湘南王仙岭花岗岩体的锆石U-Pb年代学、地球化学、锆石Hf同位素特征及其地质意义

郑佳浩, 郭春丽. 2012. 湘南王仙岭花岗岩体的锆石U-Pb年代学、地球化学、锆石Hf同位素特征及其地质意义. 岩石学报, 28(1): 75-90.
引用本文: 郑佳浩, 郭春丽. 2012. 湘南王仙岭花岗岩体的锆石U-Pb年代学、地球化学、锆石Hf同位素特征及其地质意义. 岩石学报, 28(1): 75-90.
ZHENG JiaHao, GUO ChunLi. 2012. Geochronology, geochemistry and zircon Hf isotopes of the Wangxianling granitic intrusion in South Hunan Province and its geological significance. Acta Petrologica Sinica, 28(1): 75-90.
Citation: ZHENG JiaHao, GUO ChunLi. 2012. Geochronology, geochemistry and zircon Hf isotopes of the Wangxianling granitic intrusion in South Hunan Province and its geological significance. Acta Petrologica Sinica, 28(1): 75-90.

湘南王仙岭花岗岩体的锆石U-Pb年代学、地球化学、锆石Hf同位素特征及其地质意义

  • 基金项目:

    本文受国土资源部公益性行业科研专项(200911007-11)和国家自然科学重点基金项目(40930419)联合资助.

详细信息
    作者简介:

    郑佳浩,男,1987年生,硕士生,矿床学与矿床地球化学专业,E-mail:joey-zen@163.com

  • 中图分类号: P588.121; P597.3

Geochronology, geochemistry and zircon Hf isotopes of the Wangxianling granitic intrusion in South Hunan Province and its geological significance

  • 湘南王仙岭岩体由主体电气石黑云母花岗岩和侵入其内部的黑云母二长花岗岩组成,LA-MC-ICP MS锆石U-Pb定年显示电气石黑云母花岗岩形成于印支期(235.0±1.3Ma),黑云母二长花岗岩形成于燕山期(155.9±1.0Ma),表明该岩体是两期岩浆活动的产物。这两期岩石均为高钾钙碱性系列,A/CNK值为1.07~1.66,属过铝-强过铝质花岗岩类。稀土元素显示LREE富集,HREE亏损,Eu负异常明显(0.01~0.38)的特征。早期电气石黑云母花岗岩和晚期黑云母二长花岗岩的εHf(t)值分别为-7.92~+4.61和-10.66~-5.35;两阶段Hf模式年龄(tDM2)分别为1758~967Ma和1875~1538Ma。两期花岗岩均来自于古中元古代地壳物质重熔,其中早期电气石黑云母花岗岩在侵位上升过程中捕获了部分幔源老锆石,成岩过程中有少量地幔物质参与,且其源区具有高εHf(t)值的特点。综合前人研究成果,本文认为华南中生代印支期和燕山期均有钨锡矿化作用,印支期花岗质岩浆形成于碰撞挤压作用间隙伸展环境,而燕山期花岗质岩浆可能形成于大陆边缘弧后伸展环境。

  • 加载中
  • 图 1 

    王仙岭岩体地质图(据湘南地质队,1983改编)

    Figure 1. 

    Geological map of the Wangxianling intrusion

    图 2 

    王仙岭岩体主要岩相类型手标本照片

    Figure 2. 

    Main lithofacies of the Wangxianling intrusion

    图 3 

    王仙岭岩体早期电气石黑云母花岗岩、云英岩化电气石花岗岩和晚期黑云母二长花岗岩的显微镜下照片

    Figure 3. 

    Microphotographs of tourmaline biotite granites,greisenization tourmaline granites and the late period of biotite monzonitic granites of the Wangxianling intrusion

    图 4 

    王仙岭岩体早期电气石黑云母花岗岩和晚期黑云母二长花岗岩的代表性锆石CL图像及测年位置点

    Figure 4. 

    Cathodoluminescence images of zircon and site of analyzed points from the tourmaline biotite granites and the biotite monzonitic granites of the Wangxianling intrusion

    图 5 

    王仙岭电气石黑云母花岗岩和黑云母二长花岗岩锆石207Pb/235U-206Pb/238U谐和图

    Figure 5. 

    Zircon 207Pb/235U-206Pb/238U concordia diagram of the Wangxianling tourmaline biotite granite and biotite monzonitic granite

    图 6 

    王仙岭电气石黑云母花岗岩和黑云母二长花岗岩的SiO2-Alk分类命名图解(据Cox,1979)

    Figure 6. 

    SiO2 vs. Alk diagram of Wangxianling tourmaline biotite granite and biotite monzonitic granite(after Cox,1979)

    图 7 

    王仙岭电气石黑云母花岗岩和黑云母二长花岗岩的SiO2-K2O图解(据Morrison,1980)

    Figure 7. 

    SiO2 vs. K2O diagram of the Wangxianling tourmaline biotite granite and biotite monzonitic granite(after Morrison,1980)

    图 8 

    王仙岭电气石黑云母花岗岩和黑云母二长花岗岩的A/CNK-A/NK图解

    Figure 8. 

    A/CNK vs. A/NK diagram of the Wangxianling tourmaline biotite granite and biotite monzonitic granite

    图 9 

    王仙岭电气石黑云母花岗岩、云英岩化电气石花岗岩和黑云母二长花岗岩的球粒陨石标准化稀土元素配分曲线(标准化值据Sun and McDonough,1989)

    Figure 9. 

    Chondrite-normalized REE patterns of the Wangxianling tourmaline biotite granites,greisenization tourmaline granites and the biotite monzonitic granites(normalization values after Sun and McDonough,1989)

    图 10 

    王仙岭电石气黑云母花岗岩、云英岩化电气石花岗岩和黑云母二长花岗岩的原始地幔标准化微量元素蛛网图(标准化值据Sun and McDonough,1989)

    Figure 10. 

    Primitive mantle-normalized trace element spidergrams of the Wangxianling tourmaline biotite granites,greisenization tourmaline granites and the biotite monzonitic granites(normalization values after Sun and McDonough,1989)

    图 11 

    王仙岭电气石黑云母花岗岩和黑云母二长花岗岩的Hf同位素演化图解

    Figure 11. 

    Hf isotopic diagram of the Wangxianling tourmaline biotite granites and the biotite monzonitic granites

    表 1 

    王仙岭岩体的LA-MC-ICP-MS锆石U-Pb同位素定年结果

    Table 1. 

    Results of LA-MC-ICP-MS zircon U-Pb dating of the Wangxianling granites

    下载: 导出CSV

    表 2 

    王仙岭电气石黑云母花岗岩、云英岩化电气石花岗岩和黑云母二长花岗岩的主量元素分析数据(wt%)

    Table 2. 

    Major compositions of the Wangxianling tourmaline biotite granite,greisenization tourmaline granites and the biotite monzonitic granites(wt%)

    样品号SiO2TiO2Al2O3CaONa2OK2OFe2OT3FeOMgOMnOP2O5LOIK2O/Na2O Na2O+K2OA/CNK
    电气石黑云母花岗岩
    WXL-171.51 0.17 14.621.162.845.081.430.840.670.070.181.921.797.921.19
    WXL-274.200.1114.310.703.034.201.050.560.470.070.251.701.397.231.32
    WXL-373.780.1114.390.722.934.501.080.510.430.080.241.581.547.431.31
    WXL-473.800.1114.570.733.054.420.980.510.410.080.251.581.457.471.31
    WXL-571.800.1614.710.962.565.501.480.930.840.070.201.882.158.061.24
    WXL-678.140.0812.370.661.753.100.920.330.360.060.271.641.774.851.66
    WXL-872.570.1015.180.873.714.500.970.540.300.060.261.461.218.211.21
    WXL-973.370.1015.210.863.644.380.930.530.260.060.241.481.208.021.24
    WXL-1073.780.1214.770.763.444.131.140.740.380.060.181.441.207.571.28
    云英岩化电气石花岗岩
    WXL-1176.700.0914.680.690.252.710.960.230.280.040.132.6810.842.963.19
    WXL-1269.070.0719.660.940.542.781.530.370.450.050.353.305.153.323.51
    WXL-1372.470.0518.000.800.342.560.980.190.290.040.193.307.532.903.76
    WXL-1472.680.0717.091.080.372.691.260.200.360.050.412.947.273.063.12
    WXL-1976.120.1014.600.570.323.570.990.180.250.050.302.2211.163.892.69
    WXL-2074.750.1015.780.410.374.021.080.220.280.030.292.3410.864.392.77
    WXL-2176.880.0914.670.360.253.790.990.210.240.050.262.5615.164.042.84
    WXL-2275.980.1015.080.480.403.321.080.200.270.050.282.148.303.722.94
    WXL-2376.940.0814.710.400.283.750.830.190.220.030.271.2013.394.032.80
    黑云母二长花岗岩
    WXL-1575.950.0412.730.633.294.751.461.070.050.060.010.881.448.041.09
    WXL-1677.240.0412.260.723.244.501.037.180.110.020.011.001.397.741.07
    WXL-1776.090.0312.820.613.574.601.160.810.040.040.020.781.298.171.07
    WXL-1877.980.0311.760.473.074.640.970.490.080.040.010.921.517.711.08
    下载: 导出CSV

    表 3 

    王仙岭电气石黑元母花岗岩、云英岩化电气石花岗岩和黑云母二长花岗岩的稀土元素分析数据(×10-6)

    Table 3. 

    REE compositions of the Wangxianling tourmaline biotite granites, greisenizating tourmaline granites and the biotite monzonitic granites (×10-6)

    下载: 导出CSV

    表 4 

    王仙岭电气石黑元母花岗岩、云英岩化电气石花岗岩和黑云母二长花岗岩的微量元素分析数据(×10-6)

    Table 4. 

    Trace element compositions of the Wangxianling tourmaline biotite granites, greisenization tourmaline granites and the biotite monzonitic granites (×10-6)

    下载: 导出CSV

    表 5 

    王仙岭岩体早期电气石黑云母花岗岩、云英岩化电气石花岗岩和黑云母二长花岗岩的锆石Hf同位素分析结果

    Table 5. 

    Zircon Hf isotopic compositions of the Wangxianling tourmaline biotite granites,greisenization tourmaline granites and biotite monzonitic granites

    测点号t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2σm176Hf/177HfiεHf(t)tDM(Ma)tDM2(Ma)fLu/Hf
    WXL-4(电气石黑云母花岗岩)
     WXL4-1232 0.137385 0.001928 0.282619 0.000026 0.282611 -0.61 918 1298 -0.94
     WXL4-3239 0.113062 0.001581 0.282469 0.000019 0.282462 -5.73 1124 1626 -0.95
     WXL4-4237 0.187474 0.002576 0.282600 0.000027 0.282588 -1.29 963 1346 -0.92
     WXL4-8236 0.173629 0.002374 0.282574 0.000020 0.282563 -2.21 996 1403 -0.93
     WXL4-15233 0.177896 0.002256 0.282541 0.000024 0.282531 -3.40 1040 1475 -0.93
    WXL-14(云英岩化电气石花岗岩)
     WXL14-2453 0.137341 0.002004 0.282644 0.000025 0.282627 4.87 883 1122 -0.94
     WXL14-3231 0.115013 0.001621 0.282411 0.000018 0.282404 -7.92 1207 1758 -0.95
     WXL14-6231 0.165997 0.002182 0.282768 0.000026 0.282759 4.61 707 967 -0.93
     WXL14-7434 0.175181 0.002406 0.282525 0.000024 0.282505 0.13 1068 1407 -0.93
     WXL14-8231 0.158493 0.002122 0.282579 0.000020 0.282570 -2.09 981 1391 -0.94
     WXL14-9903 0.006785 0.000110 0.281954 0.000018 0.281952 -9.03 1781 2335 -1.00
     WXL14-11858 0.055406 0.000730 0.282060 0.000016 0.282048 -6.66 1665 2153 -0.98
     WXL14-14231 0.123478 0.001888 0.282563 0.000016 0.282555 -2.61 998 1424 -0.94
     WXL14-15450 0.061741 0.000935 0.282353 0.000015 0.282345 -5.19 1266 1752 -0.97
     WXL14-171011 0.120583 0.001629 0.282265 0.000016 0.282234 3.34 1415 1647 -0.95
     WXL14-182440 0.059523 0.000804 0.281016 0.000015 0.280979 -8.71 3090 3482 -0.98
     WXL14-20231 0.166607 0.002343 0.282501 0.000015 0.282491 -4.87 1101 1566 -0.93
    WXL-16(黑云母二长花岗岩)
     WXL-16-2159 0.056376 0.002033 0.282378 0.000020 0.282372 -10.66 1269 1875 -0.94
     WXL-16-4155 0.032758 0.001244 0.282439 0.000023 0.282436 -8.49 1155 1736 -0.96
     WXL-16-7155 0.140164 0.005044 0.282433 0.000028 0.282418 -9.10 1295 1774 -0.85
     WXL-16-8157 0.084101 0.002961 0.282488 0.000021 0.282479 -6.91 1139 1638 -0.91
     WXL-16-9154 0.025353 0.001013 0.282418 0.000028 0.282415 -9.24 1179 1783 -0.97
     WXL-16-10157 0.066319 0.002233 0.282480 0.000024 0.282473 -7.12 1128 1651 -0.93
     WXL-16-11157 0.038059 0.001248 0.282411 0.000030 0.282407 -9.47 1196 1799 -0.96
     WXL-16-15154 0.087039 0.002768 0.282533 0.000029 0.282525 -5.35 1066 1538 -0.92
     WXL-16-18154 0.014363 0.000591 0.282433 0.000022 0.282431 -8.68 1144 1746 -0.98
     WXL-16-19156 0.052882 0.001833 0.282458 0.000027 0.282453 -7.87 1147 1697 -0.94
    注:εHf(0) =[(176Hf/177Hf)S/(176Hf/177Hf)CHUR,0-1]×10,000;εHf(t)={[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR,0-(176Lu/177Hf)CHUR×(eλt-1)]-1}×10,000;tHf1=1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]};tHf2=tHf1-(tHf1-t)[(fCC-fS)/(fCC-fDM)](fCCfSfDM分别为大陆地壳、样品和亏损地幔的fLu/Hf);fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1;(176Hf/177Hf)i=(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1),其中:(176Lu/177Hf)S和(176Hf/177Hf)S为样品测定值,(176Hf/177Hf)CHUR,0=0.282772,(176Lu/177Hf)CHUR=0.0332;(176Hf/177Hf)DM,t=0.28325,(176Lu/177Hf)DM=0.0384;λ=1.867×10-11a-1
    下载: 导出CSV
  •  

    Bai DY, Chen JC, Ma TQ, Wang XH. 2006. Geochemical characteristics of Wangxianling granitic pluton and its constrain on Late Indosinian tectonic setting of south Hunan. Geochimica, 35(2): 113-125(in Chinese with English abstract)

     

    Cai MH, Chen KX, Qu WJ, Liu GQ, Fu JM, Yin JP. 2006. Geological characteristics and Re-Os dating of molybdenites in Hehuaping tin-polymetallic deposit, South Hunan Province. Mineral Deposits, 25(3): 263-268 (in Chinese with English abstract)

     

    Carter A, Roques D, Bristow C, Kinny P. 2001. Understanding Mesozoic accretion in Southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29: 211-214 doi: 10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2

     

    Chappell BW, White AJR. 1974. Two contrasting granite types. Pacific Geol., 8: 173-174

     

    Chen JF, Guo XS, Tang JF, Zhou TX. 1999. Nd isotopic model ages: Implications of the growth of the continental crust of southeasten China. Journal of Nanjing University (Natural Science), 35(6): 649-658(in Chinese with English abstract)

     

    Chen PR, Hua RM, Zhang BT, Lu JJ, Fan CF. 2002. Early Yanshanian post-orogenic granitoids in Nanling region: Petrological constraints and geodynamic settings. Science in China (Series D), 32(4): 279-289(in Chinese)

     

    Chen YC, Pei RF, Zhang HL et al. 1989. The Geology of Non-ferrous and Rare Metal Deposits Related to Mesozoic Granitoids in Nanling Region. Beijing: Geological Publishing House, 1-474(in Chinese with English abstract)

     

    Cox KG. 1979. The Interpretation of Igneous Rocks. Allen and Unwin, 1-450

     

    Dai BZ, Jiang SY, Jiang YH, Zhao KD, Liu DY. 2008. Geochronology, geochemistry and Hf-Sr-Nd isotopic compositions of Huziyan mafic xenoliths, southern Hunan Province, South China: Petrogenesis and implications for lower crust evolution. Lithos, 102(1-2): 65-87 doi: 10.1016/j.lithos.2007.08.010

     

    Elhlou S, Belousova E, Griffin WL et al. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim. Cosmochim. Acta, (Suppl.), A158

     

    Gao S, Luo TC, Zhang BR, Zhang HF, Han YW, Zhao ZD, Hartmut K. 1999. Structure and compositon of the continental curst in East China. Science in China (Series D), 29(3): 204-213(in Chinese)

     

    Gilder SA, Gill J, Coe RS et al. 1996. Isotopic and paleomagmatic constraints on the Mesozoic tectonic evolution of South China. Journal of Geophysics Research, 101(B7): 13137-16154

     

    Griffin WL, Wang X, Jackson SE, Pearson SE, O’Reilly SY, Xu XS, Zhou XM. 2002. Zircon chemistry and magma genesis, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237-269 doi: 10.1016/S0024-4937(02)00082-8

     

    Guo F, Fan WM, Lin G, Lin YX. 1997. Geochronology of gabbro inclusions in Daoxian, Hunan Province and its genetic analysis. Chinese Science Bulletin, 42(15): 1661-1664 (in Chinese)

     

    Hong DW, Xie XL, Zhang JS. 2002. Geological significance of the Hangzhou-Zhuguangshan-Huashan high-εNd granite belt. Geological Bulletin of China, 21(6): 348-354(in Chinese with English abstract)

     

    Hua RM, Mao JW. 1999. A preliminary discussion on the Mesozoic metallogenic explosion in East China. Mineral Deposits, 18(4): 300-307(in Chinese with English abstract)

     

    Hua RM, Chen PR, Zhang WL, Liu XD, Lu JJ, Lin JF, Yao JM, Qi HW, Zhang ZS, Gu SY. 2003. Metallogenic systems related to Mesozoic and Cenozoic granitoids in South China. Science in China (Series D), 33(4): 335-343(in Chinese)

     

    Hou KJ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract)

     

    Hou KJ, Li YH, Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492(in Chinese with English abstract)

     

    Hou KJ, Li YH, Xie GQ. 2010. LA-MC-ICP-MS zircon Hf isotope analytical methods and its geological applications. In: Li YH et al. (eds.). A New Method for Isotope Analysis and Dating. Beijing: Geological Publishing House, 40-48(in Chinese with English abstract)

     

    Jiang SY, Zhao KD, Jiang YH, Dai BZ. 2008. Characteristics and genesis of Mesozoic A-type granites and aAssociated mineral deposits in the southern Hunan and northern Guangxi provinces along the Shi-Hang Belt, South China. Geological Journal of China Universities, 14(4): 496-509(in Chinese with English abstract)

     

    Jiang YH, Jiang SY, Zhao KD, Ling HF. 2006. Petrogenesis of Late Jurassic Qianlishan granites and mafic dikes, Southeast China: Implications for a back-arc extension setting. Geological Magazine, 143(4): 457-474 doi: 10.1017/S0016756805001652

     

    Jiang YH, Jiang SY, Dai BZ, Liao SY, Zhao KD, Ling HF. 2009. Middle to Late Jurassic felsic and mafic magmatism in southern Hunan Province, Southeast China: Implications for a continental arc to rifting. Lithos, 107(3-4): 185-204 doi: 10.1016/j.lithos.2008.10.006

     

    Liu YM, Dai TM, Lu HZ, Xu YZ, Wang CL, Kang WQ. 1997. 40Ar-39Ar and Sm-Nd isotopic dating of Qianlishan granites and related ores. Science in China (Series D), 27(5): 425-430(in Chinese)

     

    Liu YM, Xu JF, Dai TM, Li XH, Deng XG, Wang Q. 2002. 40Ar/39Ar isotopic ages of Qitianling granite and their geologic implications. Science in China (Series D), (Suppl.): 41-48 (in Chinese)

     

    Liu YS, Hu ZC, Gao S, Gunther D, Xu J, Gao C, Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-MC-ICP MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 doi: 10.1016/j.chemgeo.2008.08.004

     

    Mao JW, Li HY, Pei RF. 1995. Nd-Sr isotopic and petrogenetic studies of the Qianlishan granits stock, Hunan Province. Mineral Deposits, 14(3): 235-242(in Chinese with English abstract)

     

    Mao JW, Li XF, Bernd L, Chen W, Lan XM, Wei SL. 2004. 40Ar-39Ar dating of tin ores and related granite in Furong tin orefield, Hunan Province, and its geodynamic significance. Mineral Deposits, 23(2): 164-175 (in Chinese with English abstract)

     

    Mao JW, Xie GQ, Guo CL, Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region, South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract)

     

    Mao JW, Xie GQ, Guo CL, Yuan SD, Chen YB, Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510-526(in Chinese with English abstract)

     

    Mao JW, Pirajno F, Cook N. 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings: An introduction to the special issue. Ore Geology Reviews, 43: 1-7 doi: 10.1016/j.oregeorev.2011.09.003

     

    Mao JW, Chen MH, Yuan SD, Guo CL. 2011. South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636-658(in Chinese with English abstract)

     

    Morrison GW. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos, 13: 97-108 doi: 10.1016/0024-4937(80)90067-5

     

    Qi CS, Deng XG, Li WX, Li XH, Yang YH, Xie LW. 2007. Origin of Darongshan-Shiwandashan S-type garnitoid belt from southeastern Guangxi: Geochemical and Sr-Nd-Hf isotope constrains. Acta Petrologica Sinica, 23(2): 403-412

     

    Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society Special Publications, 42: 313-345

     

    Sun T, Zhou XM, Chen PR, Li HM, Zhou HY, Wang ZC, Shen WZ. 2003. Genesis of eastern Nanling Mesozoic strongly peraluminous granites and their tectonic significance. Science in China (Series D), 33(12): 1209-1218 (in Chinese)

     

    Sylvester PJ. 1998. Post-collision strongly peraluminous granites. Lithos, 45: 29-44 doi: 10.1016/S0024-4937(98)00024-3

     

    Wang YJ, Fan WM, Xi XW, Guo F, Lin G, Zhang YH. 2002. Numerical modeling of the formation of Indo-Sinian peraluminous granitoids in Hunan Province: Basaltic underplating versus tectonic thickening. Science in China (Series D), 32(6): 491-499 (in Chinese)

     

    Wang YJ, Fan WM, Liang XQ, Peng TP, Shi RY. 2005. SHRIMP zircon U-Pb geochronology of Indosinian granites in Hunan Province and its petrogenetic implications. Chinese Science Bulletin, 50(13): 1395-1403 doi: 10.1360/982004-603

     

    Wei DF, Bao ZY, Fu JM, Cai MH. 2007. Diagenetic and mineralization age of the Hehuaping tin-polymetallic ore-field, Hunan Province. Acta Geologica Sinica, 81(2): 244-252 doi: 10.1111/acgs.2007.81.issue-2

     

    Wu FY, Li XH, Zheng YF, Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract)

     

    Yuan SD, Peng JT, Shen NP, Hu RZ, Dai TM. 2007. 40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in southern Hunan, China and its geological implications. Acta Geologica Sinica, 81(2): 278-286 doi: 10.1111/acgs.2007.81.issue-2

     

    Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP, Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43: 375-382 doi: 10.1007/s00126-007-0166-y

     

    Yuan SD, Peng JT, Hao S, Li HM, Geng JZ, Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constrains on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242 doi: 10.1016/j.oregeorev.2011.08.002

     

    Zhang RQ, Lu JJ, Zhu JC, Yao Y, Gao JF, Chen WF, Zhao ZJ. 2010. Zircon U-Pb geochronology and Hf isotopic compositions of Hehuaping granite porphyry, southern Hunan Province, and its geological significance. Geological Journal of China Universities, 16(4): 436-447 (in Chinese with English abstract)

     

    Zhao KD, Jiang SY, Jiang YH, and Liu DY. 2006. SHRIMP U-Pb dating of the Furong unit of Qitangling granite from Southeast Hunan Province and their geological implications. Acta Petrologica Sinica, 22(10): 2611-2616(in Chinese with English abstract)

     

    Zhao ZH, Bao ZW, Zhang BY. 1998. Geochemistry of the Mesozoic basaltic rocks in southern Hunan Province. Science in China (Series D), 28(Suppl.): 7-14 (in Chinese)

     

    Zhou XM, Li WX. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4): 269-287 doi: 10.1016/S0040-1951(00)00120-7

     

    Zhou XM. 2003. My thinking about granite geneses of South China. Geological Journal of China Universities, 9(4): 556-565(in Chinese with English abstract)

     

    Zhou XM, Sun T, Shen WZ, Shu LS, Niu YL. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes, 29(1): 26-33

     

    柏道远, 陈建成, 马铁球, 王先辉. 2006. 王仙岭岩体地质地球化学特征及其对湘东南印支晚期构造环境的制约. 地球化学,35(2): 113-125 http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200602001.htm

     

    蔡明海, 陈开旭, 屈文俊, 刘国庆, 付建明, 印建平. 2006. 湖南荷花坪锡多金属矿床地质特征及辉钼矿Re-Os测年. 矿床地质, 25(3): 263-268 http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200603004.htm

     

    陈江峰, 郭新生, 汤加富, 周泰禧. 1999. 中国东南部地壳增长与Nd同位素模式年龄. 南京大学学报(自然科学), 35(6): 649-658 http://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ199906000.htm

     

    陈培荣, 华仁民, 章邦桐, 陆建军, 范春芳. 2002. 南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景. 中国科学(D辑), 32(4): 279-289 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200204002.htm

     

    陈毓川, 裴荣富, 张宏良等. 1989. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质. 北京: 地质出版社, 1-474

     

    高山, 骆庭川, 张本仁, 张宏飞, 韩吟文, 赵志丹, Hartmut K. 1999. 中国东部地壳的结构和组成. 中国科学(D辑), 29(3): 204-213 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199903001.htm

     

    郭锋, 范蔚茗, 林舸, 林源贤. 1997. 湖南道县辉长岩包体的年代学研究及成因探讨. 科学通报, 42(15):1661-1664 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199715021.htm

     

    洪大卫, 谢锡林, 张季生. 2002. 试析杭州-诸广山-花山高εNd值花岗岩带的地质意义. 地质通报, 21(6): 348-354

     

    华仁民, 毛景文. 1999. 试论中国东部中生代成矿大爆发. 矿床地质, 18(4): 300-307 http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199904001.htm

     

    华仁民, 陈培荣, 张文兰, 刘晓东, 陆建军, 林锦富, 姚军明, 戚文华, 张展适, 顾晟彦. 2003. 华南中、新生代与花岗岩有关的成矿系统. 中国科学(D辑), 33(4): 335-343 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304005.htm

     

    侯可军. 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=200701025&journal_id=ysxb

     

    侯可军, 李延河, 田有荣. 2009. LA-MC-ICP-MS锆石微区原位U-Pb定年技术. 矿床地质,28(4): 481-492 http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm

     

    侯可军, 李延河, 谢桂青. 2010. LA-MC-ICPMS锆石Hf同位素的分析方法及地质应用. 见 :李延河等编.同位素分析和定年新方法.北京:地质出版社,40-48

     

    蒋少涌, 赵葵东, 姜耀辉, 戴宝章. 2008. 十杭带湘南-桂北段中生代A型花岗岩带成岩成矿特征及其成因讨论. 高校地质学报, 14(4): 496-509 http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804006.htm

     

    刘义茂, 戴橦谟, 卢焕章, 胥友志, 王昌烈, 康卫清. 1997.千里山花岗岩成岩成矿的40Ar-39Ar和Sm-Nd同位素年龄. 中国科学(D辑), 27(5): 425-430

     

    刘义茂, 许继峰, 戴橦谟, 李献华, 邓希光, 王强. 2002. 骑田岭花岗岩40Ar-39Ar同位素年龄及其地质意义, 中国科学(D辑),(增刊): 41-48

     

    毛景文, 李红艳, 裴荣富. 1995. 湖南千里山花岗岩体的Sr-Nd同位素及岩石成因研究.矿床地质,14(3): 235-242 http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ503.005.htm

     

    毛景文, 李晓峰, Bernd L, 陈文, 蓝晓明, 魏绍六. 2004. 湖南芙蓉锡矿床锡矿石和有关花岗岩的40Ar-39Ar年龄及其地球动力学意义. 矿床地质, 23(2): 164-175

     

    毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=200701002&journal_id=ysxb

     

    毛景文, 谢桂青, 郭春丽, 袁顺达, 陈彦博, 陈毓川. 2008. 华南地区中生代主要金属矿床时空分布规律和成矿环境. 高校地质学报, 14(4): 510-526 http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm

     

    毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-658 http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201105006.htm

     

    祁昌实, 邓希光, 李武显, 李献华, 杨岳衡, 谢烈文. 2007. 桂东南大容山-十万大山S型花岗岩带的成因: 地球化学及Sr-Nd-Hf同位素制约. 岩石学报, 23(2): 403-412 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20070241&journal_id=ysxb

     

    孙涛, 周新民,陈培荣,李惠民,周红英,王志成,沈渭洲. 2003. 南岭东段中生代强过铝花岗岩成因及其大地构造意义. 中国科学(D辑), 33(12): 1209-1218 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200312009.htm

     

    王岳军, 范蔚茗, 梁新权, 彭头平, 石若玉. 2005. 湖南印支期花岗岩SHRIMP锆石U-Pb年龄及其成因启示.科学通报,50(12): 1259-1266 http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200512017.htm

     

    王岳军, 范蔚茗,席先武,郭锋,林胢, Zhang YH. 2002. 湖南印支期过铝质花岗岩的形成-岩浆底侵与地壳加厚热效应的数值模拟. 中国科学(D辑), 32(6): 491-499 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200206005.htm

     

    吴福元,李献华,郑永飞,高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报,23(2): 185-220 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=20070223&journal_id=ysxb

     

    章荣清, 陆建军, 朱金初, 姚远, 高剑锋, 陈卫锋, 招湛杰. 2010. 湖南荷花坪花岗斑岩锆石LA-MC-ICP MS锆石U-Pb年龄、Hf同位素制约及地质意义, 高校地质学报,16(4): 436-447 http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201004004.htm

     

    赵葵东, 蒋少涌, 姜耀辉, 刘敦一. 2006. 湘南骑田岭岩体芙蓉超单元的锆石SHRIMP U-Pb年龄及其地质意义. 岩石学报, 22(10): 2611-2616 http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&file_no=2006010281&journal_id=ysxb

     

    赵振华, 包志伟, 张伯友. 1998. 湘南中生代玄武岩类地球化学特征. 中国科学(D辑),28(增刊):7-14 http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1998S2001.htm

     

    周新民. 2003. 对华南花岗岩研究的若干思考. 高校地质学报, 9(4): 556-565 http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200304008.htm

  • 加载中

(11)

(5)

计量
  • 文章访问数:  10753
  • PDF下载数:  7231
  • 施引文献:  0
出版历程
收稿日期:  2011-08-12
修回日期:  2011-12-03
刊出日期:  2012-01-01

目录