大陆板内玄武岩数据挖掘:成分多样性及在判别图中的表现

王金荣, 潘振杰, 张旗, 陈万峰, 杨婧, 焦守涛, 王淑华. 大陆板内玄武岩数据挖掘:成分多样性及在判别图中的表现[J]. 岩石学报, 2016, 32(7): 1919-1933.
引用本文: 王金荣, 潘振杰, 张旗, 陈万峰, 杨婧, 焦守涛, 王淑华. 大陆板内玄武岩数据挖掘:成分多样性及在判别图中的表现[J]. 岩石学报, 2016, 32(7): 1919-1933.
WANG JinRong, PAN ZhenJie, ZHANG Qi, CHEN WanFeng, YANG Jing, JIAO ShouTao, WANG ShuHua. Intra-continental basalt data mining: The diversity of their constituents and the performance in basalt discrimination diagrams[J]. Acta Petrologica Sinica, 2016, 32(7): 1919-1933.
Citation: WANG JinRong, PAN ZhenJie, ZHANG Qi, CHEN WanFeng, YANG Jing, JIAO ShouTao, WANG ShuHua. Intra-continental basalt data mining: The diversity of their constituents and the performance in basalt discrimination diagrams[J]. Acta Petrologica Sinica, 2016, 32(7): 1919-1933.

大陆板内玄武岩数据挖掘:成分多样性及在判别图中的表现

  • 基金项目:

    本文受中央高校基本科研业务费项目(Lzu-Jbky-2012-128)及中国地质调查局项目(121201011000150012-02)联合资助.

Intra-continental basalt data mining: The diversity of their constituents and the performance in basalt discrimination diagrams

  • 通常认为,大陆溢流玄武岩(CFB)、裂谷玄武岩(CRB)、板内玄武岩(WPB)均产于板内构造环境,其地球化学特征与OIB类似,源于富集的下地幔,与地幔柱的活动有关。本文利用GEOROC数据库对全球CFB、CRB和WPB数据进行挖掘,发现上述三类玄武岩判别图投图几乎落入了全部的构造环境域,有些甚至主要落入MORB和IAB区,而不是落入WPB区。结果表明原先的玄武岩判别图的判别功能值得商榷,尤其对大陆玄武岩来说,许多判别图都存在问题。全体CFB、CRB和WPB的地球化学成分变化巨大,暗示其源区具有强烈的不均一性:部分CFB、CRB和WPB来自富集的地幔柱,仍然具有经典的OIB的特征;部分来自MORB的源区,与MORB的再循环作用有关;部分来自岛弧岩石圈之下的亏损地幔源区,以强烈亏损Nb-Ta为特征,类似岛弧玄武岩的地球化学特征。许多地区的大陆玄武岩可分为低钛和高钛两类,低钛玄武岩大多是亏损或强烈亏损的,而高钛玄武岩通常是富集型的。本文的研究表明,富集型大陆玄武岩可能来自富集的下地幔,而亏损的和强烈亏损的玄武岩可能来自具有MORB或岛弧特征的软流圈地幔。进一步指出,源区性质可能是大陆玄武岩多样性的主控因素,其次为部分熔融程度、熔融深度、结晶分离、陆壳混染以及AFC过程。
  • 加载中
  • [1]

    Allan JF and Carmichael ISE. 1984. Lamprophyric lavas in the Colima graben, SW Mexico. Contributions to Mineralogy and Petrology, 88(3): 203-216

    [2]

    Arndt NT and Christensen U. 1992. The role of lithospheric mantle in continental flood volcanism: Thermal and geochemical constraints. Journal of Geophysical Research, 97(B7): 10967-10981

    [3]

    Arndt NT, Czamanske GK, Wooden JL and Fedorenko VA. 1993. Mantle and crustal contributions to continental flood volcanism. Tectonophysics, 223(1-2): 39-52

    [4]

    Barrat JA, Joron JL, Taylor RN, Fourcade S, Nesbitt RW and Jahn BM. 2003. Geochemistry of basalts from Manda Hararo, Ethiopia: LREE-depleted basalts in Central Afar. Lithos, 69(1-2): 1-13

    [5]

    Best MG and Christiansen EH. 2001. Igneous Petrology. Malden, MA: Blackwell Science

    [6]

    Cabanis B and Lecolle M. 1989. Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Comptes Rendus de l'Académie des Sciences. Série 2, 309(20): 2023-2029

    [7]

    Callegaro S, Marzoli A, Bertrand H, Chiaradia M, Reisberg L, Meyzen C, Bellieni G, Weems RE and Merle R. 2013. Upper and lower crust recycling in the source of CAMP basaltic dykes from southeastern North America. Earth and Planetary Science Letters, 376: 186-199

    [8]

    Camiré G, La Fléche MR and Jenner GA. 1995. Geochemistry of pre-Taconian mafic volcanism in the Humber Zone of the northern Appalachians, Québec, Canada. Chemical Geology, 119(1-4): 55-77

    [9]

    Campbell IH and Griffiths RW. 1990. Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 99(1-2): 79-93

    [10]

    Capedri S, Venturelli G, Bocchi G, Dostal J, Garuti G and Rossi A. 1980. The geochemistry and petrogenesis of an ophiolitic sequence from Pindos, Greece. Contributions to Mineralogy and Petrology, 74(2): 189-200

    [11]

    Cornell DH, Thomas RJ, Bowring SA, Armstrong RA and Grantham GH. 1996. Protolith interpretation in metamorphic terranes: A back-arc environment with Besshi-type base metal potential for the Quha Formation, Natal Province, South Africa. Precambrian Research, 77(3-4): 243-271

    [12]

    Cousens BL. 1996. Magmatic evolution of Quaternary mafic magmas at Long Valley Caldera and the Devils Postpile, California: Effects of crustal contamination on lithospheric mantle-derived magmas. Journal of Geophysical Research: Solid Earth, 101(B12): 27673-27689

    [13]

    Cox KG, Macdonald R and Hornung G. 1967. Geochemical and petrographic provinces in the Karroo basalts of Southern Africa. American Mineralogist, 52: 1451-1474

    [14]

    Davis JM and Hawkesworth CJ. 1995. Geochemical and tectonic transitions in the evolution of the Mogollon-Datil Volcanic Field, New Mexico, U.S.A. Chemical Geology, 119(1-4): 31-53

    [15]

    Deckart K, Bertrand H and Liégeois JP. 2005. Geochemistry and Sr, Nd, Pb isotopic composition of the Central Atlantic Magmatic Province (CAMP) in Guyana and Guinea. Lithos, 82(3-4): 289-314

    [16]

    DeMin A, Piccirillo EM, Marzoli A, Bellieni G, Renne PR, Ernesto M and Marques L. 2003. The Central Atlantic Magmatic Province (CAMP) in Brazil: Petrology, Geochemistry, 40Ar/39Ar ages, paleomagnetism and geodynamic implications. In: Hames WE, McHome JG, Renne PR and Ruppel C (eds.). The Central Atlantic Magmatic Province: Insights from Fragments of Pangea. New York: American Geophysical Union, 136: 209-226

    [17]

    Deng JF, Liu C, Feng YF, Xiao QH, Di YJ, Su SG, Zhao GC, Duan PX and Dai M. 2015. On the correct application in the common igneous petrological diagrams: Discussion and suggestion. Geological Review, 61(4): 717-734 (in Chinese with English abstract)

    [18]

    Dorais MJ and Tubrett M. 2008. Identification of a subduction zone component in the Higganum dike, Central Atlantic Magmatic province: A LA-ICPMS study of clinopyroxene with implications for flood basalt petrogenesis. Geochemistry, Geophysics, Geosystems, 9(10), doi: 10.1029/2008GC002079

    [19]

    Dunning GR, Swinden HS, Kean BF, Evans DTW and Jenner GA. 1991. A Cambrian island arc in Iapetus: Geochronology and geochemistry of the Lake Ambrose volcanic belt, Newfoundland Appalachians. Geological Magazine, 128(1): 1-17

    [20]

    Eglington BM, Harmer RE and Kerr A. 1989. Isotope and geochemical constraints on Proterozoic crustal evolution in South-East Africa. Precambrian Research, 45(1-3): 159-174

    [21]

    Eglington BM and Armstrong RA. 2003. Geochronological and isotopic constraints on the Mesoproterozoic Namaqua-Natal Belt: Evidence from deep borehole intersections in South Africa. Precambrian Research, 125(3-4): 179-189

    [22]

    Elburg M and Goldberg A. 2000. Age and geochemistry of Karoo dolerite dykes from Northeast Botswana. Journal of African Earth Sciences, 31(3-4): 539-554

    [23]

    Ellam RM and Cox KG. 1991. An interpretation of Karoo picrite basalts in terms of interaction between asthenospheric magmas and the mantle lithosphere. Earth and Planetary Science Letters, 105(1-3): 330-342

    [24]

    Ellam RM and Stuart FM. 2000. The sub-lithospheric source of North Atlantic basalts: Evidence for, and significance of, a common end-member. Journal of Petrology, 41(7): 919-932

    [25]

    Fitton JG, Saunders AD, Norry MJ, Hardarson BS and Taylor RN. 1997. Thermal and chemical structure of the Iceland plume. Earth and Planetary Science Letters, 153(3-4): 197-208

    [26]

    Gallagher K and Hawkesworth C. 1992. Dehydration melting and the generation of continental flood basalts. Nature, 358(6381): 57-59

    [27]

    Gallagher K and Hawkesworth C. 1994. Mantle plumes, continental magmatism and asymmetry in the South Atlantic. Earth and Planetary Science Letters, 123(1-3): 105-117

    [28]

    Galoyan G, Rolland Y, Sosson M, Corsini M and Melkonyan R. 2007. Evidence for superposed MORB, oceanic plateau and volcanic arc series in the Lesser Caucasus (Stepanavan, Armenia). Comptes Rendus Geoscience, 339(7): 482-492

    [29]

    Gazel E, Plank T, Forsyth DW, Bendersky C, Lee CTA and Hauri EH. 2012. Lithosphere versus asthenosphere mantle sources at the Big Pine Volcanic Field, California. Geochemistry, Geophysics, Geosystems, 13(6), doi: 10.1029/2012GC004060

    [30]

    Gibson SA, Thompson RN, Dickin AP and Leonardos OH. 1995. High-Ti and low-Ti mafic potassic magmas: Key to plume-lithosphere interactions and continental flood-basalt genesis. Earth and Planetary Science Letters, 136(3-4): 149-165

    [31]

    Gibson SA, Thompson RN, Dickin AP and Leonardos OH. 1996. Erratum to "High-Ti and low-Ti mafic potassic magmas: Key to plume-lithosphere interactions and continental flood-basalt genesis" [Earth Planet. Sci. Lett. 136 (1995) 149-165]. Earth and Planetary Science Letters, 141(1-4): 325-341

    [32]

    Gibson SA, Thompson RN and Day JA. 2006. Timescales and mechanisms of plume-lithosphere interactions: 40Ar/39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná-Etendeka large igneous province. Earth and Planetary Science Letters, 251(1-2): 1-17

    [33]

    Glassley WE. 1974. Geochemistry and tectonics of the Crescent volcanic rocks, Olympic Peninsula, Washington. Geological Society of America Bulletin, 85(5): 785-794

    [34]

    Greene AR, Scoates JS, Weis D and Israel S. 2009. Geochemistry of Triassic flood basalts from the Yukon (Canada) segment of the accreted Wrangellia oceanic plateau. Lithos, 110(1-4): 1-19

    [35]

    Harris NBW, Pearce JA and Tindle AG. 1986. Geochemical characteristics of collision-zone magmatism. In: Coward MP and Ries AC (eds.). Collision Tectonics. Geological Society, London, Special Publications, 19(1): 67-81

    [36]

    Hasenaka Y, Ban M and Granados HD. 1994. Contrasting volcanism in the Michoacán-Guanajuato volcanic field, central Mexico: Shield volcanoes vs. cinder cones. Geofísica Internacional, 33(1): 125-138

    [37]

    Hawkesworth CJ, Marsh JS, Duncan AR, Erlank AJ and Norry MJ. 1984. The role of continental lithosphere in the generation of the Karoo volcanic rocks: Evidence from combined Nd- and Sr-isotope studies. In: Erlank AJ (eds). Petrogenesis of the Volcanic Rocks of the Karoo Province. The Geological Society of South Africa, 13: 341-354

    [38]

    Hawkesworth CJ, Mantovani M and Peate D. 1988. Lithosphere remobilization during Paraná CFB magmatism. Journal of Petrology, (1): 205-223

    [39]

    Heinonen JS, Carlson RW and Luttinen AV. 2010. Isotopic (Sr, Nd, Pb and Os) composition of highly magnesian dikes of Vestfjella, western Dronning Maud Land, Antarctica: A key to the origins of the Jurassic Karoo large igneous province? Chemical Geology, 277(3-4): 227-244

    [40]

    Huang YM, Van Calsteren P and Hawkesworth CJ. 1995. The evolution of the lithosphere in southern Africa: A perspective on the basic granulite xenoliths from kimberlites in South Africa. Geochimica et Cosmochimica Acta, 59(23): 4905-4920

    [41]

    Kampunzu AB, Tombale AR, Zhai M, Bagai Z, Majaule T and Modisi MP. 2003. Major and trace element geochemistry of plutonic rocks from Francistown, NE Botswana: Evidence for a Neoarchaean continental active margin in the Zimbabwe craton. Lithos, 71(2-4): 431-460

    [42]

    Kelemen PB, Shimizu N and Dunn T. 1993. Relative depletion of niobium in some arc magmas and the continental crust: Partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth and Planetary Science Letters, 120(3-4): 111-134

    [43]

    Kent RW and Fitton JG. 2000. Mantle sources and melting dynamics in the British Palaeogene Igneous Province. Journal of Petrology, 41(7): 1023-1040

    [44]

    Kerr AC and Mahoney JJ. 2007. Oceanic plateaus: Problematic plumes, potential paradigms. Chemical Geology, 241(3-4): 332-353

    [45]

    Köhler J, Schönenberger J, Upton B and Markl G. 2009. Halogen and trace-element chemistry in the Gardar Province, South Greenland: Subduction-related mantle metasomatism and fluid exsolution from alkalic melts. Lithos, 113(3-4): 731-747

    [46]

    Lana C, Reimold WU, Gibson RL, Koeberl C and Siegesmund S. 2004. Nature of the Archean midcrust in the core of the Vredefort Dome, Central Kaapvaal Craton, South Africa. Geochimica et Cosmochimica Acta, 68(3): 623-642

    [47]

    Lapierre H, Samper A, Bosch D, Maury RC, Béchennec F, Cotten J, Demant A, Brunet P, Keller F and Marcoux J. 2004. The Tethyan plume: Geochemical diversity of Middle Permian basalts from the Oman rifted margin. Lithos, 74(3-4): 167-198

    [48]

    Larsen LM, Waagstein R, Pedersen AK and Storey M. 1999a. Trans-Atlantic correlation of the Palaeogene volcanic successions in the Faeroe Islands and East Greenland. Journal of the Geological Society, 156(6): 1081-1095

    [49]

    Larsen LM, Fitton JG and Saunders AD. 1999b. Composition of volcanic rocks from the Southeast Greenland Margin, Leg 163: Major and trace element geochemistry. Proceedings of the Ocean Drilling Program, 163: 63-75

    [50]

    Li C, Arndt NT, Tang QY and Ripley EM. 2015. Trace element indiscrimination diagrams. Lithos, 232: 76-83

    [51]

    Luttinen AV and Furnes H. 2000. Flood basalts of Vestfjella: Jurassic magmatism across an Archaean-Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica. Journal of Petrology, 41(8): 1271-1305

    [52]

    Marsh JS, Hooper PR, Rehacek J, Duncan RA and Duncan AR. 1997. Stratigraphy and age of the Karoo basalts of Lesotho and implications for correlations within the Karoo igneous province. In: Mahoney JJ and Coffin MF (eds.). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. New York: American Geophysical Union, 100: 247-272

    [53]

    Maxeiner RO, Corrigan D, Harper CT, MacDougall DG and Ansdell K. 2005. Paleoproterozoic arc and ophiolitic rocks on the northwest-margin of the Trans-Hudson Orogen, Saskatchewan, Canada: Their contribution to a revised tectonic framework for the orogeny. Precambrian Research, 136(1): 67-106

    [54]

    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218

    [55]

    Mullen ED. 1983. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53-62

    [56]

    Nelson SA and Carmichael ISE. 1984. Pleistocene to recent alkalic volcanism in the region of Sanganguey volcano, Nayarit, Mexico. Contributions to Mineralogy and Petrology, 85(4): 321-335

    [57]

    Orozco-Esquivel T, Petrone CM, Ferrari L, Tagami T and Manetti P. 2007. Geochemical and isotopic variability in lavas from the eastern Trans-Mexican Volcanic Belt: Slab detachment in a subduction zone with varying dip. Lithos, 93(1-2): 149-174

    [58]

    Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290-300

    [59]

    Pearce JA. 1975. Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics, 25(1-2): 41-67

    [60]

    Pearce JA. 1976. Statistical analysis of major element patterns in basalts. Journal of Petrology, 17(1): 15-43

    [61]

    Pearce JA and Gale GH. 1977. Identification of ore-deposition environment from trace-element geochemistry of associated igneous host rocks. In: Volcanic Processes in Ore Genesis. Geological Society, London, Special Publications, 7: 14-24

    [62]

    Pearce JA and Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47

    [63]

    Pearce JA, Alabaster T, Shelton AW and Searle MP. 1981. The Oman ophiolite as a Cretaceous arc-basin complex: Evidence and implications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 300(1454): 299-317

    [64]

    Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Orogenic Andesites and Related Rocks. Chichester, England: John Wiley and Sons, 525-548

    [65]

    Pearce JA. 1983. Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ and Norry MJ (eds.). Continental Basalts and Mantle Xenoliths. Nantwich, Cheshire: Shiva Publications, 230-249

    [66]

    Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Gass IG, Lippard SJ and Shelton AW (eds.). Ophiolites and Oceanic Lithosphere. Geological Society, London, Special Publications, 16: 77-94

    [67]

    Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-285

    [68]

    Pearce JA and Robinson RB. 2000. Strategic Management: Formulation, Implementation and Control. 7th Edition. Boston: Irwin/McGraw-Hill

    [69]

    Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48

    [70]

    Peate DW and Hawkesworth CJ. 1996. Lithospheric to asthenospheric transition in low-Ti flood basalts from southern Parana, Brazil. Chemical Geology, 127(1-3): 1-24

    [71]

    Petrini R, Civetta L, Piccirillo EM, Bellieni G, Comin-Chiaramonti P, Marques LS and Melfi AJ. 1987. Mantle heterogeneity and crustal contamination in the genesis of low-Ti continental flood basalts from the Paraná plateau (Brazil): Sr-Nd isotope and geochemical evidence. Journal of Petrology, 28(4): 701-726

    [72]

    Philipp H, Eckhardt JD and Puchelt H. 2001. Platinum-group elements (PGE) in basalts of the seaward-dipping reflector sequence, SE Greenland coast. Journal of Petrology, 42(2): 407-432

    [73]

    Piccirillo EM, Civetta L, Petrini R, Longinelli A, Bellieni G, Comin-Chiaramonti P, Marques LS and Melfi AJ. 1989. Regional variations within the Paraná flood basalts (southern Brazil): Evidence for subcontinental mantle heterogeneity and crustal contamination. Chemical Geology, 75(1-2): 103-122

    [74]

    Plank T. 2005. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5): 921-944

    [75]

    Puffer JH. 2001. Contrasting high field strength element contents of continental flood basalts from plume versus reactivated-arc sources. Geology, 29(8): 675-678

    [76]

    Rogers N, van Staal CR, McNicoll V, Pollock J, Zagorevski A and Whalen J. 2006. Neoproterozoic and Cambrian arc magmatism along the eastern margin of the Victoria Lake Supergroup: A remnant of Ganderian basement in central Newfoundland? Precambrian Research, 147(3-4): 320-341

    [77]

    Rollinson HR. 1993. Using Geochemical data: Evaluation, Presentation, Interpretation. Harlow: Longman Scientific & Technical

    [78]

    Shervais JW. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1): 101-118

    [79]

    Siebe C, Rodrí'guez-Lara V, Schaaf P and Abrams M. 2004. Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichinautzin scoria cones, south of Mexico City. Journal of Volcanology and Geothermal Research, 130(3-4): 197-226

    [80]

    Snow CA. 2006. A reevaluation of tectonic discrimination diagrams and a new probabilistic approach using large geochemical databases: Moving beyond binary and ternary plots. Journal of Geophysical Research: Solid Earth, 111(B6), doi: 10.1029/2005JB003799

    [81]

    Søager N and Holm PM. 2011. Changing compositions in the Iceland plume: Isotopic and elemental constraints from the Paleogene Faroe flood basalts. Chemical Geology, 280(3-4): 297-313

    [82]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313-345

    [83]

    Swinden HS, Jenner GA, Fryer BJ, Hertogen J and Roddick JC. 1990. Petrogenesis and paleotectonic history of the Wild Bight Group, an Ordovician rifted island arc in central Newfoundland. Contributions to Mineralogy and Petrology, 105(2): 219-241

    [84]

    Verma SP and Nelson SA. 1989. Isotopic and trace element constraints on the origin and evolution of alkaline and calc-alkaline magmas in the Northwestern Mexican Volcanic Belt. Journal of Geophysical Research: Solid Earth, 94(B4): 4531-4544

    [85]

    Vermeesch P. 2006a. Tectonic discrimination of basalts with classification trees. Geochimica et Cosmochimica Acta, 70(7): 1839-1848

    [86]

    Vermeesch P. 2006b. Tectonic discrimination diagrams revisited. Geochemistry, Geophysics, Geosystems, 7(6), doi: 10.1029/2005GC001092

    [87]

    Wallace P and Carmichael SE. 1992. Alkaline and calc-alkaline lavas near Los Volcanes, Jalisco, Mexico: Geochemical diversity and its significance in volcanic arcs. Contributions to Mineralogy and Petrology, 111(4): 423-439

    [88]

    Wang YJ, Zhao GC, Fan WM, Peng TP, Sun LH and Xia XP. 2007. LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province: Implications for back-arc basin magmatism in the Eastern Block, North China Craton. Precambrian Research, 154(1-2): 107-124

    [89]

    West DP, Coish RA and Tomascak PB. 2004. Tectonic setting and regional correlation of Ordovician metavolcanic rocks of the Casco Bay Group, Maine: Evidence from trace element and isotope geochemistry. Geological Magazine, 141(2): 125-140

    [90]

    Wilson M. 1997. Thermal evolution of the Central Atlantic passive margins: Continental break-up above a Mesozoic super-plume. Journal of the Geological Society, 154(3): 491-495

    [91]

    Wood DA, Joron JL and Treuil M. 1979. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth and Planetary Science Letters, 45(2): 326-336

    [92]

    Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30

    [93]

    Workman RK and Hart SR. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1-2): 53-72

    [94]

    Zhang ZC, Wang FS, Fan WM, Deng HL, Xu YG, Xu JF and Wang YJ. 2001. A discussion on some problems concerning the study of the Emeishan basalts. Acta Petrologica et Mineralogica, 20(3): 239-246 (in Chinese with English abstract)

    [95]

    Zindler A and Hart SR. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571

    [96]

    邓晋福, 刘翠, 冯艳芳, 肖庆辉, 狄永军, 苏尚国, 赵国春, 段培新, 戴蒙. 2015. 关于火成岩常用图解的正确使用: 讨论与建议. 地质论评, 61(4): 717-734

    [97]

    张招崇, 王福生, 范蔚茗, 邓海琳, 徐义刚, 许继峰, 王岳军. 2001. 峨眉山玄武岩研究中的一些问题的讨论. 岩石矿物学杂志, 20(3): 239-246

  • 加载中
计量
  • 文章访问数:  9090
  • PDF下载数:  8862
  • 施引文献:  0
出版历程
收稿日期:  2015-11-26
修回日期:  2016-06-14
刊出日期:  2016-07-31

目录