宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约

段超, 李延河, 袁顺达, 胡明月, 赵令浩, 陈小丹, 张成, 刘佳林. 2012. 宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约. 岩石学报, 28(1): 243-257.
引用本文: 段超, 李延河, 袁顺达, 胡明月, 赵令浩, 陈小丹, 张成, 刘佳林. 2012. 宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约. 岩石学报, 28(1): 243-257.
DUAN Chao, LI YanHe, YUAN ShunDa, HU MingYue, ZHAO LingHao, CHEN XiaoDan, ZHANG Cheng, LIU JiaLin. 2012. Geochemical characteristics of magnetite from Washan iron deposit in Ningwu ore district and its constraints on ore-forming. Acta Petrologica Sinica, 28(1): 243-257.
Citation: DUAN Chao, LI YanHe, YUAN ShunDa, HU MingYue, ZHAO LingHao, CHEN XiaoDan, ZHANG Cheng, LIU JiaLin. 2012. Geochemical characteristics of magnetite from Washan iron deposit in Ningwu ore district and its constraints on ore-forming. Acta Petrologica Sinica, 28(1): 243-257.

宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约

  • 基金项目:

    本文受公益性行业科研专项项目(200911007、200811114)、国家自然科学重点基金项目(40930419)、国家重点基础研究发展计划项目(2007CB411405)和地质过程与矿产资源国家重点实验室开放基金项目(GPMR201029)联合资助.

详细信息
    作者简介:

    段超,男,1983年生,博士生,矿物学、岩石学、矿床学专业,E-mail:duanchao626@yahoo.cn

  • 中图分类号: P575; P618.31

Geochemical characteristics of magnetite from Washan iron deposit in Ningwu ore district and its constraints on ore-forming

  • 凹山铁矿床是一个典型的玢岩型铁矿床,成矿过程具有多阶段的特征,是宁芜矿集区凹山矿田成矿作用演化的典型代表。本次研究工作,在详细的野外地质调查研究和室内研究的基础上,将主要矿石矿物磁铁矿的形成划分为4个世代,分别为浸染状磁铁矿、角砾状磁铁矿、粗粒脉状磁铁矿和伟晶状磁铁矿,它们是四个成矿阶段的产物。电子探针和LA-ICP-MS原位分析表明,随着成矿作用的演化,磁铁矿主量元素中Ti、Mn、V含量变化微弱,Al、Mg含量增高;微量元素中Ga、Sn及高场强元素Zr、Hf、Nd、Ta含量变化较小;从角砾状矿石到伟晶状矿石Co含量逐渐增高、Sc含量逐渐降低。根据以上成矿各阶段中磁铁矿成分的变化,并结合前人研究成果得出,凹山铁矿床作为一个高温气液充填矿床,其成矿物质主要来自于岩浆演化晚期形成的高温富铁流体。在成矿过程中磁铁矿具有同源连续演化的特征,其中隐爆作用诱发了大规模铁沉淀,并为成矿提供了空间,形成了早期的浸染状和角砾状矿石;成矿过程中流体成分不断变化,后期大量挥发份的累积和外源流体的逐渐加入,形成了伟晶状矿石并使得磁铁矿具有了热液成因的特征。

  • 加载中
  • 图 1 

    宁芜矿集区矿产地质图(据宁芜研究项目编写小组,1978)

    Figure 1. 

    Geological map with the distribution of deposits of Ningwu ore district(after Ningwu Research Group, 1978)

    图 2 

    凹山铁矿床剖面图(据宁芜研究项目编写小组,1978)

    Figure 2. 

    Section of the Washan iron deposit with mineralization in Ningwu basin (after Ningwu Research Group, 1978)

    图 3 

    凹山铁矿床矿石类型照片

    Figure 3. 

    Photos of ores from Washan iron deposit

    图 4 

    磁铁矿样品显微镜下照片

    Figure 4. 

    Photomicrograph of magnetite from different stages

    图 5 

    凹山铁矿床各阶段磁铁矿主量元素成分特征

    Figure 5. 

    Compositions of major elements from various stages of magnetite in Washan iron deposit

    图 6 

    凹山铁矿床磁铁矿LA-ICP-MS微量元素测试值及仪器检测限对照蛛网图

    Figure 6. 

    LA-ICP-MS analytical results from magnetite of Washan iron deposit, which are compared to the instrument limits of detection

    图 7 

    磁铁矿LA-ICP-MS测试过程中典型电感耦合等离子质谱输出信号图谱

    Figure 7. 

    Typical ICP-MS counts output for magnetite analysis by laser ablation

    图 8 

    凹山铁矿床磁铁矿微量元素特征

    Figure 8. 

    Compositions of trace elements from various stages of magnetite in Washan iron deposit

    图 9 

    磁铁矿TiO2-Al2O3-(MgO+MnO)成因分类图解(据林师整,1982)

    Figure 9. 

    TiO2-Al2O3-(MgO+MnO)magnetite genetic classification diagram (after Lin et al., 1982)

    图 10 

    磁铁矿(Ca+Al+Mn)-(Ti+V)成因分类图解(底图据Dupuis and Beaudoin, 2011)

    Figure 10. 

    (Ca+Al+Mn)-(Ti+V)magnetite genetic classification diagram (after Dupuis and Beaudoin, 2011)

    表 1 

    凹山铁矿床磁铁矿电子探针测试成分特征表(wt%)

    Table 1. 

    Major element analysis (EMPA) for magnetite from Washan iron deposit (wt%)

    样品号SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 V2O3 Total
    WS-2-3.2 0.22 0.03 0.00 93.17 0.00 0.00 0.00 0.00 0.00 0.01 0.00 93.18
    WS-2-6 0.06 6.92 1.09 85.55 0.01 0.23 0.00 0.00 0.00 0.00 0.48 86.27
    WS-2-7 0.06 2.21 1.23 89.21 0.17 1.28 0.00 0.00 0.00 0.00 0.42 91.08
    WS-2-8 0.01 3.72 1.14 87.68 0.13 1.55 0.00 0.13 0.00 0.00 0.57 90.06
    WS-45-4.1 0.05 2.13 1.03 89.72 0.18 0.96 0.00 0.00 0.00 0.00 0.30 91.16
    WS-45-4.2 0.06 1.18 1.07 90.48 0.06 0.82 0.00 0.05 0.00 0.00 0.53 91.93
    WS-45-4.3 0.07 2.09 1.22 88.79 0.00 1.29 0.00 0.02 0.00 0.03 0.47 90.60
    WS-46-1.3 0.00 2.38 0.84 88.83 0.21 0.45 0.00 0.00 0.00 0.00 0.41 89.90
    WS-46-2 0.03 2.00 0.89 90.09 0.07 1.07 0.00 0.00 0.02 0.00 0.63 91.87
    WS-46-3 0.03 3.60 1.35 87.19 0.20 1.83 0.00 0.02 0.00 0.01 0.44 89.69
    WS-46-4 0.00 2.10 1.12 89.74 0.12 0.89 0.00 0.00 0.00 0.00 0.51 91.26
    WS-7-1-3.2 0.06 2.41 0.27 89.80 0.02 0.01 0.00 0.06 0.00 0.00 0.55 90.44
    WS-7-1-4 0.00 1.02 0.39 92.01 0.07 0.07 0.00 0.03 0.00 0.00 0.44 92.62
    WS-7-1-5.3 0.08 0.06 0.04 92.75 0.10 0.01 0.16 0.00 0.01 0.01 0.18 93.21
    WS-7-2-2.2 0.03 2.42 1.15 90.05 0.40 0.03 0.01 0.00 0.00 0.00 0.35 90.83
    WS-7-2-3 0.03 1.62 0.44 92.17 0.09 0.03 0.00 0.01 0.00 0.00 0.76 93.07
    WS-7-2-4.2 0.03 3.13 0.35 86.61 0.33 0.00 0.00 0.57 0.09 0.00 0.54 88.13
    WS-7-2-5.2 0.03 3.78 0.31 87.75 0.21 0.02 0.00 0.06 0.01 0.00 0.62 88.67
    WS-7-2-6 0.00 2.33 0.36 89.94 0.10 0.00 0.00 0.33 0.02 0.00 0.32 90.71
    WS-9-1-1.1 0.04 4.28 1.69 87.14 0.51 0.16 0.00 0.00 0.00 0.00 0.37 88.18
    WS-9-1.2 0.05 3.64 0.29 89.51 0.44 0.06 0.00 0.00 0.00 0.01 0.67 90.69
    WS-9-1-3.3 0.04 2.52 0.33 91.37 0.02 0.02 0.00 0.00 0.00 0.00 0.67 92.08
    WS-44-1.1 0.12 1.68 0.63 89.34 0.06 0.36 0.11 0.07 0.00 0.01 0.59 90.52
    WS-44-2.1 0.07 0.69 0.39 91.82 0.14 0.07 0.01 0.04 0.01 0.00 0.42 92.50
    WS-44-4.1 0.04 3.16 0.28 89.87 0.37 0.09 0.00 0.00 0.00 0.00 0.69 91.02
    WS-44-5.1 0.02 0.61 0.18 92.49 0.06 0.00 0.00 0.03 0.01 0.03 0.73 93.35
    WS-44-6.2 0.78 0.62 0.32 89.79 0.00 0.25 0.16 0.15 0.00 0.00 0.67 91.02
    WS-44-7.2 0.05 3.66 0.27 88.64 0.34 0.07 0.00 0.00 0.01 0.00 0.48 89.55
    WS-23-1.1 0.07 4.77 0.53 89.22 0.15 0.23 0.00 0.00 0.00 0.01 0.68 90.30
    WS-23-2.1 0.08 0.87 0.41 92.67 0.06 0.00 0.00 0.00 0.00 0.00 0.66 93.38
    WS-23-3.2 1.58 1.69 0.23 88.51 0.03 0.00 1.32 0.21 0.00 0.00 0.52 90.58
    WS-23-4.2 0.01 5.27 0.57 87.50 0.20 0.08 0.00 0.10 0.00 0.00 0.39 88.27
    WS-23-8.1 0.05 3.10 1.12 88.09 0.18 0.23 0.00 0.11 0.03 0.00 0.60 89.23
    WS-18-1 0.22 4.21 0.59 88.31 0.28 0.12 0.00 0.15 0.00 0.00 0.66 89.53
    WS-18-2 0.10 3.50 0.83 90.07 0.00 0.12 0.00 0.01 0.00 0.00 0.58 90.78
    WS-18-3 0.02 4.61 0.87 87.91 0.29 0.14 0.00 0.00 0.00 0.01 0.74 89.10
    WS-8-1.1 0.04 0.81 0.23 93.09 0.12 0.02 0.00 0.02 0.00 0.00 0.45 93.70
    WS-8-3 0.02 0.48 0.09 92.25 0.00 0.00 0.00 0.00 0.01 0.01 0.57 92.84
    WS-8-4 0.03 3.93 0.10 89.33 0.37 0.05 0.00 0.01 0.00 0.00 0.58 90.33
    WS-8-5.2 0.67 2.37 0.52 88.92 0.10 0.27 0.06 0.01 0.04 0.00 0.43 89.83
    WS-16-1.3 1.27 2.48 0.44 87.08 0.06 0.11 0.69 0.69 0.03 0.00 0.31 88.97
    WS-16-2.2 0.04 1.72 0.08 91.58 0.05 0.01 0.03 0.00 0.02 0.01 0.50 92.19
    WS-16-3.1 0.13 0.18 0.03 93.31 0.00 0.00 0.00 0.00 0.00 0.00 0.10 93.41
    WS-61-1.2 0.03 3.09 0.01 89.37 0.15 0.09 0.01 1.18 0.09 0.00 0.32 91.21
    WS-61-3.2 0.21 1.05 0.00 92.88 0.12 0.07 0.09 0.01 0.00 0.00 0.09 93.25
    WS-61-4.2 0.05 1.70 0.03 92.71 0.00 0.00 0.00 0.01 0.00 0.00 0.19 92.90
    WS-61-5.2 0.30 0.39 0.06 91.18 0.00 0.14 0.22 0.00 0.00 0.00 0.21 91.76
    WS-61-6.2 0.31 0.55 0.39 91.69 0.00 0.25 0.10 0.07 0.00 0.00 0.06 92.17
    下载: 导出CSV

    表 2 

    凹山铁矿床磁铁矿LA-ICP-MS微量元素测试成分特征表(×10-6)

    Table 2. 

    Trace element analysis (LA-ICP-MS) for magnetite from Washan iron deposit (×10-6)

    样品号ScCoZnGaZrNbSnHfTa
    WS-2.12.44177.33146.834.388.0244.8358.6790.29180.4266
    WS-2-3.11.9576.47183.835.268.0533.68211.060.29280.3338
    WS-2-4.12.390.2314640.538.1274.69411.60.23710.3627
    WS-45-4.12.84183.96105.946.415.2863.5812.110.22940.4439
    WS-45-4.22.64284.33126.747.614.8133.26710.280.30070.4093
    WS-45-4.32.47187.39126.745.333.7473.35710.070.29280.3899
    WS-46-32.73588.85153.541.15.6974.279.8450.21620.3651
    WS-46-42.40580.65141.844.977.4275.53110.520.25350.3856
    WS-46-82.45976.59169.645.076.673.6510.450.29850.359
    WS-18-18.80534.04462.255.548.1595.61816.410.3430.4133
    WS-18-28.59819.84444.161.588.6534.99114.20.5830.29
    WS-18-38.60638.14479.971.247.6734.46215.20.34940.3994
    WS-23-13.94635.08170438.1711.26.2919.580.31420.478
    WS-23-24.05519.94307632.58.1075.5118.1770.39590.4554
    WS-23-35.23219.58129736.256.6195.4389.9970.31680.3407
    WS-44-11.43162.74620.344.842.0112.63610.530.0770.2147
    WS-44-21.7157.04765.841.861.3072.3128.8810.07870.1676
    WS-44-31.25248.84945.740.830.70221.9258.8940.0480.12
    WS-7-1-16.0115.21209.640.972.6612.79811.260.20660.2296
    WS-7-1-25.26512.1198.535.463.0592.2278.4760.23450.2501
    WS-7-1-34.76811.73395.738.82.8222.5598.1250.27630.2647
    WS-7-2-14.65314.38224.939.733.3342.7189.8640.30910.2362
    WS-7-2-25.30413.17257.934.031.7771.8958.4380.15230.1659
    WS-7-2-35.43518.1301.339.844.9163.4449.3510.34480.2486
    WS-9-1-13.99848.6930.9418.732.4052.7759.2830.28990.2748
    WS-9-1-24.09926.59103.127.11.9681.8229.5770.13890.2715
    WS-9-1-3.13.40923.28346.928.723.1762.6918.5890.2970.2877
    WS-8-22.63319.27101.721.054.3233.6549.7240.20290.2831
    WS-8-2.20.694719.5940.8712.482.0292.6586.4170.20720.2304
    WS-8-40.682923.1737.7711.660.32790.42351.6970.11710.0331
    WS-8-8.15.98121.9590.2713.083.8610.42147.0030.25640.0252
    WS-16-1.19.43439.85142.926.7932.5617.69.3361.8670.5757
    WS-16-1.30.901229.7964.2512.321.2780.85796.4720.11170.0967
    WS-16-3.15.29736.1168.311.0423641.39810.9753.930.1694
    WS-16-43.72527.0754.1310.3913.5114.598.721.0440.7895
    WS-61-22.6668.4849.712.0875.990.2211.724.0960.037
    WS-61-42.2873.4493.114.263.6793.33715.070.28730.4215
    WS-61-77.79371.0451.2111.7111.4210.069.6920.50850.7796
    下载: 导出CSV
  •  

    Bogaerts M and Schmidt MW. 2006. Experiments on silicate melt immiscibility in the system Fe2SiO4-KAlSi3O8-SiO2-CaO-MgO-TiO2-P2O5 and implications for natural magmas. Contributions to Mineralogy and Petrology, 152: 257-274 doi: 10.1007/s00410-006-0111-6

     

    Carrew MJ. 2004. Controls on Cu-Au mineralisation and Fe oxide metasomatism in the Eastern Fold Belt, N.W. Queensland, Australia. Ph. D. Dissertation. James Cook University: 1-308

     

    Chang YF, Liu XP and Wu CY. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological Publishing House, 1-379 (in Chinese with English abstract)

     

    Chen GY, Sun DS and Yin HA. 1987. Genesis Mineralogy and Prospecting Mineralogy. Chongqing: Chongqing Press, 1-874 (in Chinese with English abstract)

     

    Chen YC, Sheng JF and Ai YD. 1981. Meishan iron deposit: An ore magma-hydrothermal deposit. Bulletin of Institute of Mineral Resources, Chinese Academy of Geological Sciences, 2(1): 25-48 (in Chinese with English abstract)

     

    Chen YC, Zhang RH, Sheng JF and Ai YD. 1982. The mineralization and alteration of the porphyry iron deposits and their mechanism. Bulletin of Institute of Mineral Resources, Chinese Academy of Geological Sciences, (1): 1-29 (in Chinese with English abstract)

     

    Cook NJ, Ciobanu CL and Mao JW. 2009. Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China). Chemical Geology, 264(1-4): 101-121 doi: 10.1016/j.chemgeo.2009.02.020

     

    Deer WA, Howie RA and Zussman J. 1992. An Introduction to Rock-forming Minerals. 2nd Edition. New York: Longman, Harlow, Wiley, 1-696

     

    Duan C, Mao JW, Li YH, Hou KJ, Yuan SD, Zhang C and Liu JL. 2011. Zircon U-Pb geochronology of the gabbro-diorite porphyry and granodiorite porphyry from Washan iron deposit in Ningwu basin, and its geological significance. Acta Geologica Sinica, 85(7): 1159-1171(in Chinese with English abstract)

     

    Dupuis C and Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, Doi: 10.1007/s00126-011-0334-y

     

    Einaudi MT, Meinert LD and Newberry RJ. 1981. Skarn deposits. Economic Geology 75th Anniversary Volume: 317-391

     

    Fan Y, Zhou TF, Yuan F, Zhang LJ, Qian B, Ma L and Cooke DR. 2010. Geochronology of the diorite porphyrites in Ning-Wu basin and their metallogenic significances. Acta Petrologica Sinica, 26(9): 2715-2728 (in Chinese with English abstract) http://www.oalib.com/paper/1473900

     

    Gao DM and Zhao YJ. 2008. Recognition of porphyrite iron ore deposit. Geology of Anhui, 18(3): 164-168(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHDZ200803005.htm

     

    Gray AL. 1985. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry. Analyst, 110: 551-556 doi: 10.1039/an9851000551

     

    Hou KJ and Yuan SD. 2010. Zircon U-Pb age and Hf isotopic composition of the volcanic and sub-volcanic rocks in the Ningwu basin and their geological implications. Acta Petrologica Sinica, 26(3): 888-902 (in Chinese with English abstract)

     

    Hou T, Zhang ZC, Encarnacion J, Du YS, Zhao ZD and Liu JL. 2010. Geochemistry of Late Mesozoic dioritic porphyries associated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores, Middle-Lower Yangtze Valley, Eastern China: Constraints on petrogenesis and iron sources. Lithos, 119: 330-334 doi: 10.1016/j.lithos.2010.07.009

     

    Hou T, Zhang ZC and Kusky T. 2011. Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type? Ore Geology Reviews, Doi: 10.1016/j.oregeorev. 2011.09.014

     

    Hu MY, He HL, Zhan XC, Fan XT, Wang G and Jia ZR. 2008. Matrix normalization for in-situ multi-element quantitative analysis of zircon in Laser Ablation-Inductively Coupled Plasma Mass Spectrometry. Chinese Journal of Analytical Chemistry, 36(7): 947-983 (in Chinese with English abstract)

     

    Institute of Geochemistry, China Academy of Sciences. 1987. Ore-forming Mechanism of Ningwu Type Iron Deposits. Beijing: Science Press, 1-152 (in Chinese)

     

    Jia ZR, Zhan XC, He HL, Hu MY, Fan XT and Wang G. 2009. Application of normalization for in situ multielement raster analysis in Laser Ablation Inductively Coupled Plasma Mass Spectrometry Illustrated with Garnets. Chinese Journal of Analytical Chemistry, 37(5): 653-658 (in Chinese with English abstract)

     

    Koglin N, Frimmel HE, Minter WEL and Bratz H. 2010. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Mineralium Deposita, 45(3): 259-280 doi: 10.1007/s00126-009-0272-0

     

    Li BL and Xie YH. 1984. Origin, classification, and ore-forming model of Ningwu type iron deposits in Ningwu area. Science in China (Series B), 1(1): 80-86 (in Chinese)

     

    Li JL, Zhang GL and Su LH. 1986. An experimental study on the iron ore deposits formed by “ore magma” related to FeO-Ca5(PO4)3F-NaAlSiO4-CaMgSi2O6 system. Bulletin of Institute of Mineral Deposits, Chinese Academy of Geological Sciences, (2): 198-204 (in Chinese with English abstract)

     

    Lin SZ. 1982. A contribution to the chemistry, origin and evolution of magnetite. Acta Mineralogica Sinica, (3): 166-174 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB198203001.htm

     

    Lindsley DH. 1976. The crystal chemistry and structure of oxide minerals as exemplified by the Fe-Ti oxides. In: Rumble IIID (ed.). Oxide Minerals 3. Reviews in Mineralogy, Mineralogical Society of America, L1-L60

     

    Lu B, Hu SX, Lin YS and Ye SQ. 1990. A discussion on genesis and metallogenic model of Ningwu-type iron deposits. Mineral Deposits, 9(1): 13-25(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ199001001.htm

     

    Ma F, Jiang SY, Jiang YH, Wang RC, Ling HF and Ni P. 2006a. Pb isotope research of porphyrite Fe deposits in the Ning-Wu area. Acta Geologica Sinica, 80(2): 279-286 (in Chinese with English abstract) http://en.cnki.com.cn/article_en/cjfdtotal-dzxe200602021.htm

     

    Ma F, Jiang SY, Jiang YH, Ni P and Ling HF. 2006b. Fluid inclusions and H-O isotopic compositions in the Washan and Dongshan iron deposits, Ningwu basin, China. Acta Petrologica Sinica, 22(10): 2581-2589 (in Chinese with English abstract)

     

    Mao JW, Wang YT, Lehmann B, Yu JJ, Du AD, Mei YX, Li YF, Zang WS, Stein HJ and Zhou TF. 2006. Molybdenite Re-Os and albite 40Ar/39Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River Valley and metallogenic implications. Ore Geology Reviews, 29(3-4): 307-324 doi: 10.1016/j.oregeorev.2005.11.001

     

    Mao JW, Chen YC and Yu JJ. 2008. The iron oxide-apatite deposits in the Ningwu Cretaceous basin in the Lower Reach of the Yangtze River Valley, China. Oslo: Abstract of the 33th IGC International Geological Congress

     

    Mao JW, Xie GQ, Duan C, Pirajno F, Ishiyama D and Chen YC. 2011. A tectono-genetic model for porphyry-skarn-stratabound Cu-Au-Mo-Fe and magnetite-apatite deposits along the Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294-314 doi: 10.1016/j.oregeorev.2011.07.010

     

    Mao JW, Duan C, Liu JL and Zhang C. 2012. Metallogeny and corresponding mineral deposit model of the Cretaceous terrestrial volcanic-intrusive rocks-related polymetallic iron deposits in Middle-Lower Yangtze River Valley. Acta Petrologica Sinica, 28(1): 1-14(in Chinese with English abstract) http://www.oalib.com/paper/1474798

     

    Meinert LD. 1987. Skarn zonation and fluid evolution in the Groundhog Mine, Central mining district, New Mexico. Economic Geology, 82: 523-545 doi: 10.2113/gsecongeo.82.3.523

     

    Nadoll P. 2009. Geochemistry of magnetite from hydrothermal ore deposits and host rocks: Case studies from the Proterozoic belt supergroup, Cu-Mo-porphyry + skarn and climax-Mo deposits in the western United States. Ph. D. Dissertation. University of Auckland, 1-238

     

    Nadoll P and Koenig AE. 2011. LA-ICP-MS of magnetite: Methods and reference materials. Journal of Analytical Atomic Spectrometry, 26(9): 1872-1877 doi: 10.1039/c1ja10105f

     

    Nielsen RL, Forsythe LM, Gallahan WE and Fisk MR. 1994. Major- and trace-element magnetite-melt equilibria. Chemical Geology, 117: 167-191 doi: 10.1016/0009-2541(94)90127-9

     

    Nielsen RL and Beard JS. 2000. Magnetite-melt HFSE partitioning. Chemical Geology, 164: 21-34 doi: 10.1016/S0009-2541(99)00139-4

     

    Ningwu Research Group. 1978. Magnetite Porphyry Deposits in Ningwu Area. Beijing: Geological Publishing House, 1-196 (in Chinese)

     

    Pan YM and Dong P. 1999. The Lower Changjiang (Yangzi/Yangtze River) metallogenic belt, East China: Intrusion- and wall rock-hosted Cu-Fe-Au, Mo, Zn, Pb, Ag deposits. Ore Geology Reviews, 15(4): 177-242 doi: 10.1016/S0169-1368(99)00022-0

     

    Pan ZL. 1984. Crystallography and Mineralogy (Volumes 2). Beijing: Geological Publishing House, 1-274 (in Chinese)

     

    Phipotts AR. 1967. Origin of certain iron-titanium oxide and apatite rocks. Economic Geology, 62(3): 303-315 doi: 10.2113/gsecongeo.62.3.303

     

    Qiu JS, Zhang XL, Hu J and Li Z. 2009. In situ LA-ICP-MS analyses of apatites from carbonatites in western Shandong Province: Implications for petrogenesis. Acta Petrologica Sinica, 25(11): 2855-2865 (in Chinese with English abstract)

     

    Rusk B, Oliver N, Brown A, Lilly R and Jungmann D. 2009. Barren magnetite breccias in the Cloncurry region, Australia; comparisons to IOCG deposits. In: Williams et al. (eds.). Smart Science for Exploration and Mining. Townsville: Proc. 10th Biennial Meeting, 656-658

     

    Sillitoe RH and Burrows DR. 2002. New field evidence bearing on the origin of the El Laco magnetite deposit, Northern Chile. Economic Geology, 97: 1101-1109 https://www.researchgate.net/publication/247864250_New_field_evidence_bearing_on_the_origin_of_the_El_Laco_magnetite_deposit_Northern_Chile

     

    Singoyi B, Danyushevsky L, Davidson GJ, Large R and Zaw K. 2006. Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique. Denver, USA: SEG Keystone Conference, CD-ROM

     

    Song XX, Chen YC, Sheng JF and Ai YD. 1981. On iron deposits formed from volcanogenic-hypabyssal ore magma. Acta Geologica Sinica, (1): 41-55(in Chinese with English abstract)

     

    Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House, 1-351 (in Chinese with English abstract)

     

    Wang KR. 1989. Earth and Universe Genetic Mineralogy. Hefei: Anhui Educational Publishing House, 1-544 (in Chinese)

     

    Wang YL, Zhang Q and Wang Y. 2001. Geochemical characteristics of volcanic rocks from Ningwu area, and its significance, 17(4): 565-575 (in Chinese with English abstract) https://www.researchgate.net/publication/279707639_Geochemical_characteristics_of_volcanic_rocks_from_Ningwu_area_and_its_significance

     

    Wu LR. 1978. Basic formation principles of Ningwu type iron deposit related to Mesozoic continental volcanic rocks in Eastern China. Geology and Prospecting, (6): 1-8(in Chinese)

     

    Wu MA, Wang QS, Zheng GW, Cai XB, Yang SX and Di QS. 2011. Discovery of the Nihe iron deposit in Lujiang, Anhui, and its exploration significance. Acta Geologica Sinica, 85(5): 802-809 (in Chinese with English abstract)

     

    Xiang JX. 1959. Geological features of Washan and Dadongshan iron deposits. Geological Review, 19(5): 195-200 (in Chinese)

     

    Xu GF and Shao JL. 1979. The typomorphic characteristics of magnetite and its significance. Geology and Prospecting, (3): 30-37 (in Chinese with English abstract)

     

    Yu JJ and Mao JW. 2002. Rare earth elements in apatite from porphyrite iron deposits of Ningwu area. Mineral Deposits, 21(1): 65-73(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-KCDZ200201011.htm

     

    Yu JJ, Mao JW and Zhang CQ. 2008. The possible contribution of a mantle-derived fluid to the Ningwu porphyry iron deposits: Evidence from carbon and strontium isotopes of apatites. Progress in Natural Science, 18(2): 167-172 doi: 10.1016/j.pnsc.2007.07.010

     

    Yuan JZ. 1990. Iron ore type and genesis of Meishan iron ore deposit: The study of high temperature experiments. Geoscience, 4(4): 77-84 (in Chinese with English abstract)

     

    Yuan JZ, Zhang F, Yin CG and Shao HX. 1997. Systematical study on ore-magma genesis of Meishan iron ore deposits. Geoscience, 11(2): 170-175 (in Chinese with English abstract) https://www.researchgate.net/publication/285499597_Systematical_study_on_ore-magma_genesis_of_Meishan_iron_ore_deposits

     

    Yuan JH, Zhan XC, Fan XT and Hu MY. 2011. Development of microanalysis of trace elements in sulfide minerals by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Rock and Mineral Analysis, 30(2): 121-130 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YKCS201102003.htm

     

    Yuan SD, Hou KJ and Liu M. 2010. Timing of mineralization and geodynamic framework of iron-oxide-apatite deposits in Ningwu Cretaceous basin in the Middle-Lower Reaches of the Yangtze River, China: Constraints from Ar-Ar dating on phlogopites. Acta Petrologica Sinica, 26(3): 797-808 (in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201003013.htm

     

    Zhai YS, Yao SZ, Lin XD, Zhou XR, Wan TF, Jin FQ and Zhou ZG. 1992. Fe-Cu-Au Metallogeny of the Middle-Lower Changjiang Region. Beijing: Geological Publishing House, 1-235 (in Chinese)

     

    Zhang LJ, Zhou TF, Fan Y, Yuan F, Qian B and Ma L. 2011. A LA-ICP-MS study of apatite from the Taocun magnetite-apatite deposit, Ningwu basin. Acta Geologica Sinica, 85(5): 834-848 (in Chinese with English abstract)

     

    Zhang RH. 1980. On the mechanism of geochemical zoning of the altered country rock of the porphyrite iron ore in the Middle-Lower Changjiang Valley. Acta Geologica Sinica, (1): 70-85 (in Chinese with English abstract)

     

    Zhou TF, Fan Y, Yuan F, Zhang LJ, Qian B, Ma L, Yang XF and Cooke DR. 2011. Geochronology and significance of volcanic rocks in the Ning-Wu basin of China. Science China (Earth Sciences), 54(2):185-196 doi: 10.1007/s11430-010-4150-5

     

    常印佛, 刘湘培, 吴昌言. 1991.长江中下游地区铜铁成矿带. 北京: 地质出版社,1-379

     

    陈光远, 孙岱生, 殷辉安. 1987. 成因矿物学与找矿矿物学.重庆:重庆出版社,1-874

     

    陈毓川, 盛继福, 艾永德. 1981. 梅山铁矿——一个矿浆热液矿床.中国地质科学院院报矿床地质研究所分刊,2(1): 25-48

     

    陈毓川, 张荣华, 盛继福, 艾永德. 1982. 玢岩铁矿矿化蚀变作用及成矿机理.中国地质科学院矿床地质研究所所刊,1: 1-29

     

    段超, 毛景文, 李延河, 侯可军, 袁顺达, 张成, 刘佳林. 2011. 宁芜盆地凹山铁矿床辉长闪长玢岩和花岗闪长斑岩的锆石U-Pb年龄及其地质意义.地质学报,85(7): 1159-1171 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201107010.htm

     

    范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良, Cooke DR. 2010. 宁芜盆地闪长玢岩的形成时代及对成矿的指示意义.岩石学报,26 (9): 2715-2728 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20100915&journal_id=ysxb

     

    高道明, 赵云佳.2008.玢岩铁矿再认识.安徽地质,18(3): 164-168 http://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ200803005.htm

     

    侯可军, 袁顺达. 2010. 宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义.岩石学报, 26(3): 888-902 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20100320&journal_id=ysxb

     

    胡明月, 何红蓼, 詹秀春, 樊兴涛, 王广, 贾泽荣. 2008. 基体归一定量技术在激光烧蚀等离子体质谱法锆石原位多元素分析中的应用.分析化学,36(7): 947-983 http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200807021.htm

     

    贾泽荣, 詹秀春, 何红蓼, 胡明月, 樊兴涛, 王广. 2009. 激光烧蚀-等离子体质谱结合归一定量方法原位线扫描检测石榴石多种元素.分析化学,37(5): 653-658 http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200905007.htm

     

    李秉伦, 谢奕汉.1984.宁芜地区宁芜型铁矿的成因、分类和成矿模式.中国科学(B辑), 1(1): 80-86 http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198401010.htm

     

    李九玲, 张桂兰, 苏良赫. 1986. 与矿浆成矿有关的FeO-Ca5(PO4)3F-NaAlSiO4-CaMgSi2O6四元体系模拟实验研究.中国地质科学院矿床地质研究所所刊, (2): 198-204

     

    林师整.1982.磁铁矿矿物化学、成因及演化的探讨. 矿物学报, (3): 166-174 http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198203001.htm

     

    卢冰, 胡受奚, 蔺雨时, 叶水泉. 1990. 宁芜型铁矿床成因和成矿模式的探讨. 矿床地质, 9(1): 13-25 http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199001001.htm

     

    马芳, 蒋少涌, 姜耀辉, 王汝成, 凌洪飞, 倪培. 2006a. 宁芜地区玢岩铁矿Pb 同位素研究. 地质学报, 80(2): 279-286 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200602021.htm

     

    马芳, 蒋少涌, 姜耀辉, 倪培, 凌洪飞. 2006b. 宁芜盆地凹山和东山铁矿床流体包裹体和氢氧同位素研究. 岩石学报, 22(10): 2581-2589 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=2006010277&journal_id=ysxb

     

    毛景文, 段超, 刘佳林, 张成. 2012. 陆相火山-侵入岩有关的铁多金属矿成矿作用及矿床模型——以长江中下游为例.岩石学报, 28(1):1-14 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20120101&journal_id=ysxb

     

    宁芜研究项目编写小组. 1978. 宁芜玢岩铁矿. 北京: 地质出版社,1-196

     

    潘兆橹. 1984. 结晶学与矿物学(下册).北京: 地质出版社,1-274

     

    邱检生, 张晓琳, 胡建, 李真. 2009. 鲁西碳酸岩中磷灰石的原位激光探针分析及其成岩意义. 岩石学报,25(11): 2855-2865 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20091115&journal_id=ysxb

     

    宋学信, 陈毓川, 盛继福, 艾永德. 1981. 论火山-浅成矿浆铁矿床. 地质学报, (1): 41-55 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198101004.htm

     

    唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质.北京:地质出版社,1-351

     

    王奎仁. 1989. 地球与宇宙成因矿物学.合肥: 安徽教育出版社,1-544

     

    王元龙, 张旗, 王焰. 2001. 宁芜火山岩的地球化学特征及其意义.岩石学报,17(4): 565-575 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20010472&journal_id=ysxb

     

    吴利仁. 1978. 我国东部中生代陆相火山岩宁芜型铁矿形成的基本原理.地质与勘探, (6): 1-8 http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT197806000.htm

     

    吴明安, 汪青松, 郑光文, 蔡晓兵, 杨世学, 狄勤松.2011. 安徽庐江泥河铁矿的发现及意义.地质学报, 85(5): 802-809 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105016.htm

     

    向缉熙. 1959. 凹山、大东山铁矿床的地质特征.地质论评, 19(5): 195-200 http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP195905000.htm

     

    徐国风, 邵洁涟. 1979. 磁铁矿的标型特征及其实际意义.地质与勘探, (3): 30-37 http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT197903005.htm

     

    余金杰, 毛景文. 2002. 宁芜玢岩铁矿磷灰石的稀土元素特征.矿床地质, 21(1): 65-73 http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200201011.htm

     

    袁继海, 詹秀春, 樊兴涛, 胡明月. 2011. 硫化物矿物中痕量元素的激光剥蚀-电感耦合等离子体质谱微区分析进展.岩矿测试, 30(2): 121-130 http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201102003.htm

     

    袁家铮. 1990. 梅山铁矿矿石类型及成因-高温实验结果探讨.现代地质, 4(4): 77-84 http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199004007.htm

     

    袁家铮, 张峰, 殷纯嘏, 邵宏翔. 1997. 梅山铁矿矿浆成因的系统探讨.现代地质, 11(2): 170-175 http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ702.006.htm

     

    袁顺达, 侯可军, 刘敏. 2010. 安徽宁芜地区铁氧化物-磷灰石矿床中金云母Ar-Ar定年及其地球动力学意义.岩石学报, 26(3): 797-808 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20100313&journal_id=ysxb

     

    翟裕生, 姚书振, 林新多, 周珣若, 万天丰, 金福全, 周宗桂.1992.长江中下游地区铁铜(金)成矿规律.北京: 地质出版社,1-235

     

    张乐骏, 周涛发, 范裕, 袁峰, 钱兵, 马良. 2011. 宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究.地质学报,85(5): 834-848 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105019.htm

     

    张荣华. 1980. 长江中下游玢岩铁矿围岩蚀变的地球化学分带形成机理.地质学报, (1): 70-85 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198001006.htm

     

    中国科学院地球化学研究所. 1987. 宁芜型铁矿床形成机理.北京: 科学出版社, 1-152

     

    周涛发, 张乐骏, 袁峰, 范裕, Cooke DR. 2010. 安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约.地学前缘, 17(2): 306-319

  • 加载中

(10)

(2)

计量
  • 文章访问数:  11570
  • PDF下载数:  10391
  • 施引文献:  0
出版历程
收稿日期:  2011-09-04
修回日期:  2011-11-25
刊出日期:  2012-01-01

目录