西秦岭温泉钼矿床成矿作用时限及其对斑岩型钼矿床系统分类制约

邱昆峰, 李楠, RyanDTAYLOR, 宋耀辉, 宋开瑞, 韩旺珍, 张东旭. 西秦岭温泉钼矿床成矿作用时限及其对斑岩型钼矿床系统分类制约[J]. 岩石学报, 2014, 30(9): 2631-2643.
引用本文: 邱昆峰, 李楠, RyanDTAYLOR, 宋耀辉, 宋开瑞, 韩旺珍, 张东旭. 西秦岭温泉钼矿床成矿作用时限及其对斑岩型钼矿床系统分类制约[J]. 岩石学报, 2014, 30(9): 2631-2643.
QIU KunFeng, LI Nan, Ryan D TAYLOR, SONG YaoHui, SONG KaiRui, HAN WangZhen, ZHANG DongXu. Timing and duration of metallogeny of the Wenquan deposit in the West Qinling, and its constrain on a proposed classification for porphyry molybdenum deposits[J]. Acta Petrologica Sinica, 2014, 30(9): 2631-2643.
Citation: QIU KunFeng, LI Nan, Ryan D TAYLOR, SONG YaoHui, SONG KaiRui, HAN WangZhen, ZHANG DongXu. Timing and duration of metallogeny of the Wenquan deposit in the West Qinling, and its constrain on a proposed classification for porphyry molybdenum deposits[J]. Acta Petrologica Sinica, 2014, 30(9): 2631-2643.

西秦岭温泉钼矿床成矿作用时限及其对斑岩型钼矿床系统分类制约

  • 基金项目:

    本文受国家自然科学基金项目(41030423)、公益性行业科研专项经费项目(201411048)、中国地质调查局地质调查项目(1212011121090)和中国地质大学(北京)基本科研业务费专项资金资助项目(2-9-2014-055)联合资助.

Timing and duration of metallogeny of the Wenquan deposit in the West Qinling, and its constrain on a proposed classification for porphyry molybdenum deposits

  • 斑岩系统是一个涉及岩浆和热液作用的复杂系统,建立精细的斑岩系统成因模型对于寻找更为丰富的金属矿产尤为重要,成矿作用时限是建立成因模型和指导矿产勘查的关键。温泉钼矿床是西秦岭造山带内与晚三叠世花岗岩有关的斑岩型钼矿床,其在西秦岭造山带的独特发育蕴含印支期斑岩成矿作用、大陆地壳演化及矿产勘查关键科学问题。钼矿体主要赋存于温泉复式岩体Ⅱ单元和Ⅲ单元的黑云母二长花岗斑岩和似斑状二长花岗岩中,钼以细脉和浸染状矿化形式产出。赋矿岩石单元锆石U-Pb年龄为224.6±2.5Ma到216.2±1.7Ma,Ⅱ和Ⅲ单元分别侵位于~223Ma和~217Ma,持续约8Myr。辉钼矿Re-Os年龄为212.7±2.6Ma到215.1±2.6Ma,暗示晚三叠世钼成矿作用与花岗质岩浆作用密切时空关系,且成矿年龄稍晚,反映钼矿化主要发生在岩浆作用晚期阶段。成岩、成矿作用发生于华北板块与华南板块全面对接后秦岭造山带构造体制由碰撞到后碰撞的转折阶段,响应南秦岭变质变形、勉-略洋盆闭合及大别-苏鲁超高压岩石板片折返统一地质事件。黑云母K-Ar年龄为207~226Ma,可能反映~223Ma和~208Ma的岩体冷却事件和~216Ma的岩浆-热液成矿作用。锆石U-Pb、辉钼矿Re-Os和黑云母K-Ar多元同位素定年系统准确刻画岩体侵位、热液成矿与冷却事件上有所重叠,岩浆-热液分异演化充分,且具有较高的冷却速率,精确厘定温泉斑岩系统岩浆活动的“多期性”(复式岩体)、成矿事件的“瞬时性”(~214Ma)和成矿作用的“持续性”(~8Myr)。同时,系统对比全球典型斑岩钼(铜)矿床成矿动力学背景,细化分类方案,即产于挤压背景的大洋俯冲和大陆碰撞环境矿床及产于伸展背景的后碰撞、陆缘弧后和板内裂谷环境矿床。明确在大洋俯冲→大陆碰撞→后碰撞→板内裂谷旋回的四个阶段均可以产生规模的斑岩型钼(铜)矿床,且挤压向伸展过渡的构造体制转换尤其是大型矿床形成的有利环境。
  • 加载中
  • [1]

    Begemann F, Ludwig KR, Lugmair GW, Min K, Nyquist LE, Patchett PJ, Renne PR, Shih CY, Villa IM and Walker RJ. 2001. Call for an improved set of decay constants for geochronological use. Geochimica et Cosmochimica Acta, 65(1): 111-121

    [2]

    Bingen B and Stein H. 2003. Molybdenite Re-Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S Norway. Earth and Planetary Science Letters, 208(3-4): 181-195

    [3]

    Bureau of Geology and Mineral Resources of Gansu Province. 1989. Regional Geology of Gansu Province. Beijing: Geological Publishing House, 1-692 (in Chinese with English abstract)

    [4]

    Cao XF, Lü XB, Yao SZ, Mei W, Zou XY, Chen C, Liu ST, Zhang P, Su YY and Zhang B. 2011. LA-ICP-MS U-Pb zircon geochronology, geochemistry and kinetics of the Wenquan ore-bearing granites from West Qinling, China. Ore Geology Reviews, 43(1): 120-131

    [5]

    Carten RB, White WH and Stein HJ. 1993. High-grade granite-related molybdenum systems: Classification and origin. In: Kirkham RV, Sinclair WD, Thorpe RI and Duke JM (eds.). Mineral Deposit Modeling. Geological Association of Canada Special Paper, 40: 521-554

    [6]

    Chang ZS and Meinert LD. 2004. The magmatic-hydrothermal transition: Evidence from quartz phenocryst textures and endoskarn abundance in Cu-Zn skarns at the Empire Mine, Idaho, USA. Chemical Geology, 210(1-4): 149-171

    [7]

    Chen YB, Zhang GW, Pei XZ, Lu RK, Liang WT and Guo XF. 2010. Discussion on the formation age and tectonic implications of Dacaotan Group in West Qinling. Acta Sedimentologica Sinca, 28(3): 53-58 (in Chinese with English abstract)

    [8]

    Chen YJ, Chen HY, Zaw K, Pirajno F and Zhang ZJ. 2007. Geodynamic settings and tectonic model of skarn gold deposits in China: An overview. Ore Geology Reviews, 31(1-4): 139-169

    [9]

    Chen YJ. 2010. Indosinian tectonic setting, magmatism and metallogenesis in Qinling Orogen, China. Geology in China, 37(4): 854-865 (in Chinese with English abstract)

    [10]

    Cherniak DJ and Watson EB. 2000. Pb diffusion in zircon. Chemical Geology, 172(1-2): 5-24

    [11]

    Chiaradia M, Merino D and Spikings R. 2009a. Rapid transition to longlived deep crustal magmatic maturation and the formation of giant porphyry-related mineralization (Yanacocha, Peru). Earth and Planetary Science Letters, 288(3-4): 505-515

    [12]

    Chiaradia M, Vallance J, Fontboté L, Stein H, Schaltegger U, Coder J, Richards J, Villeneuve M and Gendall I. 2009b. U-Pb, Re-Os, and 40Ar/39Ar geochronology of the Nambija Au skarn and Pangui porphyry-Cu deposits, Ecuador: Implications for the Jurassic metallogenic belt of the Northern Andes. Mineralium Deposita, 44(4): 371-387

    [13]

    Chiaradia M, Schaltegger U, Spikings R, Wotzlaw JF and Ovtcharova M. 2013. How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems? An invited paper. Economic Geology, 108(4): 565-584

    [14]

    Cooke DR, Hollings P and Walshe JL. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100(5): 801-818

    [15]

    Cox DP and Singer DA. 1986. Mineral deposit models. U.S. Geological Survey Bulletin, 1693: 1-379

    [16]

    Deckart K, Clark AH, Celso AA, Ricardo VR, Berten AN, Mortensen JK and Fanning M. 2005. Magmatic and hydrothermal chronology of the giant Rio Blanco porphyry copper deposits, Central Chile: Implications of an integrated U-Pb and 40Ar/39Ar database. Economic Geology, 100(5): 905-934

    [17]

    Deng J, Yang LQ, Sun ZS, Peng RM, Chen XM and Du ZT. 2000. Ore-forming dynamics of tectonic regime transformation and multi-layer fluid circulation. Earth Science, 25(4):397-403 (in Chinese with English abstract)

    [18]

    Deng J, Yang LQ, Gao BF, Sun ZS, Guo CY, Wang QF and Wang JP. 2009. Fluid evolution and metallogenic dynamic during tectonic regime transition: Example from the Jiapigou gold belt in Northeast China. Resource Geology, 59(2): 140-152

    [19]

    Deng J, Yang LQ, Ge LS, Yuan SS, Wang QF, Zhang J, Gong QJ and Wang CM. 2010. Character and post-ore changes, modifications and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan, China. Acta Petrologica Sinica, 26(6):1633-1645 (in Chinese with English abstract)

    [20]

    Deng J, Yang LQ and Wang CM. 2011. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2501-2509 (in Chinese with English abstract)

    [21]

    Deng J, Wang CM and Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica, 28(5): 1349-1361 (in Chinese with English abstract)

    [22]

    Deng J, Ge LS and Yang LQ. 2013. Tectonic dynamic system and compound orogeny: Additionally discussing the temporal-spatial evolution of Sanjiang orogeny, Southwest China. Acta Petrologica Sinica, 29(4): 1099-1114 (in Chinese with English abstract)

    [23]

    Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014a. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437

    [24]

    Deng J, Wang QF, Li GJ and Santosh M. 2014b. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, doi: 10.1016/j.earscirev.2014.05.015

    [25]

    Deng J, Gong QJ, Wang CM, Carranza EJM and Santosh M. 2014c. Sequence of Late Jurassic-Early Cretaceous magmatic-hydrothermal events in the Xiong'ershan region, central China: An overview with new zircon U-Pb geochronology data on quartz porphyries. Journal of Asian Earth Sciences, 79: 161-172

    [26]

    Dong YP, Zhang GW, Neubauer F, Liu XM, Genser J and Hauzenberger C. 2011. Tectonic evolution of the Qinling orogen, China: Review and synthesis. Journal of Asian Earth Sciences, 41(3): 213-237

    [27]

    Geyh MA and Schleicher H. 1990. Absolute Age Determination: Physical and Chemical Dating Methods and Their Application. Berlin: Springer, 272-282

    [28]

    Gradstein FM, Ogg JG and Smith AG. 2005. A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 1-500

    [29]

    Han HT. 2009. Geochemical characteristics and metallogenic prediction of the Wenquan molybdenum deposit in the Western Qinling. Ph. D. Dissertation. Changsha: Central South University, 1-116 (in Chinese with English summary)

    [30]

    Harris AC, Kamenetsky VS, White NC and Steele DA. 2004. Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina. Resource Geology, 54(3): 341-356

    [31]

    Hou ZQ, Qu XM, Wang SX, Gao YF, Du AD and Huang W. 2003. The Re-Os age of molybdenites from Gangdese porphyry copper desposits belt, Xizang Plateau: Mineralization age and application of dynamic setting. Science in China (Series D), 33(7): 609-618 (in Chinese)

    [32]

    Huang XF, Mo XX, Yu XH, Li XW, Ding Y, Wei P and He WY. 2013. Zircon U-Pb chronology, geochemistry of the Late Triassic acid volcanic rocks in Tanchang area, West Qinling and their geological significance. Acta Petrologica Sinica, 29(11): 3968-3980 (in Chinese with English abstract)

    [33]

    Jin WJ, Zhang Q, He DF and Jia XQ. 2005. SHRIMP dating of adakites in western Qinling and their implications. Acta Petrologica Sinica, 21(3): 959-966 (in Chinese with English abstract)

    [34]

    Lee JKW, Williams IS and Ellis DJ. 1997. Pb, U and Th diffusion in natural zircon. Nature, 390 (6656): 159-162

    [35]

    Leech ML. 2001. Arrested orogenic development: Eclogitization delamination, and tectonic collapse. Earth and Planetary Science Letters, 185(1-2): 149-159

    [36]

    Li JX, Qin KZ, Li GM and Yang LK. 2007. K-Ar and 40Ar/39Ar age dating of Nimu porphyry copper orefield in Central Gangdese: Constrains on magmatic-hydrothermal evolution and metallogenetic tectonic setting. Acta Petrologica Sinica, 23(5): 953-966 (in Chinese with English abstract)

    [37]

    Li N, Chen YJ, Pirajno F and Ni ZY. 2012. Timing of the Yuchiling giant porphyry Mo system, and implications for ore genesis. Mineralium Deposita, 48(4): 505-524

    [38]

    Li N, Chen YJ, Santosh M and Pirajno F. 2013. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: Implication for termination of the northernmost paleo-Tethys. Gondwana Research, doi: 10.1016/j.gr.2013.09.017

    [39]

    Li XZ, Yan J and Lu XX. 1993. Granites of Qinling-Dabie. Beijing: Geological Publishing House, 1-215 (in Chinese with English abstract)

    [40]

    Li YJ. 2005. Collecting and integration of the geological information of granitoids: The application of granitoids of investigation and research in Tianshui area. Ph. D. Dissertation. Xian: Chang'an University, 1-163 (in Chinese with English summary)

    [41]

    Mao JW, Xie GQ, Bierlein F, Qu WJ, Du AD, Ye HS, Pirajno F, Li HM, Guo BJ, Li YF and Yang ZQ. 2008. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta, 72(18): 4607-4626

    [42]

    Mao JW, Pirajno F and Cook N. 2011. Mesozoic metallogeny in East China and corresponding geodynamic settings: An introduction to the special issue. Ore Geology Reviews, 43(1): 1-7

    [43]

    Markey R, Stein HJ, Hannah JL, Selby D and Creaser RA. 2007. Standardizing Re-Os geochronology: A new molybdenite Reference Material (Henderson, USA) and the stoichiometry of Os salts. Chemical Geology, 244(1-2): 74-87

    [44]

    McDougall I and Harrison TM. 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. New York: Oxford University Press, 1-269

    [45]

    McInnes BIA, Evans NJ, Fu FQ and Garwin S. 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry, 58(1): 467-498

    [46]

    Misra KC. 2000. Understanding Mineral Deposits. Dordecht/Boston/London: Kluwer Academic Publishing, 353-413

    [47]

    Mutschler FE, Wright EG, Ludington S and Abbott JT. 1981. Granite molybdenite systems. Economic Geology, 76(4): 874-897

    [48]

    Qin KZ, Li GM, Zhao JX, Li JX, Xue GQ, Yan G, Su DK, Xiao B, Chen L and Fan X. 2008. Discovery of sharing large-scale porphyry molybdenum deposit, the first single Mo deposit in Tibet and its significance. Geology in China, 35(6): 1101-1112 (in Chinese with English abstract)

    [49]

    Qiu KF and Yang LQ. 2011. Genetic feature of monazite and its U-Th-Pb dating: Critical considerations on the tectonic evolution of Sanjiang Tethys. Acta Petrologica Sinica, 27(9): 2721-2732 (in Chinese with English abstract)

    [50]

    Qu WJ and Du AD. 2003. Highly precise Re-Os dating of molybdenite by ICP-MS with carius tube sample digestion. Rock and Mineral Analysis, 22(4): 254-262 (in Chinese with English abstract)

    [51]

    Ren XH. 2009. Geological characteristics and genesis of molybdenum deposits in Wushan County of Gansu. Gansu Metallurgy, 31(6): 58-61 (in Chinese with English abstract)

    [52]

    Schoene B, Crowley JL, Condon DJ, Schmitz MD and Bowring SA. 2006. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochimica et Cosmochimica Acta, 70(2): 426-445

    [53]

    Seedorff E, Dilles JH, Proffen JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA and Barton MD. 2005. Porpgyry deposits: Characteristics and origin of hypogene features. Ecomonic Geology, 100th Anniversary Volume, 251-298

    [54]

    Selby D and Creaser RA. 2001. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Economic Geology, 96(1): 197-204

    [55]

    Sillitoe RH. 1980. Types of porphyry molybdenum deposits. Mining Magazine, 142: 550-553

    [56]

    Sillitoe RH. 2010. Porphyry Copper systems. Economic Geology, 105(1): 3-41

    [57]

    Stein HJ, Sundblad K, Markey RJ, Morgan JW and Motuza G. 1998. Re-Os ages for Archean molybdenite and pyrite, Kuittila-Kivisuo, Finland and Proterozoic molybdenite, Kabeliai, Lithuania: Testing the chronometer in a metamorphic and metasomatic setting. Mineralium Deposita, 33(4): 329-345

    [58]

    Stein HJ, Markey RJ, Morgan JW, Hannah JL and Scherstén A. 2001. The remarkable Re-Os chronometer in molybdenite: How and why it works. Terra Nova, 13(6): 479-486

    [59]

    Stein HJ, Scherstén A, Hannah JW and Markey RJ. 2003. Subgrain-scale decoupling of Re and 187Os and assessment of laser ablation ICP-MS spot dating in molybdenite. Geochimica et Cosmochimica Acta, 67(19): 3673-3686

    [60]

    Sun Y, Liu JM and Zeng QD. 2012. An approach to the metallogenic mechanism of porphyry copper (molybdenium) deposits and porphyry molybdenium (copper) deposits: Influence of evolving processes of ore-forming fluids and tectonic settings. Earth Science Frontiers, 19(6): 179-193 (in Chinese with English abstract)

    [61]

    Suzuki K, Shimizu H and Masuda A. 1996. Re-Os dating of molybdenites from ore deposits in Japan: Implication for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdenum ore deposits. Geochimica et Cosmochimica Acta, 60(16): 3151-3159

    [62]

    Sylverler PJ. 1998. Post-collisional Strongly Peraluminous granites. Lithos, 45(1-4): 29-44

    [63]

    Valencia VA, Ruiz J, Barra F, Geherls G, Ducea M, Titley SR and Ochoa-Landin L. 2005. U-Pb zircon and Re-Os molybdenite geochronology from La Caridad porphyry copper deposit: Insights for the duration of magmatism and mineralization in the Nacozari District, Sonora, Mexico. Mineralium Deposita, 40(2): 175-191

    [64]

    Vanderhaeghe O and Teyssier C. 2001. Partial melting and flow of orogens. Tectonopgysics, 342(3-4): 451-472

    [65]

    Von Quadt A, Erni M, Martinek K, Moll M, Peytcheva I and Heinrich CA. 2011. Zircon crystallization and the lifetimes of ore-forming magmatic-hydrothermal systems. Geology, 39(8): 731-734

    [66]

    Wang CM, Deng J, Carranza EJM and Santosh M. 2013. Tin metallogenesis associated with granitoids in the southwestern Sanjiang Tethyan Domain: Nature, deposit types, and tectonic setting. Gondwana Research, doi: 10.1016/j.gr.2013.05.005

    [67]

    Wang CM, Deng J, Carranza EJM and Lai XR. 2014a. Nature, diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposits in China. Ore Geology Reviews, 56: 327-351

    [68]

    Wang CM, Zhang D, Wu GG, Santosh M, Zhang J, Xu YG and Zhang YY. 2014b. Geological and isotopic evidence for magmatic-hydrothermal origin of the Ag-Pb-Zn deposits in the Lengshuikeng district, east-central China. Mineralium Deposita, doi: 10.1007/s00126-014-0521-8

    [69]

    Wang F. 2011. The geological and geochemical characteristics of the Wenquan molybdenum deposit in the West Qinling, and its metallogenetic geodynamic setting. Master Degree Thesis. Xi'an: Northwest University, 1-96 (in Chinese with English summary)

    [70]

    Wang F, Shi WB and Zhu RX. 2014. Problems of modern 40Ar/39Ar geochronology: Reviews. Acta Petrologica Sinica, 30(2): 326-340 (in Chinese with English abstract)

    [71]

    Wang QF, Deng J, Zhang QZ, Liu H, Liu XF, Wan L, Li N, Wang YR, Jiang CZ, and Feng YW. 2011. Orebody vertical structure and implications for ore-forming processes in the Xinxu bauxite deposit, western Guangxi, China. Ore Geology Reviews, 39(4): 230-244

    [72]

    Wang T, Wang XX and Li WP. 2000. Evaluation of multiple emplacement mechanisms of Huichizi granite pluton, Qinling orogenic belt, central China. Journal of Structure Geology, 22(4): 505-518

    [73]

    Wang XX, Wang T and Zhang CL. 2013. Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. Journal of Asian Earth Sciences, 72: 129-151

    [74]

    Westra G and Keith SB. 1981. Classification and genesis of stockwork molybdenum deposits. Economic Geology, 76(4): 844-873

    [75]

    Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187

    [76]

    Yang LQ, Deng J, Ge LS, Wang QF, Zhang J, Gao BF, Jiang SQ and Xu H. 2007. Metallogenic epoch and genesis of the gold deposits in Jiaodong Peninsula, eastern China: A regional review. Progress in Natural Science, 17(2): 138-143

    [77]

    Yang LQ, Deng J, Zhang J, Guo CY, Gao BF, Gong QJ, Wang QF, Jiang SQ and Yu HJ. 2008. Decrepitation thermometry and compositions of fluid inclusions of the Damoqujia gold deposit, Jiaodong gold province, China: Implications for metallogeny and exploration. Journal of China University of Geosciences, 19(4): 378-390

    [78]

    Yang LQ, Deng J, Guo CY, Zhang J, Jiang SQ, Gao BF, Gong QJ and Wang QF. 2009. Ore-forming fluid characteristics of the Dayingezhuang gold deposit, Jiaodong gold province, China. Resource Geology, 59(2): 181-193

    [79]

    Yang LQ, Liu JT, Zhang C, Wang QF, Ge LS, Wang ZL, Zhang J and Gong QJ. 2010. Superimposed orogenesis and metallogenesis: An example from the orogenic gold deposits in Ailaoshan gold belt, Southwest China. Acta Petrologica Sinica, 26(6): 1723-1739 (in Chinese with English abstract)

    [80]

    Yang LQ, Deng J, Zhao K and Liu JT. 2011. Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt, Southwest China: Geochronological constraints. Acta Petrologica Sinica, 27(9): 2519-2532 (in Chinese with English abstract)

    [81]

    Yang LQ and Badal J. 2013. Mirror symmetry of the crust in the oil/gas region of Shengli, China. Journal of Asian Earth Sciences, 78: 327-344

    [82]

    Yang LQ, Deng J, Goldfarb RJ, Zhang J, Gao BF and Wang ZL. 2014. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Research, 25(4): 1469-1483

    [83]

    Yang LQ, Deng J and Wang ZL. 2014a. Ore-controlling structural pattern of Jiaodong gold deposits: Geological-geophysical integration constraints. In: Chen YT, Jin ZM, Shi YL, Yang WC and Zhu RX (eds.). The Deep-Seated Structures of Earth in China. Beijing: Sciences Press, 1006-1030 (in Chinese)

    [84]

    Yang LQ, Deng J, Wang ZL, Zhang L, Guo LN, Song MC and Zheng XL. 2014b. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 30(9): 2447-2467 (in Chinese with English abstract)

    [85]

    Zeng QD, Liu JM, Chu SX, Wang YB, Sun Y, Duan XX, and Zhou LL. 2012. Mesozoic molybdenum deposits in the East Xingmeng orogenic belt, Northeast China: Characteristics and tectonic setting. International Geology Review, 54(16): 1843-1869

    [86]

    Zhai YS. 2014. A preliminary discussion on fundamental model of metallogenic mechanism. Earth Science Frontiers, 21(1): 1-8 (in Chinese with English abstract)

    [87]

    Zhang GW, Zhang BR, Yuan XC and Xiao QH. 2001. Qinling Orogenic Belt and Continental Dynamics. Beijing: Science Press, 1-729 (in Chinese with English abstract)

    [88]

    Zhang HF, Jin LL, Zhang L, Harris N, Zhou L, Hu SH and Zhang BR. 2005. Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity. Science in China (Series D), 50(2): 184-196

    [89]

    Zhu LM, Ding ZJ, Yao SZ, Zhang GW, Song SG, Qu WJ, Guo B and Li B. 2009. Ore-forming event and geodynamic setting of molybdenum deposit at Wenquan in Gansu Province, western Qinling. Chinese Science Bulletin, 54(16): 2309-2324

    [90]

    Zhu LM, Zhang GW Chen YJ, Ding ZJ, Guo B, Wang F and Lee B. 2011. Zircon U-Pb ages and geochemistry of the Wenquan Mo-bearing granitioids in West Qinling, China: Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit. Ore Geology Reviews, 39(1-2): 46-62

    [91]

    陈义兵, 张国伟, 裴先治, 鲁如魁, 梁文天, 郭秀峰. 2010. 西秦岭大草滩群的形成时代和构造意义探讨. 沉积学报, 28(3): 53-58

    [92]

    陈衍景. 2010. 秦岭印支期构造背景、岩浆活动及成矿作用. 中国地质, 37(4): 854-865

    [93]

    邓军, 杨立强, 孙忠实, 彭润民, 陈学明, 杜子图. 2000. 构造体制转换与流体多层循环成矿动力学. 地球科学, 25(4): 397-403

    [94]

    邓军, 杨立强, 葛良胜, 袁士松, 王庆飞, 张静, 龚庆杰, 王长明. 2010. 滇西富碱斑岩型金成矿系统特征与变化保存. 岩石学报, 26(6): 1633-1645

    [95]

    邓军, 杨立强, 王长明. 2011. 三江特提斯复合造山与成矿作用研究进展. 岩石学报, 27(9): 2501-2509

    [96]

    邓军, 王长明, 李龚建. 2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报, 28(5): 1349-1361

    [97]

    邓军, 葛良胜, 杨立强. 2013. 构造动力体制与复合造山作用: 兼论三江复合造山带时空演化. 岩石学报, 29(4): 1099-1114

    [98]

    甘肃省地质矿产局. 1989. 甘肃省区域地质志. 北京: 地质出版社, 1-692

    [99]

    韩海涛. 2009. 西秦岭温泉钼矿床地质化学特征及成矿预测. 博士学位论文. 长沙: 中南大学, 1-116

    [100]

    侯增谦, 曲晓明, 王淑贤, 高永丰, 杜安道, 黄卫. 2003. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄: 成矿作用时限与动力学背景应用. 中国科学(D辑), 33(7): 609-618

    [101]

    黄雄飞, 莫宣学, 喻学惠, 李小伟, 丁一, 韦萍, 和文言. 2013. 西秦岭宕昌地区晚三叠世酸性火山岩的锆石U-Pb年代学、地球化学及其地质意义. 岩石学报, 29(11): 3968-3980

    [102]

    金维浚, 张旗, 何登发, 贾秀琴. 2005. 西秦岭埃达克岩的SHRIMP定年及其构造意义. 岩石学报, 21(3): 959-966

    [103]

    李金祥, 秦克章, 李光明, 杨列坤. 2007. 冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar年龄: 对岩浆-热液系统演化和成矿构造背景的制约. 岩石学报, 23(5): 953-966

    [104]

    李先梓, 严振, 卢欣祥. 1993. 秦岭-大别山花岗岩. 北京: 地质出版社, 1-215

    [105]

    李永军. 2005. 花岗岩类地质信息的采集与集成——在天水地区花岗岩类调查与研究中的应用. 博士学位论文. 西安: 长安大学, 1-163

    [106]

    秦克章, 李光明, 赵俊兴, 李金祥, 薛国强, 严刚, 粟登奎, 肖波, 陈雷, 范新. 2008. 西藏首例独立钼矿: 冈底斯沙让大型斑岩钼矿的发现及其意义. 中国地质, 35(6): 1101-1112

    [107]

    邱昆峰, 杨立强. 2011. 独居石成因特征与U-Th-Pb定年及三江特提斯构造演化研究例析. 岩石学报, 27(9): 2721-2732

    [108]

    屈文俊, 杜安道. 2003. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄. 岩矿测试, 22(4): 254-262

    [109]

    任新红. 2009. 甘肃武山温泉钼矿床地质特征及成因. 甘肃冶金, 31(6): 58-61

    [110]

    孙燕, 刘建明, 曾庆栋. 2012. 斑岩型铜(钼)矿床和斑岩型钼(铜)矿床形成机制探讨: 流体演化及构造背景的影响. 地学前缘, 2012, 19(6): 179-193

    [111]

    王非, 师文贝, 朱日祥. 2014. 40Ar/39Ar年代学中几个重要问题的讨论. 岩石学报, 30(2): 326-340

    [112]

    王飞. 2011. 西秦岭温泉钼矿床地质-地球化学特征与成矿动力学背景. 硕士学位论文. 西安: 西北大学, 1-96

    [113]

    杨立强, 刘江涛, 张闯, 王庆飞, 葛良胜, 王中亮, 张静, 龚庆杰. 2010. 哀牢山造山型金成矿系统: 复合造山构造演化与成矿作用初探. 岩石学报, 26(6): 1723-1739

    [114]

    杨立强, 邓军, 赵凯, 刘江涛. 2011. 哀牢山造山带金矿成矿时序及其动力学背景探讨. 岩石学报, 27(9): 2519-2132

    [115]

    杨立强, 邓军, 王中亮. 2014a. 胶东金矿控矿构造样式: 地质-地球物理综合约束. 见: 陈运泰, 金振民, 石耀霖, 杨文采, 朱日祥主编. 中国大陆地球深部结构与动力学研究——庆贺滕吉文院士从事地球物理研究60周年. 北京: 科学出版社, 1006-1030

    [116]

    杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014b. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467

    [117]

    翟裕生. 2014. 试论矿床成因的基本模型. 地学前缘, 21(1): 1-8

    [118]

    张国伟, 张本仁, 袁学诚, 肖庆辉. 2001. 秦岭造山带与大陆动力学. 北京: 科学出版社, 1-729

    [119]

    张宏飞, 靳兰兰, 张利, Nigel Harris, 周炼, 胡圣虹, 张本仁. 2005. 西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制. 中国科学(D辑), 35(10): 914-926

  • 加载中
计量
  • 文章访问数:  7476
  • PDF下载数:  3521
  • 施引文献:  0
出版历程
收稿日期:  2014-03-01
修回日期:  2014-05-10
刊出日期:  2014-09-30

目录