中条山落家河铜矿流体包裹体初步研究

姜玉航, 罗勇, 牛贺才, 郭双龙, 李宁波. 2013. 中条山落家河铜矿流体包裹体初步研究. 岩石学报, 29(7): 2583-2592.
引用本文: 姜玉航, 罗勇, 牛贺才, 郭双龙, 李宁波. 2013. 中条山落家河铜矿流体包裹体初步研究. 岩石学报, 29(7): 2583-2592.
JIANG YuHang, LUO Yong, NIU HeCai, GUO ShuangLong, LI NingBo. 2013. Study on fluid inclusions from the Luojiahe copper deposit in Zhongtiaoshan region. Acta Petrologica Sinica, 29(7): 2583-2592.
Citation: JIANG YuHang, LUO Yong, NIU HeCai, GUO ShuangLong, LI NingBo. 2013. Study on fluid inclusions from the Luojiahe copper deposit in Zhongtiaoshan region. Acta Petrologica Sinica, 29(7): 2583-2592.

中条山落家河铜矿流体包裹体初步研究

  • 基金项目:

    本文受国家973项目(2012CB416603)资助.

详细信息
    作者简介:

    姜玉航,男,1987年生,硕士生,地球化学专业,E-mail: jiangyuhang@gig.ac.cn

    通讯作者: 牛贺才,男,研究员,地球化学专业,E-mail: niuhc@gig.ac.cn
  • 中图分类号: P618.41

Study on fluid inclusions from the Luojiahe copper deposit in Zhongtiaoshan region

More Information
  • 落家河铜矿位于中条裂谷东南部的构造-剥蚀天窗内,矿体赋存于中元古界西阳河群安山岩覆盖区下部的宋家山组沉积-火山变质岩系中。本文重点研究了不同空间位置与矿体共生的石英脉中的流体包裹体,以探讨落家河铜矿的成矿流体特征和成矿机制。系统的包裹体岩相学观察表明,落家河铜矿床流体包裹体类型按相态主要分为纯气相包裹体(Ⅰ型)、纯液相包裹体(Ⅱ型)、富气相的气液两相包裹体(Ⅲ型)、富液相的气液两相包裹体(Ⅳ型)和含子矿物多相包裹体(Ⅴ型)五种类型。矿体上部石英脉中主要为Ⅱ型和Ⅳ型包裹体,矿体下部石英脉中主要为Ⅴ型和Ⅰ型包裹体,且两种包裹体紧密共存,体现了沸腾包裹体组合的特征。显微测温结果显示,原生的富液相气液两相包裹体(IVa型)具有CaCl2-NaCl-H2O体系(IVa1型)和NaCl-H2O体系(IVa2型)两种流体体系,其均一温度分别为100~208℃和151~306℃,盐度为10.2%~20.4% NaCleqv和3.4%~15.1% NaCleqv,分别对应矿体上部和下部石英脉,显示出热卤水和岩浆热液两种不同的流体来源。Ⅴ型包裹体的均一温度为175~300℃,盐度达30.7%~38.2% NaCleqv。研究结果显示,热卤水和岩浆热液的流体作用机制有所不同,前者是古海水在花岗岩侵入体的驱动下形成对流循环并从火山岩中萃取金属元素形成的含矿热卤水。热卤水在沿断裂通道上升过程中由于降温、减压使成矿物质沉淀;后者主要是从岩浆中分离出的中温中盐度流体,它在到达断裂通道时由于压力骤降发生流体沸腾作用,并产生矿质沉淀。激光拉曼探针分析显示,流体包裹体气相成分主要是水,含有少量CO2。结合矿床形成的构造背景、热液通道、驱动机制和成矿流体特征,作者认为落家河铜矿可能是一个前寒武纪海相火山成因块状硫化物矿床。

  • 加载中
  • 图 1 

    中条山区域地质略图(据孙大中和胡维兴, 1993修改)

    Figure 1. 

    Geological sketch map of Zhongtiaoshan region(modified after Sun and Hu, 1993)

    图 2 

    落家河铜矿地质略图(据黄崇轲等, 2001修改)

    Figure 2. 

    Geological sketch map of Luojiahe copper deposit(modified after Huang et al., 2001)

    图 3 

    落家河铜矿流体包裹体显微照片

    Figure 3. 

    Photomicrographs of fluid inclusions in the Luojiahe copper deposit

    图 4 

    石英中流体包裹体均一温度(a)和盐度(b)直方图

    Figure 4. 

    Histogram of homogenization temperature(a)and salinity(b)for fluid inclusions in quartz

    图 5 

    落家河铜矿石英中流体包裹体的激光拉曼光谱

    Figure 5. 

    Laser Raman spectra for the fluid inclusions in quartz from the Luojiahe copper deposit

  •  

    Beaty DW and Taylor HP. 1982. Some petrologic and oxygen isotopic relationships in the Amulet Mine, Noranda, Quebec, and their bearing on the origin of Archean massive sulfide deposits. Economic Geology, 77(1): 95-108

     

    Bischoff JL and Dickson FW. 1975. Seawater-basalt interaction at 200℃ and 500bars: Implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry. Earth and Planetary Science Letters, 25(3): 385-397

     

    Bradshaw GD, Rowins SM, Peter JM and Taylor BE. 2008. Genesis of the Wolverine volcanic sediment-hosted massive sulfide deposit, Finlayson Lake District, Yukon, Canada: Mineralogical, mineral chemical, fluid inclusion, and sulfur isotope evidence. Economic Geology, 103(1): 35-60

     

    Burnham CW. 1979. Magmas and hydrothermal fluids. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 2nd Edition. US: John Wiley & Sons, 71-136

     

    Compile Group of Geology of Copper Deposits in Zhongtiao Mountion. 1978. Geology of Copper Deposits in Zhongtiao Mountion. Beijing: Geologcal Publishing House, 1-190(in Chinese)

     

    Franklin J, Lydon J and Sangster D. 1981. Volcanic-associated massive sulfide deposits. Economic Geology, 75: 485-627

     

    Gu LX, Liu XH, Zhen YQ and Wang YH. 1993. Rubidium-strontium and lead isotope geology of the Luojiahe granodiorite in the Zhongtiaoshan district. Journal of Nanjing University (Nature Sciences Edition), 29(4): 651-657

     

    Hall DL, Sterner SM and Bodnar RJ. 1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology, 83(1): 197-202

     

    Henley RW and McNabb A. 1978. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Economic Geology, 73(1): 1-20

     

    Hou ZQ, Li YQ, Zhang QL and Qu XM. 2003. End-menbers and mixing of fluids in submarine hydrothermal system: Evidence from fluid inclusions in the Baiyinchang and Gacun VMS deposits. Acta Petrologica Sinica, 19(2): 221-234 (in Chinese with English abstract)

     

    Hou ZQ, Khin Z, Peter R, Li YQ, Qu XM, Song SH, Peng LG and Huang JJ. 2008. Geology, fluid inclusions, and oxygen isotope geochemistry of the Baiyinchang pipe-style volcanic-hosted massive sulfide Cu deposit in Gansu Province, northwestern China. Economic Geology, 103(1): 269-292

     

    Huang CK, Bai Y, Zhu YS et al. 2001. Copper Deposit of China. Beijing: Geological Publishing Press, 423-428 (in Chinese)

     

    Hu WX and Sun DZ. 1987. Mineralization and evolution of the Early Proterozoic copper deposits in the Zhongtiao Mountains. Acta Geologica Sinica, 9(2): 152-165, 198 (in Chinese with English abstract)

     

    Huston DL, Pehrsson S, Eglington BM and Zaw K. 2010. The geology and metallogeny of volcanic-hosted massive sulfide deposits: Variations through geologic time and with tectonic setting. Economic Geology, 105(3): 571-591

     

    Li JY. 1986. Metallogenetic research of a new type copper deposit in Zhongtiaoshan. Geology and Exploration, (9): 17-23 (in Chinese)

     

    Liu LM, Peng XL and Wang ZR. 1997. Ore forming fluids of VMS deposits: Composition, origin and process mechanism. Mineral Resources and Geology, 11(6): 15-21 (in Chinese with English abstract)

     

    Lu HZ. 1997. Ore-forming Fluid. Beijing: Beijing Science and Technology Press, 120-151(in Chinese)

     

    Lu HZ, Fan HR, Ni P et al. 2004. Fluid Inclusion. Beijing: Science Press, 406-419 (in Chinese)

     

    Munhá J, Barriga FJAS and Kerrich R. 1986. High 18O ore-forming fluids in volcanic-hosted base metal massive sulfide deposits; geologic, 18O/16O, and D/H evidence from the Iberian pyrite belt; Crandon, Wisconsin; and Blue Hill, Maine. Economic Geology, 81(3): 530-552

     

    Ohmoto H, Mizukami M, Drummond S, Eldridge C, Pisutha-Arnond V and Lenagh T. 1983. Chemical processes of Kuroko formation. Economic Geology Monograph, 5: 570-604

     

    Ohmoto H. 1996. Formation of volcanogenic massive sulfide deposits: The Kuroko perspective. Ore Geology Reviews, 10(3-6): 135-177

     

    Pichavant M, Ramboz C and Weisbrod A. 1982. Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data. 1. Phase equilibria analysis: A theoretical and geometrical Approach. Chemical Geology, 37(1-2): 1-27

     

    Roedder E. 1984. Fluid inclusions. Mineralogical Society of America Reviews in Mineralogy, 12: 1-644

     

    Skirrow RG and Franklin JM. 1994. Silicification and metal leaching in semiconformable alteration beneath the Chisel Lake massive sulfide deposit, Snow Lake, Manitoba. Economic Geology, 89(1): 31-50

     

    Sun DZ, Hu WX, Tang M, Zhao FQ and Kent CC. 1990. Origin of Late Archean and Early Proterozoic rocks and associated mineral deposits from the Zhongtiao Mountains, east-central China. Precambrian Research, 47(3-4): 287-306

     

    Sun DZ, Li HM, Lin YX, Zhou HF, Zhao FQ and Tang M. 1991. Precambrian geochronology, chronotectonic framework and model of chronocrustal structure of the Zhongtiao Mountains. Acta Geologica Sinica, 65(3): 216-231 (in Chinese with English abstract)

     

    Sun DZ and Hu WX. 1993. Precambrian Geochronology, Chronotectonic Framework and Model of Chronocrustal Structure of the Zhongtiao Mountains. Beijing: Geologcal Publishing House (in Chinese)

     

    Sun JY, Ji SK and Zhen YQ. 1995. The Copper Deposits in the Zhongtiao Rift. Beijing: Geologcal Publishing House, 1-142 (in Chinese)

     

    Xia LY, Peng LG, Liu B and Xia ZC. 1985. Melt inclusions in quartz keratophyre at Baiyinchang. In:Bulletin of Xi'an Institute of Geology and Mineral Reosurce. Beijing: Geological Society of China, 11: 1-8 (in Chinese)

     

    Yang KH and Scott SD. 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature, 383(6599): 420-423

     

    Yang KH and Scott SD. 2002. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the eastern Manus back-arc basin, western Pacific. Economic Geology, 97(5): 1079-1100

     

    Yang KH and Scott SD. 2005. Magmatic sources of volatiles and metals for volcanogenic massive sulfide deposits on modern and ancient seafloors: Evidence from melt inclusions. In: Mineral Deposit Research: Meeting the Global Challenge. Berlin: Springer-Verlag, 715-718

     

    Yang KH and Scott SD. 2006. Magmatic fluids as a source of metals in seafloor hydrothermal systems. Geophysical Monograph Series, 166: 163-184

     

    Zhai MG and Peng P. 2007. Paleoproterozoic events in the North China Craton. Acta Petrologica Sinica, 23(11): 2665-2682 (in Chinese with English abstract)

     

    Zhai MG. 2010. Tectonic evolution and metallogenesis of North China Craton. Mineral Deposits, 29(1): 24-36 (in Chinese with English abstract)

     

    Zhai MG and Santosh M. 2013. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Research, 24(1): 275-297

     

    Zhen YQ and Xi ZR. 1990. Geochemical features of RE-elements in the Luojiahe Cu-deposit in Zhongtiao Mountain. Geology and Exploration, 26(12): 15-21(in Chinese)

     

    Zhen YQ, Du JS and Liu LL. 1993. The Zhongtiao Rift Zone and the Luojiahe Copper Deposit. Wuhan: China University of Geosciences Press (in Chinese)

  • 加载中

(5)

计量
  • 文章访问数:  4685
  • PDF下载数:  6900
  • 施引文献:  0
出版历程
收稿日期:  2013-02-13
修回日期:  2013-05-30
刊出日期:  2013-07-01

目录