太平洋富稀土深海沉积物中稀土元素赋存载体研究

王汾连, 何高文, 孙晓明, 杨阳, 赵太平. 太平洋富稀土深海沉积物中稀土元素赋存载体研究[J]. 岩石学报, 2016, 32(7): 2057-2068.
引用本文: 王汾连, 何高文, 孙晓明, 杨阳, 赵太平. 太平洋富稀土深海沉积物中稀土元素赋存载体研究[J]. 岩石学报, 2016, 32(7): 2057-2068.
WANG FenLian, HE GaoWen, SUN XiaoMing, YANG Yang, ZHAO TaiPing. The host of REE+Y elements in deep-sea sediments from the Pacific Ocean[J]. Acta Petrologica Sinica, 2016, 32(7): 2057-2068.
Citation: WANG FenLian, HE GaoWen, SUN XiaoMing, YANG Yang, ZHAO TaiPing. The host of REE+Y elements in deep-sea sediments from the Pacific Ocean[J]. Acta Petrologica Sinica, 2016, 32(7): 2057-2068.

太平洋富稀土深海沉积物中稀土元素赋存载体研究

  • 基金项目:

    本文受中国科学院矿物学与成矿学重点实验室研究合作基金(KLMM20150201)、中国地质调查局专项项目(DD20160204)和国土资源部公益性行业科研专项项目(201511036)联合资助.

详细信息

The host of REE+Y elements in deep-sea sediments from the Pacific Ocean

More Information
    Corresponding author: HE GaoWen, E-mail: hgw@hydz.cn
  • 太平洋深海沉积物中富含稀土(含Y,简称REY),尤其是(含)沸石粘土,其主要由粘土组分、沸石、鱼牙骨、微结核及生物残渣等组成,目前对于该类稀土矿床中REY的赋存载体存在争议。本文在中、西太平洋选取两个富REY的沸石粘土样品利用地球化学和矿物学对稀土赋存状态进行定量研究。矿物微区成分表明,鱼牙骨主要成分为磷灰石,含有最高的REY含量,为2497×10-6~18623×10-6,微结核和沸石颗粒含有较低的REY含量,分别为246×10-6~333×10-6和29.36×10-6~256×10-6。通过三种矿物相在沉积物63~250μm粒级组分中各自所占质量比例,计算得出磷灰石对REY的贡献率可达90%以上,说明此粒级中磷灰石为主要REY赋存载体,然而相对全岩总的REY含量,该粒级中磷灰石的贡献仍较小。通过对全岩和粉砂级组分(小于63μm)主微量地球化学分析和XRD矿物相分析表明,2个样品中REY主要存在于粉砂级组分中,其中的磷灰石对全岩REY的贡献最高均可达70%左右。另外通过对粘土组分(-6和631×10-6,粘土组分对全岩沉积物的REY贡献意义不大,对整个沉积物REY而言其贡献率仅为2%~5%左右。因此认为磷灰石为整个沸石粘土中REY主要赋存载体。
  • 加载中
  • [1]

    Alibo DS and Nozaki Y. 1999. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochimica et Cosmochimica Acta, 63(3-4): 363-372

    [2]

    Bright CA, Cruse AM, Lyons TW, MacLeod KG, Glascock MD and Ethington RL. 2009. Seawater rare-earth element patterns preserved in apatite of Pennsylvanian conodonts? Geochimica et Cosmochimica Acta, 73(6): 1609-1624

    [3]

    Chen L, Liu YS, Hu ZC, Gao S, Zong KQ and Chen HH. 2011. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%. Chemical Geology, 284(3-4): 283-295

    [4]

    Dubinin AV. 2000. Geochemistry of rare earth elements in oceanic phillipsites. Lithology and Mineral Resource, 35(2): 101-108

    [5]

    Dubinin AV and Sval'nov VN. 2000. Geochemistry of rare earth elements in micro- and macronodules from the Pacific bioproductive zone. Lithology and Mineral Resources, 35(1): 19-31

    [6]

    Elderfield H and Greaves MI. 1982. The rare earth elements in sea water. Nature, 296(5854): 214-219

    [7]

    Emsbo P, McLaughlin PI, Breit GN, du Bray EA and Koenig AE. 2015. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis? Gondwana Research, 27(2): 776-785

    [8]

    Fleet AJ. 1984. Aqueous and sedimentary geochemistry of rare earth elements. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 343-421

    [9]

    German CR and Elderfield H. 1990. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography, 5(5): 823-833

    [10]

    He GW, Sun XM, Yang SX, Zhu KC and Song CB. 2011. A comparison of REE geochemistry between polymetallic nodules and cobalt-rich crusts in the Pacific Ocean. Geology in China, 38(2): 462-472 (in Chinese with English abstract)

    [11]

    Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T and Iwamori H. 2011. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience, 4: 535-539

    [12]

    Kon Y, Hoshino M, Sanematsu K, Morita S, Tsunematsu M, Okamoto N, Yano N, Tanaka M and Takagi T. 2014. Geochemical characteristics of apatite in heavy REE-rich deep-sea mud from Minami-Torishima Area, Southeastern Japan. Resource Geology, 64(1): 47-57

    [13]

    Kynicky J, Smith MP and Xu C. 2012. Diversity of rare earth deposits: The key example of China. Elements, 8(5): 361-367

    [14]

    Lécuyer C, Grandjean P, Barrat JA, Nolvak J, Emig C, Paris F and Robardet M. 1998. δ18O and REE contents of phosphatic brachiopods: A comparison between modern and Lower Paleozoic populations. Geochim. Cosmochim. Acta, 62(14): 2429-2436

    [15]

    Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43

    [16]

    Martin EE and Scher HD. 2004. Preservation of seawater Sr and Nd isotopes in fossil fish teeth: Bad news and good news. Earth and Planetary Science Letters, 220(1-2): 25-39

    [17]

    McArthur JM and Walsh JN. 1984. Rare-earth geochemistry of phosphorites. Chemical Geology, 47(3-4): 191-220

    [18]

    Pan JH, Liu SQ, Yang Y and Liu XQ. 2002. Research on geochemical characteristics of major, trace and rare-earth elements in phosphates from the West Pacific Seamounts. Geological Review, 48(5): 534-541 (in Chinese with English abstract)

    [19]

    Pattan JN. 1993. Manganese micronodules: A possible indicator of sedimentary environments. Marine Geology, 113(3-4): 331-344

    [20]

    Piper DZ. 1974. Rare earth elements in ferromanganese nodules and other marine phases. Geochimica et Cosmochimica Acta, 38(7): 1007-1022

    [21]

    Piper DZ, Baedecker PA, Crock JG, Burnett WC and Loebner BJ. 1988. Rare earth elements in the phosphatic-enriched sediment of the Peru shelf. Marine Geology, 80(3-4): 269-285

    [22]

    Ren JB, Yao HQ, Zhu KC, He GW, Deng XG, Wang HF, Liu JY, Fu PR and Yang SX. 2015. Enrichment mechanism of rare earth elements and yttrium in deep-sea mud of Clarion-Clipperton Region. Earth Science Frontiers, 22(4): 200-211 (in Chinese with English abstract)

    [23]

    Reynard B, Lecuyer C and Grandjean P. 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology,155: 233-241

    [24]

    Shen HT. 1990. Rare earth elements in deep-sea sediments. Geochimica, 20(4): 340-348 (in Chinese with English abstract)

    [25]

    Sheppard RA, Gude AJ and Griffin JJ. 1970. Chemical Composition and physical properties of phillipsite from the Pacific and Indian oceans. American Mineralogist, 55: 2053-2062

    [26]

    Sheppard RA and Hay RL. 2001. Formation of zeolites in open hydrologic systems. Reviews in Mineralogy and Geochemistry, 45: 261-275

    [27]

    Shields GA and Webb GE. 2004. Has the REE composition of seawater changed over geological time? Chemical Geology, 204(1-2): 103-107

    [28]

    Tambiyer SB. 1979. Strontium and Barium in the formation of oceanic phosphorites. Oceanography, 19(2): 171-175

    [29]

    Tu XL, Zhang H, Deng WF, Ling MX, Liang HY, Liu Y and Sun WD. 2011. Application of RESOlution in-situ laser ablation ICP-MS in trace element analyses. Geochimica, 40(1): 83-98 (in Chinese with English abstract)

    [30]

    Wang ZG, Yu XY, Zhao ZH et al. 1989. The Geochemistry of Rare Earth Elements. Beijing: Science Press (in Chinese)

    [31]

    Wright J, Schrader H and Holser WT. 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochimica et Cosmochimica Acta, 51(3): 631-644

    [32]

    Yasukawa K, Liu HJ, Fujinaga K, Machida S, Haraguchi S, Ishii T, Nakamura K and Kato Y. 2014. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean. Journal of Asian Earth Sciences, 93: 25-36

    [33]

    Zhang XY, Deng H, Zhang FY, Zhang WY, Dong Y and Jiang BB. 2013. Enrichment and geochemical characteristics of rare earth elements in deep-sea mud from seamount area of Western Pacific. Journal of the Chinese Society of Rare Earths, 31(6): 729-737 (in Chinese with English abstract)

    [34]

    Zhu KC, Ren JB, Wang HF and Lu FF. 2015. Enrichment mechanism of REY and Geochemical characteristics of REY-rich pelagic clay from the central Pacific. Earth Science (Journal of China University of Geosciences), 40(6): 1052-1060 (in Chinese with English abstract)

    [35]

    何高文, 孙晓明, 杨胜雄, 朱克超, 宋成兵. 2011. 太平洋多金属结核和富钴结壳稀土元素地球化学对比及其地质意义. 中国地质, 38(2): 462-472

    [36]

    潘家华, 刘淑琴, 杨忆, 刘学清. 2002. 西太平洋海山磷酸盐的常量、微量和稀土元素地球化学研究. 地质论评, 48(5): 534-541

    [37]

    任江波, 姚会强, 朱克超, 何高文, 邓希光, 王海峰, 刘纪勇, 傅飘儿, 杨胜雄. 2015. 稀土元素及钇在东太平洋CC区深海泥中的富集特征与机制. 地学前缘, 22(4): 200-211

    [38]

    沈华悌. 1990. 深海沉积物中的稀土元素. 地球化学, 20(4): 340-348

    [39]

    涂湘林, 张红, 邓文峰, 凌明星, 梁华英, 刘颖, 孙卫东. 2011. RESOlution激光剥蚀系统在微量元素原位微区分析中的应用. 地球化学, 40(1): 83-98

    [40]

    王中刚, 于学元, 赵振华等. 1989. 稀土元素地球化学. 北京: 科学出版社

    [41]

    张霄宇, 邓涵, 张富元, 章伟艳, 杜泳, 江彬彬. 2013. 西太平洋海山区深海软泥中稀土元素富集的地球化学特征. 中国稀土学报, 31(6): 729-737

    [42]

    朱克超, 任江波, 王海峰, 陆红锋. 2015. 太平洋中部富REY深海粘土的地球化学特征及REY富集机制. 地球科学, 40(6): 1052-1060

  • 加载中
计量
  • 文章访问数:  6544
  • PDF下载数:  5440
  • 施引文献:  0
出版历程
收稿日期:  2016-01-06
修回日期:  2016-05-10
刊出日期:  2016-07-31

目录