华北克拉通南缘潘河~1.5Ga正长岩的厘定及其构造意义

曾令君, 包志伟, 赵太平, 姚军明, 周栋. 2013. 华北克拉通南缘潘河~1.5Ga正长岩的厘定及其构造意义. 岩石学报, 29(7): 2425-2436.
引用本文: 曾令君, 包志伟, 赵太平, 姚军明, 周栋. 2013. 华北克拉通南缘潘河~1.5Ga正长岩的厘定及其构造意义. 岩石学报, 29(7): 2425-2436.
ZENG LingJun, BAO ZhiWei, ZHAO TaiPing, YAO JunMing, ZHOU Dong. 2013. Geochronology and geochemistry of the Mesoproterozoic Panhe syenites in the southern margin of North China Craton and its tectonic implications. Acta Petrologica Sinica, 29(7): 2425-2436.
Citation: ZENG LingJun, BAO ZhiWei, ZHAO TaiPing, YAO JunMing, ZHOU Dong. 2013. Geochronology and geochemistry of the Mesoproterozoic Panhe syenites in the southern margin of North China Craton and its tectonic implications. Acta Petrologica Sinica, 29(7): 2425-2436.

华北克拉通南缘潘河~1.5Ga正长岩的厘定及其构造意义

  • 基金项目:

    本文受国家重点基础研究发展计划(2012CB416602)和河南省卢氏县北方矿业公司委托项目联合资助.

详细信息
    作者简介:

    曾令君,女,1989年生,硕士生,矿物学、岩石学、矿床学专业,E-mail: zenglingjun0213@163.com

    通讯作者: 包志伟, 男,副研究员,硕士生导师,矿物学、岩石学、矿床学专业,E-mail: baozw@gig.ac.cn
  • 中图分类号: P588.122; P597.3

Geochronology and geochemistry of the Mesoproterozoic Panhe syenites in the southern margin of North China Craton and its tectonic implications

More Information
  • 华北克拉通是否曾是Columbia超大陆的组成部分并具有一致的裂解过程一直存在争议,而已知的中元古代非造山岩浆组合集中分布于华北克拉通北缘是引起有关裂解过程争论的重要原因。作者近来在华北克拉通南缘,河南省卢氏县潘河地区,厘定了一组中元古代走向近东西的正长岩脉群。正长岩LA-ICP-MS锆石U-Pb年龄为1469±8Ma (MSWD=1.4) 。岩石类型主要为黑云母正长岩,局部有少量霞石正长岩。岩体的SiO2变化于51.3%~65.7%之间,碱含量较高,K2O+Na2O总量8.32%~13.0%,铝含量较高(Al2O3=18.7%~20.0%),为碱性过铝质岩类。岩体轻重稀土分馏较为显著 (La/Yb)N=14.5~34.5,具有显著的Eu负异常(δEu=0.2~0.3) ,强烈富集Rb、Ba、Th等大离子亲石元素和Nb、Ta、Nd、Tb等高场强元素,而Sr、Ti、P、Eu等元素显著亏损。岩石εHf(t)=-14.79~+8.16,Hf模式年龄为2.93~1.74Ga,指示成岩物质主要来源于富集岩石圈地幔的部分熔融并有地壳物质的加入。岩体形成于板内伸展构造环境,这表明华北克拉通的南缘也同时记录了华北克拉通曾经在中元古代发生过大规模的伸展作用,其伸展过程可能与Columbia超大陆的裂解有关。

  • 加载中
  • 图 1 

    潘河正长岩岩体地质图(据Peng et al., 2010)

    Figure 1. 

    Simplified geological map of the Panhe syenites(after Peng et al., 2010)

    图 2 

    潘河正长岩野外和岩相学特征

    Figure 2. 

    Photos showing the field crops and micropetrography of the Panhe syenites

    图 3 

    潘河正长岩锆石阴极发光图

    Figure 3. 

    Cathodoluminescence(CL)images of zircons of the Panhe syenite

    图 4 

    潘河正长岩锆石LA-ICP-MS U-Pb年龄谐和图

    Figure 4. 

    U-Pb concordia plots for zircons of the Panhe syenite

    图 5 

    潘河正长岩TAS图解

    Figure 5. 

    TAS diagram for the Panhe syenites

    图 6 

    潘河正长岩ANCK-ANK图解(据Maniar and Piccoli, 1989)

    Figure 6. 

    ANCK-ANK diagram or the Panhe syenites(after Maniar and Piccoli, 1989)

    图 7 

    潘河正长岩球粒陨石标准化REE配分模式图及原始地幔标准化微量元素蛛网图(标准化值据Sun and McDonough, 1989)

    Figure 7. 

    Chondrite-normalized REE patterns and primitive mantle normalized trace elements spider diagram for the Panhe syenites(normalization values after Sun and McDonough, 1989)

    图 8 

    潘河正长岩的锆石Hf同位素特征

    Figure 8. 

    Hf isotopic compositions of zircons for the syenite from Panhe

    图 9 

    主量元素和微量元素对SiO2变化图解

    Figure 9. 

    Major and trace element vs.SiO2 diagrams for the Panhe syenites

    图 10 

    潘河正长岩Cr-Ni和Sr-Rb/Sr图解(分配系数据Rollison, 1993)

    Figure 10. 

    Cr-Ni and Sr-Rb/Sr diagrams for the Panhe syenites(partition coefficients after Rollison, 1993)

    图 11 

    潘河正长岩Zr-Zr/Nb图解(底图据Geng et al., 2009)

    Figure 11. 

    Zr-Zr/Nb diagram for the Panhe syenites(after Geng et al., 2009)

  •  

    Abdalla JA, Said AA and Visona D. 1996. New geochemical and petrographic data on the garbbro-syenite Suite between Hargesya and Berbera-Shiikh (northern Somalia). Journal of African Earth Sciences, 23(3): 363-373

     

    Bao ZW, Wang Q, Zi F, Tang GJ, Du FJ and Bai GD. 2009. Geochemistry of the Paleproterozoic Longwangchuang A-type granites on the southern margin of North China Craton: Petrogenesis and tectonic implications. Geochimica, 38(6): 509-522(in Chinese with English abstract)

     

    Barker F, Wones DR, Sharp WN and Desborough GA. 1975. The Pikes Peak batholith, Colorado front range, and a model for the origin of the gabbro-anorthosite-syenite-potassic granite suite. Precambrian Research, 2(2): 97-160

     

    Brooks CK and Gill RCO. 1982. Compositional variation in the pyroxenes and amphiboles of the Kangerdlugssuaq intrusion, East Greenland: Further evidence for the crustal contamination of syenite magma. Mineralogical Magazine, 45(377): 1-9

     

    Brown PE and Becker SM. 1986. Fractionation, hybridisation and magma-mixing in the Kialineq centre East Greenland. Contributions to Mineralogy and Petrology, 92(1): 57-70

     

    Cliff SJ. 1997. The petrology of the layered gabbro intrusion, eastern gabbro, Coldwell alkaline complex, Northwestern Ontario, Canada: Evidence for multiple phases of intrusion in a ring dyke. Lithos, 40(2-4): 243-259

     

    Crawford MB and Windley BF. 1990. Leucogranites of the Himalaya/Karakoram: Implications for magmatic evolution within collisional belts and the study of collision-relates leucogranite petrogenesis. Journal of Volcanology and Geothermal Research, 44(1-2): 1-19

     

    Diwu CR, Sun Y, Lin CL and Wang HL. 2010. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North Craton. Chinese Science Bulletin, 55(23): 2557-2571

     

    Dorais MJ. 1990. Compositional variations in pyroxenes and amphiboles of the Belknap Mountain complex, New Hampshire: Evidence for the origin of silica-saturated alkaline rocks. American Mineralogist, 75(9-10): 1092-1105

     

    Ernst RE, Buchan KL, Hamilton MA, Okrugin AV and Tomshin MD. 2000. Integrated paleomagnetism and U-Pb geochronology of mafic dikes of the eastern Anabar shield region, Siberia: Implication for Mesoproterozoic paleolatitude of Siberia and comparison with Laurentia. The Journal of Geology, 108(4): 381-401

     

    Ernst RE and Bell K. 2010. Large igneous provinces (LIPs) and carbonatites. Mineralogy and Petrology, 98(1-4): 55-76

     

    Fitton JG. 1987. The Cameroon line, West Africa: A comparison between oceanic and continental alkaline volcanism. In: Fitton JG and Upton BGJ (eds.). Alkaline Igneous Rocks. Oxford: Blackwell, 273-291

     

    Foland KA, Landoll JD, Henderson CMB and Chen JF. 1993. Formation of cogenetic quartz and nepheline syenites. Geochimica et Cosmochimica Acta, 57(3): 697-704

     

    Gao LZ, Zhang CH, Shi XY, Song B, Wang ZQ and Liu YM. 2008. Mesoproterozoic age for Xiamaling Formation in North China Plate indicated by zircon SHRIMP dating. Chinese Science Bulletin, 53(17): 2665-2671

     

    Geng HY, Sun M, Yuan C, Xiao WJ, Xian WS, Zhao GC, Zhang LF, Wong K and Wu FY. 2009. Geochemical, Sr-Nd and zircon U-Pb-Hf isotopic studies of Late Carboniferous magmatism of the West Junggar, Xinjiang: Implications for ridge subduction? Chemical Geology, 266(3-4): 364-389

     

    Goldberg AS. 2010. Dyke swarms as indicators of major extensional events in the 1.9~1.2Ga Columbia supercontinent. Journal of Geodynamics, 50(3-4): 176-190

     

    Halls HC, Li JH, Davis D, Hou G, Zhang BX and Qian XL. 2000. A precisely dated Proterozoic palaeomagnetic pole from the North China craton, and its relevance to palaeoconental reconstruction. Geophysical Journal International, 143(1): 185-203

     

    Harris C, Marsh JS and Milner SC. 1999. Petrology of the alkaline core of the Messum igneous complex, Namibia: Evidence for the progressively decreasing effect of crustal contamination. Journal of Petrology, 40(9): 1377-1397

     

    Hou GT, Santosh M, Qian XL, Lister GS and Li JH. 2008. Tectonic constraints on 1.3~1.2Ga final breakup of Columbia supercontinent from a giant radiating dyke swam. Gondwana Research, 14(3): 561-566

     

    Huang WL and Wyllie PJ. 1981. Phase relationships of S-type granite with H2O to 35kbar: Muscovite granite from Harney Peak, South Dakota. Journal of Geophysical Research, 86(B11): 10515-10529

     

    Huang XL, Simon AW, Yang QJ and Zhong JW. 2012. Geochronology and petrogenesis of gray gneisses from the Taihua Complex at Xiong'er in the southern segment of the Trans-North China Orogen: Implications for tectonic transformation in the Early Paleoproterozoic. Lithos, 134-135: 236-252

     

    Li XH, Long WG, Li LQ, Liu Y, Zheng YF, Yang YH, Chamberlain KR, Wan DF, Guo CH, Wang XC and Tao H. 2010. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age. Geostandards and Geoanalytical Research, 34(2): 117-134

     

    Liang XR, Wei GJ, Li XH and Liu Y. 2003. Precise measurement of 143Nd/144Nd and Sm/Nd ratios using multiple collectors inductively coupled plasma mass spectrometer (MC-ICP-MS). Geochimica, 32(1): 91-96(in Chinese with English abstract)

     

    Liu XY. 2011. Chronological, petrological, and geochemical characteristics of the Paleo-Mesoproterozoic alkali-rich intrusive rocks along the southern part of the North China Craton. Master's Degree Thesis. Beijing: Chinese Academy of Geological Sciences (in Chinese with English summary)

     

    Liu Y, Liu HC and Li XH. 1996. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica, 25(6): 552-558(in Chinese with English abstract)

     

    Lu SN, Zhao GC, Wang HC and Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160(1-2): 77-93

     

    Lubala RT, Frick C, Rogers JH and Walraven F. 1994. Petrogenesis of syenites and granites of the Schiel alkaline complex, northern Transvaal, South Africa. The Journal of Geology, 102(3): 307-316

     

    Lynch DJ, Musselman TE, Gutmann JT and Patchett PJ. 1993. Isotopic evidence for the origin of Cenozoic volcanic rocks in the Pinacate volcanic field, northwestern Mexico. Lithos, 29(3-4): 295-302

     

    Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643

     

    Marks M, Vennemann T, Siebel W and Markl G. 2003. Quantification of magmatic and hydrothermal processes in a peralkaline syenite-alkali granite complex based on textures, phase equilibria, and stable and radiogenic isotopes. Journal of Petrology, 44(7): 1247-1280

     

    Meert JG and Stuckey W. 2002. Revisiting the paleomagnetism of the 1.476Ga St. Francois Mountains igneous province, Missouri. Tectonics, 21(2): 1-1-1-19

     

    Mingram B, Trumbull RB, Littman S and Gerstenberger H. 2000. A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: Evidence for mixing of crust and mantle-derived components. Lithos, 54(1-2): 1-22

     

    Peng P, Zhai MG, Ernst RE, Guo JH, Liu F and Hu B. 2008. A 1.78Ga large igneous province in the North China Craton: The Xiong'er Volcanic Province and the North China dyke swarm. Lithos, 101(3-4): 260-280

     

    Peng P, Zhai MG, Li QL, Wu FY, Hou QL, Li Z, Li TS and Zhang YB. 2010. Neoproterozoic (~900Ma) Sariwon sills in North Korea: Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research, 20(1): 243-254

     

    Piper JDA, Zhang JS, Huang B and Roberts AP. 2011. Palaeomagnetism of Precambrian dyke swarms in the North China Shield: The ~1.8Ga LIP event and crustal consolidation in late Palaeoproterozoic times. Journal of Asian Earth Sciences, 41(6): 504-524

     

    Rogers JJW and Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22

     

    Rollison HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. London: Longman, 1-352

     

    Santosh M. 2010. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Research, 178(1-4): 149-167

     

    Sheppard S. 1995. Hybridization of shoshonitic lamprophyre and calc-alkaline granite magma in the Early Proterozoic Mt. Bundey Igneous suite, Northern Territory. Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia, 42(2): 173-185

     

    Shi Y, Yu JH, Xu XS, Tang HF, Qin JS and Chen LH. 2011. U-Pb ages and Hf isotope compositions of zircons of Taihua Group in Xiaoqinling area, Shaanxi Province. Acta Petrologica Sinica, 27(10): 588-597(in Chinese with English abstract)

     

    Shi YR, Liu DY, Krner A, Jian P, Miao LC and Zhang FQ. 2012. Ca. 1318Ma A-type granite on the northern margin of the North China Craton: Implications for intraplate extension of the Columbia supercontinent. Lithos, 148: 1-9

     

    Su WB, Zhang SH, Huff WD, Li HK, Ettensohn FR, Chen XY, Yang HM, Han YG, Song B and Santosh M. 2008. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso- to Neoproterozoic history of the North China Craton. Gondwana Research, 14(3): 543-553

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345

     

    Sutcliffe RH, Smith AR, Doherty W and Barnett RL. 1990. Mantle derivation of Archean amphibole-bearing granitoid and associated mafic rocks: Evidence from the southern Superior province, Canada. Contributions to Mineralogy and Petrology, 105(3): 255-274

     

    Thorpe RS and Tindle AG. 1992. Petrology and petrogenesis of a tertiary bimodal dolerite-peralkaline/sublkline trachyte/rhyolite dyke association from Lundy, Bristol Channel, UK. Geological Journal, 27(2): 101-117

     

    Tu XL, Zhang H, Deng WF, Ling MX, Liang HY, Liu Y and Sun WD. 2001. Application of RESOlution in-situ laser ablation ICP-MS in trace element analyses. Geochimica, 40(1): 83-98(in Chinese with English abstract)

     

    Wang YJ, Fan WM, Zhang YH, Guo F, Zhang HF and Peng TP. 2004. Geochemical, 40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800Ma event of the North China Craton. Precambrian Research, 135(1-2): 55-77

     

    Wei GJ, Liang XR, Li XH and Liu Y. 2003. Precise measurement of Sr isotopic composition of liquid and solid base using (LA) MC-ICP MS. Geochimica, 31(3): 295-299(in Chinese with English abstract)

     

    Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126

     

    Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on the interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569

     

    Xie LW, Zhang YB, Zhang HH, Sun JF and Wu FY. 2008. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chinese Science Bulletin, 53(10): 1565-1573

     

    Xu XS, GriffinWL, Ma X, O'Reilly SY, He ZY and Zhang CL. 2009. The Taihua group on the southern margin of the North China craton: Further insights from U-Pb ages and Hf isotope compositions of zircons. Mineralogy and Petrology, 97(1-2): 43-59

     

    Yu XQ, Liu JL, Li CL, Chen SQ and Dai YP. 2013. Zircon U-Pb dating and Hf isotope analysis on the Taihua Complex: Constraints on the formation and evolution of the Trans-North China Orogen. Precambrian Research, 230: 31-44

     

    Zhai MG, Bian AG and Zhao TP. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during Late Palaeoproterozoic and Meso-Proterozoic. Science in China (Series D), 43(Suppl.): 219-232

     

    Zhang SH, Liu SW, Zhao Y, Yang JH, Song B and Liu XM. 2007. The 1.75~1.68Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Research, 155(3-4): 287-312

     

    Zhang SH, Zhao Y, Yang ZY, He ZF and Wu H. 2009. The 1.35Ga diabase sills from the northern North China Craton: Implications for breakup of the Clumbia (Nuna) supercontinent. Earth and Planetary Science Letters, 288(3-4): 588-600

     

    Zhang SH, Zhao Y and Santosh M. 2012. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222-223: 339-367

     

    Zhao GC, Cawood PA, Wilde SA and Sun M. 2002. Review of the global 2.1~1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162

     

    Zhao GC, Sun M and Wilde SA. 2003a. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia supercontinent: Records in the North China Craton. Gondwana Research, 6(3): 417-434

     

    Zhao GC, Sun M and Wilde SA. 2003b. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Science in China (Series D), 46(1): 23-38

     

    Zhao GC, Sun M, Wilde SA and Li SD. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67(1-2): 91-123

     

    Zhao GC, Sun M, Wilde SA and Li SD. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202

     

    Zhao GC, Sun M, Wilde SA, Li SZ and Zhang J. 2006. Some key issues in reconstructions of Proterozoic supercontinents. Journal of Asian Earth Sciences, 28(1): 3-19

     

    Zhao JX, Shiraishi K, Ellis DJ and Sheraton JW. 1995. Geochemical and isotopic studies of syenites from the Yamato Mountains, East Antarctica: Implications for the origin of syenitic magmas. Geochimica et Cosmochimica Acta, 59(7): 1363-1382

  • 加载中

(11)

计量
  • 文章访问数:  7142
  • PDF下载数:  4350
  • 施引文献:  0
出版历程
收稿日期:  2013-02-22
修回日期:  2013-05-14
刊出日期:  2013-07-01

目录