西藏雅鲁藏布江缝合带西段普兰蛇绿岩地幔橄榄岩矿物学研究和成因探讨

周文达, 杨经绥, 赵军红, 熊发挥, 马昌前, 徐向珍, 梁凤华, 刘飞. 西藏雅鲁藏布江缝合带西段普兰蛇绿岩地幔橄榄岩矿物学研究和成因探讨[J]. 岩石学报, 2014, 30(8): 2185-2203.
引用本文: 周文达, 杨经绥, 赵军红, 熊发挥, 马昌前, 徐向珍, 梁凤华, 刘飞. 西藏雅鲁藏布江缝合带西段普兰蛇绿岩地幔橄榄岩矿物学研究和成因探讨[J]. 岩石学报, 2014, 30(8): 2185-2203.
ZHOU WenDa, YANG JingSui, ZHAO JunHong, XIONG FaHui, MA ChangQian, XU XiangZhen, LIANG FengHua, LIU Fei. Mineralogical study and the origin discussion of Purang ophiolite peridotites, western part of Yarlung-Zangbo Suture Zone (YZSZ), Southern Tibet[J]. Acta Petrologica Sinica, 2014, 30(8): 2185-2203.
Citation: ZHOU WenDa, YANG JingSui, ZHAO JunHong, XIONG FaHui, MA ChangQian, XU XiangZhen, LIANG FengHua, LIU Fei. Mineralogical study and the origin discussion of Purang ophiolite peridotites, western part of Yarlung-Zangbo Suture Zone (YZSZ), Southern Tibet[J]. Acta Petrologica Sinica, 2014, 30(8): 2185-2203.

西藏雅鲁藏布江缝合带西段普兰蛇绿岩地幔橄榄岩矿物学研究和成因探讨

  • 基金项目:

    本文受国家行业专项(SinoProbe05-02)、国家自然科学基金重点项目(409303)、国家自然科学基金创新群体项目(41221061)和中国地质调查局工作项目(1212011121263)联合资助.

详细信息

Mineralogical study and the origin discussion of Purang ophiolite peridotites, western part of Yarlung-Zangbo Suture Zone (YZSZ), Southern Tibet

More Information
  • 西藏普兰蛇绿岩以出露面积约600km2的特大型地幔橄榄岩体而引人注目。我们在普兰岩体的东段,完成了一条近垂直走向并穿过岩体的长约10km的地质剖面,其目的是探讨地幔橄榄岩体岩相的变化及其成因。研究表明,岩体主体为方辉橄榄岩,分布于岩体内部,二辉橄榄岩呈条带状,分布于岩体边部,方辉橄榄岩和二辉橄榄岩出露面积之比约为4:1。剖面显示,二辉橄榄岩向方辉橄榄岩岩相渐变,Ol和Sp含量增加,Opx和Cpx减少,橄榄石Fo值和NiO含量也呈逐渐增加的特征。斜方辉石主要为顽火辉石(En=85~90),Mg#值变化于88~92之间,Al2O3含量0.89%~5.16%。单斜辉石包括顽透辉石和透辉石,以低铝(Al2O3=1.16%~6.02%),高镁(Mg#值为90~94)为特征。二辉橄榄岩的铬尖晶石Cr#值在19~32之间,低于方辉橄榄岩的Cr#值(25~72),两者之间呈连续变化。另一方面,方辉橄榄岩的各矿物百分含量、成分特征及部分熔融程度在岩体东部变化较大。结合前人成果,认为岩体中部分方辉橄榄岩不仅仅为单一的地幔残余,而可能经历了后期流体/熔体交代作用。依据尖晶石-橄榄石/单斜辉石矿物化学成分,估算出二辉橄榄岩是地幔源区经历约5%~12%部分熔融作用形成,而方辉橄榄岩则最终经历了约12%~32%部分熔融作用。研究结果表明,从二辉橄榄岩到方辉橄榄岩的演变,起因于部分熔融的差别,没有证据表明是受构造背景变化制约,因此,简单地用铬尖晶石等矿物成分的变化判断地幔橄榄岩的产出构造背景的方法值得商榷。
  • 加载中
  • [1]

    Ahmed HA, Arai S, Yaser M and Abdellatif R. 2005. Spinel composition as a petrogenetic indicator of the mantle section in the Neoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco. Precambrian Research, 138(3-4): 225-234

    [2]

    Aitchison JC, Ba DZ, Davis AM, Liu J, Luo H, Malpas J, McDermid I, Wu H, Ziabrev S and Zhou MF. 2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth and Planetary Science Letters, 183(2-3): 231-244

    [3]

    Aldanmaz E, Schmidt MW, Gougaud A and Meisel T. 2009. Mid-ocean ridge and supra-subduction geochemical signatures in spinel-peridotites from the Neotethyan ophiolites in SW Turkey: Implications for upper mantle melting processes. Lithos, 113(3-4): 691-708

    [4]

    Allan JF and Dick HJB. 1996. Cr-rich spinel as a tracer for melt migration and melt-wall rock interaction in the mantle: Hess Deep, leg 147. In: Gillis MC et al. (eds.). Proceedings of the Ocean Drilling Program. Scientific Results. Ocean Drilling Program, College Station, Texas, 157-172

    [5]

    Allègre CJ, Courtillot V and Tapponnier P. 1984. Structure and evolution of the Himalaya-Tibet orogenic belt. Nature, 307(5946): 17-22

    [6]

    Arai S. 1992. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine, 56(2): 173-184

    [7]

    Arai S. 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships, review and interpretation. Chemical Geology, 113(3-4): 191-204

    [8]

    Arai S and Matsukage K. 1996. Petrology of the gabbro-trocolite-peridotite complex from Hess Deep, Equatorial Pacific: Implications for mantle-melt interaction within the oceanic lithosphere. In: Gillis MC et al. (eds.). Proceedings of the Ocean Drilling Program. Scientific Results. Ocean Drilling Program, College Station, Texas, 135-155

    [9]

    Aswad KJ, Aziz NR and Koyi HA. 2011. Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq. Geological Magazine, 148(5-6): 802-818

    [10]

    Barnes SJ. 2000. Chromite in Komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology, 41(3): 387-409

    [11]

    Barnes SJ and Roeder PL. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42(12): 2279-2302

    [12]

    Barth MG, Mason PRD, Davies GR, Dijkstra AH and Drury MR. 2003. Geochemistry of the Othris ophiolite, Greece: Evidence for refertilization? Journal of Petrology, 44(10): 1759-1785

    [13]

    Batanova VG and Sobolev AV. 2000. Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology, 28(1): 55-58

    [14]

    Bédard é, Hébert R, Guilmette C, Lesage G, Wang CS and Dostal J. 2009. Petrology and geochemistry of the Saga and Sangsang ophiolitic massifs, Yarlung Zangbo Suture Zone, Southern Tibet: Evidence for an arc-back-arc origin. Lithos, 113(1-2): 48-67

    [15]

    Bizimis M, Salters VJM and Bonatti E. 2000. Trace and REE content of clinopyroxenes from supra-subduction zone peridotites: Implications for melting and enrichment processes in island arcs. Chemical Geology, 165(1): 67-85

    [16]

    Bonatti E and Michael PJ. 1989. Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth and Planetary Science Letters, 91(3-4): 297-311

    [17]

    Bortolotti V, Marroni M, Pandolfi L, Principi G and Saccani E. 2002. Interaction between mid-ocean ridge and subduction magmatism in Albanian ophiolites. The Journal of Geology, 110(5): 561-576

    [18]

    Caran S, oban H, Flower MFJ, Ottley CJ and Yilmaz K. 2010. Podiform chromitites and mantle peridotites of the Antalya ophiolite, Isparta Angle (SW Turkey): Implications for partial melting and melt-rock interaction in oceanic and subduction-related settings. Lithos, 114(3-4): 307-326

    [19]

    Choi SH, Shervais JW and Mukasa SB. 2008. Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contributions to Mineralogy and Petrology, 156(5): 551-576

    [20]

    Dai JG, Wang CS, Hébert R, Santosh M, Li YL and Xu JY. 2011. Petrology and geochemistry of peridotites in the Zhongba ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous intra-oceanic subduction zone within the Neo-Tethys. Chemical Geology, 288(3-4): 133-148

    [21]

    Dick HJB and Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76

    [22]

    Dick HJB and Fisher RL. 1984. Mineralogical studies of the residues of mantle melting: Abyssal and alpine-type peridotites. In: Hornprobst J (ed.). Kimberlites II: The Mantle and Crust-mantle Relationships. Amsterdam: Elsevier, 295-308

    [23]

    Dick HJB and Natland JH. 1996. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. In: Mevel C, Gillis KM, Allan JF and Meyer PS (eds.). Proceedings of the Ocean Drilling Program, Scientific Results, 147(1): 103-134

    [24]

    Dilek Y and Morishita T. 2009. Melt migration and upper mantle evolution during incipient arc construction: Jurassic Eastern Mirdita ophiolite, Albania. Island Arc, 18(1-2): 551-554

    [25]

    Dilek Y and Furnes H. 2011. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. The Geological Society of America Bulletin, 123(3-4): 387-411

    [26]

    Gaetani GA and Grove TL. 1998. The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131(4): 323-346

    [27]

    Guo GL, Xu XZ and Li JY. 2011. The character and genesis of anorthites inclusions in spinel of mantle peridotites from the Purang ophiolite (southwestern Tibetan Plateau). Acta Petrologica Sinica, 27(11): 3197-3206 (in Chinese with English abstract)

    [28]

    Hebert R, Adamson AC and Komor SC. 1990. Metamorphic petrology of ODP 109, Hole 670A serpentinized peridotites: Serpentinization processes at a slow spreading ridge environment. In: Detrick R, Honnorez J, Bryan WB and Juteau T (eds.). Proceedings of the ODP, Sci. Results 106/109. College Station, Texas, 103-115

    [29]

    Hellebrand E, Snow JE, Hoppe P and Hofmann A. 2002. Garnet-field melting and late-stage refertilization in 'residual' abyssal peridotites from the Central Indian Ridge. Journal of Petrology, 43(12): 2305-2338

    [30]

    Hirose K and Kawamoto T. 1995. Hydrous partial melting of lherzolite at 1Gpa: The effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters, 133(3-4): 463-473

    [31]

    Huang GC, Mo XX, Xu DM, Lei YJ and Li LJ. 2006. Origination and evolution of Daba-Xiugugabu ophiolite belt in southwestern Tibet. Geology and Mineral Resources of South China, (3): 1-9 (in Chinese with English abstract)

    [32]

    Ishii T, Robinson PT, Maekawa H and Fiske R. 1992. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana Forearc, Leg 125. In: Fryer O, Pearce JA and Stokking LB. (eds.). Proceedings of the Ocean Drilling Program, Scientific Results, 125. Ocean Drilling Program, College Station, TX, 445-485

    [33]

    Jaques AL and Green DH. 1980. Anhydrous melting of peridotite at 0~15kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology, 73(3): 287-310

    [34]

    Jean MM, Shervais JW, Choi SH and Mukasa SB. 2010. Melt extraction and melt refertilization in mantle peridotite of the Coast Range ophiolite: An LA-ICP-MS study. Contributions to Mineralogy and Petrology, 159(1): 113-136

    [35]

    Johnson KTM, Dick HJB and Shimizu N. 1990. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research, 95(B3): 2661-2678

    [36]

    Kamenetsky VS, Crawford AJ and Meffre S. 2001. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42(4): 655-671

    [37]

    Leblanc M. 1980. Chromite growth, dissolution and deformation from a morphological view point: SEM investigations. Mineralium Deposita, 15(2): 201-210

    [38]

    Lei YJ, Huang GC, Xu DM and Li LJ. 2006. Prospect for the Jiangyema podiform chromite deposit and its geological characteristics in Pulan County, Tibet. Geology and Mineral Resources of South China, (3): 55-60 (in Chinese with English abstract)

    [39]

    Li JF, Xia B, Liu LW, Xu LF, He GS, Wang H, Zhang YQ and Yang ZQ. 2008. SHRIMP U-Pb zircon dating of diabase in the La'nga Co ophiolite, Burang, Tibet, China, and its geological significance. Geological Bulletin of China, 27(10): 1739-1743 (in Chinese with English abstract)

    [40]

    Liu CZ, Wu FY, Wide SA, Yu LJ and Li JL. 2010. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos, 114(3-4): 413-422

    [41]

    Liu CZ, Wu FY, Chu ZY, Ji WQ, Yu LJ and Li JL. 2011. Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification. Journal of Asian Earth Sciences, 53: 38-50

    [42]

    Liu Z, Li Y, Xiong FH, Wu D and Liu F. 2011. Petrology and geochronology of Mor gabbro in the Purang ophiolite of western Tibet, China. Acta Petrologica Sinica, 27(11): 3269-3279 (in Chinese with English abstract)

    [43]

    McDermid I, Aitchison JC, Davis AM, Harrison TM and Grove M. 2002. The Zedong terrane: A Late Jurassic intra-oceanic magmatic arc within the Yarlung-Zangbo suture zone, southeastern Tibet. Chemical Geology, 187(2): 267-277

    [44]

    Miller C, Thni M, Frank W, Schuster R, Melcher F, Meisel T and Zanetti A. 2003. Geochemistry and tectonomagmatic affinity of the Yungbwa ophiolite, SW Tibet. Lithos, 66(3-4): 155-172

    [45]

    Molnar P and Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collsion. Science, 189(1-2): 419-426

    [46]

    Niu YL and Hékinian R. 1997. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature, 385(6614): 326-329

    [47]

    Niu YL, Langmuir CH and Kinzler RJ. 1997. The origin of abyssal peridotites: A new perspective. Earth and Planetary Science Letters, 152(1-4): 251-265

    [48]

    Okamura H, Arai S and Kim YU. 2006. Petrology of forearc peridotite from the Hahajima Seamount, the Izu-Bonin arc, with special reference to chemical characteristics of chromian spinel. Mineralogical Magazine, 70(1): 15-26

    [49]

    Pan GT, Chen ZL and Li XZ. 1997. Geological Tectonic Evolution in the Eastern Tethys. Beijing: Geological Publishing House, 1-100 (in Chinese)

    [50]

    Parkinson IJ and Pearce JA. 1998. Peridotites from the Izu-Bonin-Mariana Forearc (ODP Leg 125), evidence for mantle melting and melt-mantle interaction in a suprasubduction zone setting. Journal of Petrology, 39(9): 1577-1618

    [51]

    Parkinson IJ, Arculus RJ and Eggins SM. 2003. Peridotite xenoliths from Grenada, Lesser Antilles Island Arcs. Contributions to Mineralogy and Petrology, 146(2): 241-262

    [52]

    Parlak O, Hck V ands Delaloye M. 2000. Suprasubduction zone origin of the pozanti-karsanti ophiolite (southern Turkey) deduced from whole-rock and mineral chemistry of the gabbroic cumulates. Journal of Geological Society of London, 173(1): 219-234

    [53]

    Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP and Howells MF (eds.). Marginal Basin Geology. Geological Society of London Special Publication. London, Blackwell Scientific Publications, 16(1-2): 77-94

    [54]

    Pearce JA, Barker PF, Edward SJ, Parkinson IJ and Leat PT. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin systems, South Atlantic. Contributions to Mineralogy and Petrology, 139(1-2): 36-53

    [55]

    Saccani E and Photiades A. 2004. Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): Implications for magma genesis in a forearc setting. Lithos, 73(3-4): 229-253

    [56]

    Seyler M, Lorand JP, Dick HJB and Drouin M. 2007. Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15°20'N: ODP Hole 1274A. Contributions to Mineralogy and Petrology, 153(8): 303-319

    [57]

    Stern RJ. 2004. Subduction initiation: Spontaneous and induced. Earth and Planetary Science Letters, 226(3-4): 275-292

    [58]

    Takazawa E, Frey FA, Shimizu N and Obata M. 2000. Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): Are they consistent with a partial melting process? Geochemica et Cosmochimica Acta, 64(4): 695-716

    [59]

    Tamura A and Arai S. 2006. Harzburgite-dunite-orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos, 90(1-2): 43-56

    [60]

    Uysal I, Kaliwoda M, Karsli O, Tarkian M, Sadiklar MB and Ottley CJ. 2007. Compositional variations as a result of partial melting and melt-peridotite interaction in an upper mantle section from the Ortaca area, southwestern Turkey. The Canadian Mineralogist, 45(6): 1471-1493

    [61]

    Vils F, Pelletier L, Kalt A, Müntener O and Ludwig T. 2008. The Lithium, Boron and Beryllium content of serpentinized peridotites from ODP Leg 209 (Sites 1272A and 1274A): Implications for lithium and boron budgets of oceanic lithosphere. Geochimica et Cosmochimica Acta, 72(22): 5475-5504

    [62]

    Wei ZQ, Xia B, Zhang YQ, Wang R, Yang ZQ and Wei DL. 2006. SHRIMP zircon dating of diabase in the Xiugugabu ophiolite in Tibet and its geological implications. Geotectonica et Metallogenia, 30(1): 93-97 (in Chinese with English abstract)

    [63]

    Xiao XC and Wang FG. 1984. An introduction to the ophiolite of China. Acta Geoscientica Sinica, 9(2): 19-30 (in Chinese with English abstract)

    [64]

    Xiong FH, Yang JS, Liu Z, Guo GL, Chen SY, Xu XZ, Li Y and Liu F. 2013a. High Cr and high Al chromitite found in western Yarlung-Zangbo suture zone in Tibet. Acta Petrologica Sinica, 29(6): 1878-1908 (in Chinese with English abstract)

    [65]

    Xiong FH, Yang JS and Liu Z. 2013b. Multi-stage formation of the podiform chromitite. Geology in China, 40(3): 821-839 (in Chinese with English abstract)

    [66]

    Xu DM, Huang GC, Huang LQ, Lei YJ and Li LJ. 2006. The origin of mantle peridotites in the Daba-Xiugugabu ophiolite belt, SW Tibet. Geology and Mineral Resources of South China, (3): 10-18 (in Chinese with English abstract)

    [67]

    Xu XZ, Yang JS, Guo GL and Li JY. 2011. Lithological research on the Purang mantle peridotite in western Yarlung-Zangbu suture zone in Tibet. Acta Petrologica Sinica, 27(11): 3179-3196 (in Chinese with English abstract)

    [68]

    Yang JS, Bai WJ, Fang QS, Yan BG, Rong H and Chen SY. 2004. Coesite discovered from the podiform chromitite in the Luobusha ophiolite, Tibet. Earth Science, 29(6): 651-660 (in Chinese with English abstract)

    [69]

    Yang JS, Xiong FH, Guo GL, Liu F, Liang FH, Chen SY, Li ZL and Zhang LW. 2011. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet: A proposal for a new type of diamond occurrence. Acta Petrologica Sinica, 27(11): 3207-3222 (in Chinese with English abstract)

    [70]

    Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280

    [71]

    Zhou MF, Robinson PT, Malpas J and Li Z. 1996. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle. Journal of Petrology, 37(1): 3-21

    [72]

    Zhou MF, Robinson PT, Malpas J, Edwards SJ and Qi L. 2005. REE and PGE geochemical constraints on the formation of dunite in the Luobusa ophiolite, Southern Tibet. Journal of Petrology, 46(3): 615-639

    [73]

    郭国林, 徐向珍, 李金阳. 2011. 西藏普兰地幔橄榄岩中尖晶石内的钙长石包裹体及其成因. 岩石学报, 27(11): 3197-3206

    [74]

    黄圭成, 莫宣学, 徐德明, 李丽娟. 2006. 西藏西南部达巴-休古嘎布蛇绿岩带的形成与演化. 华南地质与矿产, (3): 1-9

    [75]

    雷义均, 黄圭成, 徐德明, 李丽娟. 2006. 西藏普兰县姜叶马豆荚状铬铁矿地质特征及找矿前景. 华南地质与矿产, (3): 55-60

    [76]

    李建峰, 夏斌, 刘立文, 徐力峰, 何观生, 王洪, 张玉泉, 杨之青. 2008. 西藏普兰地区拉昂错蛇绿岩中辉绿岩的锆石SHRIMP U-Pb年龄及其地质意义. 地质通报, 27(10): 1739-1743

    [77]

    刘钊, 李源, 熊发挥, 吴迪, 刘飞. 2011. 西藏西部普兰蛇绿岩中的MOR型辉长岩: 岩石学和年代学. 岩石学报, 27(11): 3269-3279

    [78]

    潘桂棠, 陈智梁, 李兴振. 1997. 东特提斯地质构造形成演化. 北京: 地质出版社, 1-100

    [79]

    韦振权, 夏斌, 张玉泉, 王冉, 杨之青, 韦栋梁. 2006. 西藏休古嘎布蛇绿岩中辉绿岩锆石SHRIMP 定年及其地质意义. 大地构造与成矿学, 30(1): 93-97

    [80]

    肖序常, 王方国. 1984. 中国蛇绿岩概论. 中国地质科学院院报, 9(2): 19-30

    [81]

    熊发挥, 杨经绥, 刘钊, 郭国林, 陈松永, 徐向珍, 李源, 刘飞. 2013a. 西藏雅鲁藏布江缝合带西段发现高铬型和高铝型豆荚状铬铁矿体. 岩石学报, 29(6): 1878-1908

    [82]

    熊发挥, 杨经绥, 刘钊. 2013b. 豆荚状铬铁矿多阶段形成过程的讨论. 中国地质, 40(3): 521-541

    [83]

    徐德明, 黄圭成, 黄陵勤, 雷义均, 李丽绢. 2006. 西藏西南部达巴-休古嘎布蛇绿岩带中地幔橄榄岩的成因. 华南地质与矿产, (3): 10-18

    [84]

    徐向珍, 杨经绥, 郭国林, 李金阳. 2011. 雅鲁藏布江缝合带西段普兰蛇绿岩中地幔橄榄岩的岩石学研究. 岩石学报, 27(11): 3179-3196

    [85]

    杨经绥, 白文吉, 方青松, 颜秉刚, 戎合, 陈松永. 2004. 西藏罗布莎豆荚状铬铁矿中发现超高压矿物柯石英. 地球科学, 29(6): 651-660

    [86]

    杨经绥, 徐向珍, 李源, 李金阳, 戎合, 巴登珠, 张仲明. 2011. 西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石: 蛇绿岩型金刚石分类的提出. 岩石学报, 27(11): 3171-3178

  • 加载中
计量
  • 文章访问数:  7523
  • PDF下载数:  9509
  • 施引文献:  0
出版历程
收稿日期:  2014-01-22
修回日期:  2014-05-16
刊出日期:  2014-08-31

目录