOR型和SSZ型蛇绿岩——来自两种不同地幔橄榄岩的证据. 岩石矿物学杂志, 24(5): 397-408

    [99]

    孙高远, 胡修棉. 2012. 仲巴地体的板块亲缘性: 来自碎屑锆石U-Pb年代学和Hf同位素的证据. 岩石学报, 28(5): 1635-1646

    [100]

    王希斌, 鲍佩声. 1987. 豆荚状铬铁矿床的成因——以西藏自治区罗布莎铬铁矿床为例. 地质学报, (2): 167-181

    [101]

    王希斌, 鲍佩声, 戎合. 1995. 中国蛇绿岩中变质橄榄岩的稀土元素地球化学. 岩石学报, 11(S1): 24-41

    [102]

    夏斌. 1991. 西藏拉昂错蛇绿岩岩石地球化学特征及成因意义. 西藏地质, 5(1): 38-54

    [103]

    夏斌, 洪裕荣. 1997. 西藏达机翁蛇绿岩的岩石地球化学特征及其构造环境. 地质地球化学, (1): 46-52

    [104]

    熊发挥, 杨经绥, 梁凤华, 巴登珠, 张健, 徐向珍, 李源, 刘钊. 2011. 西藏雅鲁藏布江缝合带西段东波蛇绿岩中锆石U-Pb定年及地质意义. 岩石学报, 27(11): 3223-3238

    [105]

    熊发挥, 杨经绥, 刘钊, 郭国林, 陈松永, 徐向珍, 李源, 刘飞. 2013. 西藏雅鲁藏布江缝合带西段发现高铬型和高铝型豆荚状铬铁矿体. 岩石学报, 29(6): 1878-1908

    [106]

    徐德明, 黄圭成, 黄陵勤, 雷义均, 李丽娟. 2006. 西藏西南部达巴-休古嘎布蛇绿岩带中地幔橄榄岩的成因. 华南地质与矿产, 87(3): 10-18

    [107]

    徐德明,黄圭成,雷义均. 2008. 西藏西南部休古嘎布蛇绿岩的 Sm-Nd 年龄及 Nd-Sr-Pb 同位素特征. 中国地质,35(3): 429-435

    [108]

    徐向珍, 杨经绥, 郭国林, 李金阳. 2012. 雅鲁藏布江缝合带西段普兰蛇绿岩中地幔橄榄岩的岩石学研究. 岩石学报, 27(11): 3179-3196

    [109]

    杨经绥, 白文吉, 方青松, 颜秉刚, 戎合, 陈松永. 2004. 西藏罗布莎豆荚状铬铁矿中发现超高压矿物柯石英. 地球科学, 29(6): 651-660

    [110]

    杨经绥, 白文吉, 方青松, 孟繁聪, 陈松永, 张仲明, 戎合. 2007. 极地乌拉尔豆荚状铬铁矿中发现金刚石和一个异常矿物群. 中国地质, 34(5): 950-952

    [111]

    杨经绥, 白文吉, 方青松, 戎合. 2008. 西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物 (综述). 地球学报, 29(3): 263-274

    [112]

    杨经绥, 巴登珠, 徐向珍, 李兆丽. 2010. 中国铬铁矿床的再研究及找矿前景. 中国地质, 37(4): 1141-1150

    [113]

    杨经绥, 熊发挥, 郭国林, 刘飞, 梁凤华, 陈松永, 李兆丽, 张隶文. 2011. 东波超镁铁岩体: 西藏雅鲁藏布江缝合带西段一个甚具铬铁矿前景的地幔橄榄岩体. 岩石学报, 27(11): 3207-3222

    [114]

    周二斌, 杨竹森, 江万, 侯增谦, 郭福生, 洪俊. 2011. 藏南罗布莎铬铁矿床铬尖晶石矿物学与矿床成因研究. 岩石学报, 27(7): 2060-2072

    [115]

    周美夫,白文吉. 1994. 对豆荚状铬铁矿床成因的认识. 矿床地质,13(3): 242-249

  • 加载中
计量
  • 文章访问数:  9156
  • PDF下载数:  8392
  • 施引文献:  0
出版历程
收稿日期:  2014-02-20
修回日期:  2014-05-12
刊出日期:  2014-08-31

目录