为什么要提出西藏东南部早白垩世措美大火成岩省

朱弟成, 夏瑛, 裘碧波, 王青, 赵志丹. 2013. 为什么要提出西藏东南部早白垩世措美大火成岩省. 岩石学报, 29(11): 3659-3670.
引用本文: 朱弟成, 夏瑛, 裘碧波, 王青, 赵志丹. 2013. 为什么要提出西藏东南部早白垩世措美大火成岩省. 岩石学报, 29(11): 3659-3670.
ZHU DiCheng, XIA Ying, QIU BiBo, WANG Qing, ZHAO ZhiDan. 2013. Why do we need to propose the Early Cretaceous Comei large igneous province in southeastern Tibet?. Acta Petrologica Sinica, 29(11): 3659-3670.
Citation: ZHU DiCheng, XIA Ying, QIU BiBo, WANG Qing, ZHAO ZhiDan. 2013. Why do we need to propose the Early Cretaceous Comei large igneous province in southeastern Tibet?. Acta Petrologica Sinica, 29(11): 3659-3670.

为什么要提出西藏东南部早白垩世措美大火成岩省

  • 基金项目:

    本文受国家973项目(2012CB822001、2011CB403102);地质过程与矿产资源国家重点实验室科技部专项经费和中国地质调查局工作项目(1212011121260)联合资助.

详细信息
    作者简介:

    朱弟成, 男, 1972年生,博士, 教授, 主要从事岩浆作用与特提斯演化研究,E-mail: dchengzhu@163.com

  • 中图分类号: P588.12

Why do we need to propose the Early Cretaceous Comei large igneous province in southeastern Tibet?

  • 近年在西藏东南部特提斯喜马拉雅带东段大规模白垩纪火成岩受到了很多学者的关注。这里的火成岩岩石类型包括玄武岩、镁铁质岩墙/岩床、辉长岩侵入体以及少量层状超镁铁质岩和酸性火山岩。锆石U-Pb定年结果指示现今覆盖面积约50000km2的岩浆活动发生在130~136Ma(峰期约132Ma)之间。镁铁质岩显示OIB型(高Ti)、N-MORB型(低Ti)和过渡型(介于二者之间)三种地球化学类型,其中未受地壳混染的镁铁质岩的Sr-Nd同位素和锆石Hf同位素成分类似于Kerguelen地幔柱产物。在扣除堆晶橄榄石之后,通过橄榄石-熔体平衡计算,苦橄玢岩母岩浆的MgO含量约20%,对应的地幔潜温>1560℃。西藏东南部白垩纪火成岩浆活动这种覆盖范围大、持续时间短和地幔潜温高等特征,非常类似于世界上其它地幔柱成因的大火成岩省或热点,因而将其描述和命名为措美(Comei)大火成岩省是合理的。年代学、地球化学和古地理重建资料显示藏南措美大火成岩省和南西澳大利亚同期的Bunbury玄武岩可能代表了同一个大火成岩省(即Comei-Bunbury大火成岩省)。Comei-Bunbury大火成岩省很可能记录了Kerguelen地幔柱在132Ma左右的早期岩浆作用,拉开了大印度从澳大利亚分离出来的序幕,影响了同期Weissert大洋缺氧事件的形成。

  • 加载中
  • 图 1 

    西藏东南部特提斯喜马拉雅带中东部地质简图(据Zhu et al., 2008, 2009; 裘碧波等, 2010修改)

    Figure 1. 

    Simplified geological map of the east-central Tethyan Himalaya, southeastern Tibet (after Zhu et al., 2008, 2009; Qiu et al., 2010)

    图 2 

    西藏东南部措美大火成岩省的野外出露情况

    Figure 2. 

    Field occurrences of the Comei LIP in southeastern Tibet

    图 3 

    西藏东南部措美大火成岩省的锆石U-Pb年龄柱状图

    Figure 3. 

    Histograms of zircon U-Pb age dates for the Comei LIP

    图 4 

    西藏东南部措美大火成岩省镁铁质岩的地球化学类型图

    Figure 4. 

    Geochemical types of the mafic rocks from the Comei LIP in southeastern Tibet

    图 5 

    西藏东南部措美大火成岩省的原始岩浆成分和地幔潜温

    Figure 5. 

    Primitive magma compositions and mantle potential temperature calculated for the Comei LIP

    图 6 

    东冈瓦纳大陆约132Ma构造重建图(据Heine and Müller, 2005; Zhu et al., 2008修改)

    Figure 6. 

    Reconstructions of Eastern Gondwana at ca. 132Ma (after Heine and Müller, 2005; Zhu et al., 2008)

    图 7 

    西藏东南部措美大火成岩省镁铁质岩与印度洋Kerguelen地幔柱产物的同位素地球化学对比

    Figure 7. 

    Isotopic geochemical comparison between the mafic rocks from the Comei LIP and the products of Kerguelen plume in Indian Ocean

  •  

    Baksi AK. 1995. Petrogenesis and timing of volcanism in the Rajmahal flood basalt province, northeastern India. Chemical Geology, 121(1-4): 73-90

     

    Bryan SE and Ernst RE. 2008. Revised definition of large igneous provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202

     

    Bryan SE and Ferrari L. 2013. Large igneous provinces and silicic large igneous provinces: Progress in our understanding over the last 25 years. Geological Society of America Bulletin, 125(7-8): 1053-1078

     

    Bureau of Geology and Mineral Resources of Xizang Autonomous Region. 1993. Regional Geology of Xizang (Tibet) Autonomous Region. Beijing: Geological Publishing House, 449-450 (in Chinese)

     

    Chauvel C and Blichert-Toft J. 2001. A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth and Planetary Science Letters, 190(3-4): 137-151

     

    Chen X, Wang CS, Hu XM and Huang YJ. 2008. The occurrence of iron in the Chuangde section of Gyangze, southern Tibet: Implications for the paleoceanography. Acta Geologica Sinica, 82(1): 77-84 (in Chinese with English abstract)

     

    Coffin MF and Eldholm O. 1994. Large igneous provinces: Crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32(1): 1-36

     

    Coffin MF, Pringle MS, Duncan RA, Gladczenko TP, Storey M, Müller RD and Gahagan LA. 2002. Kerguelen hotspot magma output since 130Ma. Journal of Petrology, 43(7): 1121-1139

     

    Davies HL, Sun SS, Frey FA, Gautier I, McCulloch MT, Price RC, Bassias Y, Klootwijk CT and LeClaire L. 1989. Basalt basement from the Kerguelen Plateau and the trail of a Dupal plume. Contributions to Mineralogy and Petrology, 103(4): 457-469

     

    Duncan RA. 2002. A time frame for construction of the Kerguelen Plateau and Broken Ridge. Journal of Petrology, 43(7): 1109-1119

     

    Erba E, Bartolini A and Larson RL. 2004. Valanginian Weissert oceanic anoxic event. Geology, 32(2): 149-152

     

    Ernst RE, Bleeker W, Söderlund U and Kerr AC. 2013. Large Igneous Provinces and supercontinents: Toward completing the plate tectonic revolution. Lithos, 174: 1-14

     

    Frey FA, McNaughton NJ, Nelson DR, Delaeter JR and Duncan RA. 1996. Petrogenesis of the Bunbury basalt, western Australia: Interaction between the Kerguelen plume and Gondwana lithosphere? Earth and Planetary Science Letters, 144(1-2): 163-183

     

    Frey FA, Weis D, Borisova A and Xu G. 2002. Involvement of continental crust in the formation of the cretaceous Kerguelen Plateau: New perspectives from ODP Leg 120 Sites. Journal of Petrology, 43(7): 1207-1239

     

    Fujimaki H, Tatsumoto M and Aoki KI. 1984. Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. Journal of Geophysical Research: Solid Earth, 89(C1): B662-B672

     

    Ghatak A and Basu AR. 2011. Vestiges of the Kerguelen plume in the Sylhet Traps, northeastern India. Earth and Planetary Science Letters, 308(1-2): 52-64

     

    Heine C and Müller RD. 2005. Late Jurassic rifting along the Australian northwest shelf: Margin geometry and spreading ridge configuration. Australian Journal of Earth Sciences, 52(1): 27-39

     

    Herzberg C and O'Hara MJ. 1998. Phase equilibrium constraints on the origin of basalts, picrites, and komatiites. Earth-Science Reviews, 44(1-2): 39-79

     

    Herzberg C and O'Hara MJ. 2002. Plume-associated ultramafic magmas of phanerozoic age. Journal of Petrology, 43(10): 1857-1883

     

    Herzberg C, Asimow PD, Arndt N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ and Saunders AD. 2007. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochemistry Geophysics Geosystems, 8(2): 1-34

     

    Herzberg C and Asimow PD. 2008. Petrology of some oceanic island basalts: PRIMELT2. XLS software for primary magma calculation. Geochemistry, Geophysics, Geosystems, 9(9): 1-25

     

    Hodges KV. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin, 112: 324-350

     

    Hu XM. 2005. Middle Cretaceous abnormal geological events and global change. Earth Science Frontiers, 12(2): 222-230 (in Chinese with English abstract)

     

    Hu XM, Wang CS, Li XH and Jansa L. 2006. Upper Cretaceous oceanic red beds in southern Tibet: Lithofacies, environments and colour origin. Science in China (Series D), 49(8): 785-795

     

    Hu XM, Luba JS and Wang CS. 2008. Upper Jurassic-Lower Cretaceous stratigraphy in south-eastern Tibet: A comparison with the western Himalayas. Cretaceous Research, 29(2): 301-315

     

    Hu XM, Jansa L, Chen L, Griffin WL, O'Reilly SY and Wang JG. 2010. Provenance of Lower Cretaceous Wölong volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of Eastern Gondwana. Sedimentary Geology, 223(3-4): 193-205

     

    Hu XM, Wagreich M and Yilmaz IO. 2012. Marine rapid environmental/climatic change in the Cretaceous greenhouse world. Cretaceous Research, 38: 1-6

     

    Ingle S, Weis D, Scoates JS and Frey FA. 2002. Relationship between the early Kerguelen plume and continental flood basalts of the paleo-Eastern Gondwanan margins. Earth and Planetary Science Letters, 197(1-2): 35-50

     

    Ingle S, Weis D, Doucet S and Mattielli N. 2003. Hf isotope constraints on mantle sources and shallow-level contaminants during Kerguelen hotspot activity since ~120Ma. Geochemistry Geophysics Geosystems, 4(8): 1-28

     

    Ingle S, Scoates JS, Weis D, Brügmann G and Kent RW. 2004. Origin of Cretaceous continental basalts in southwestern Australia and eastern Indian: Insights from Os and Hf isotopes. Chemical Geology, 209(1-2): 83-106

     

    Jiang SH, Nie FJ, Hu P and Liu Y. 2006. Important spreading event of the Neo-Tethys Ocean during the Late Jurassic and Early Cretaceous: Evidence from zircon U-Pb SHRIMP dating on diabase in Nagarze, southern Tibet. Acta Geologica Sinica, 80(4): 522-527

     

    Jiang SH, Nie FJ, Hu P, Liu Y and Lai XR. 2007. Geochemical characteristics of the Mafic dyke swarms in South Tibet. Acta Geologica Sinica, 81(1): 60-71 (in Chinese with English abstract)

     

    Kaiho K and Saito S. 1994. Oceanic crust production and climate during the last 100 Myr. Terra Nova, 6(4): 376-384

     

    Kent RW, Saunders AD, Kempton PD and Ghose NC. 1997. Rajmahal basalts, eastern India: Mantle sources and melt distribution at a volcanic rifted margin. In: Mahoney JJ and Coffin MF (eds.). Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism. Geophysical Monograph, American Geophysical Union, 100: 145-182

     

    Kieffer B, Arndt NT and Weis D. 2002. A bimodal alkalic shield volcano on Skiff Bank: Its place in the evolution of the Kerguelen Plateau. Journal of Petrology, 43(7): 1259-1286

     

    Le Bas MJ. 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology, 41(10): 1467-1470

     

    Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR and Zanettin B. 1989. Igneous Rocks A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Oxford: Blackwell Scientific, 33-36

     

    Lini A, Weissert H and Erba E. 1992. The Valanginian carbon isotope event: A first episode of greenhouse climate conditions during the Cretaceous. Terra Nova, 4(3): 374-384

     

    Macdougall JD. 1988. Continental Flood Basalts. Dordrecht: Kluwer Academic, 1-341

     

    Mahoney JJ, Jones WB, Frey FA, Salters VJM, Pyle DG and Davies HL. 1995. Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau and Southernmost Kerguelen Plateau: Cretaceous plateau volcanism in the Southeast Indian Ocean. Chemical Geology, 120(3-4): 315-345

     

    Neal CR, Mahoney J and Chazey W. 2002. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183. Journal of Petrology, 43(7): 1177-1205

     

    Pirajno F and Hoatson D. 2012. A review of Australia's large igneous provinces and associated mineral systems: Implications for mantle dynamics through geological time. Ore Geology Reviews, 48: 2-54

     

    Putirka KD. 2005. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems, 6(5): 1-14

     

    Qiu BB, Zhu DC, Zhao ZD and Wang LQ. 2010. The westward extension of Comei fragmented large igneous province in southern Tibet and its implications. Acta Petrologica Sinica, 26(7): 2207-2216 (in Chinese with English abstract)

     

    Richards MA, Duncan RA and Courtillot VE. 1989. Flood basalts and hots-pot tracks: Plume heads and tails. Science, 246(4926): 103-107

     

    Schettino A and Scotese CR. 2001. New internet software aids paleomagnetic analysis and plate tectonic reconstructions. Eos, Transactions, American Geophysical Union, 82(45): 530-536

     

    Segev A. 2002. Flood basalts, continental breakup and the dispersal of Gondwana: Evidence for periodic migration of upwelling mantle flows (plumes). EGU Stephan Mueller Special Publication Series, 2: 171-191

     

    Sensarma S, Paul D and Chalapathi Rao NV. 2013. Large igneous provinces-global perspectives and prospects in India. Current Science, 105(2): 182-192

     

    Sheth H. 2007. Large igneous provinces (LIPs): Definition, recommended terminology, and a hierarchical classification. Earth-Science Reviews, 85(3-4): 117-124

     

    Sinton CW and Duncan RA. 1997. Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian-Turonian boundary. Economic Geology, 92(7-8): 836-842

     

    Srivastava RK and Sinha AK. 2004. Geochemistry and petrogenesis of Early Cretaceous sub-alkaline mafic dykes from Swangkre-Rongmil, East Garo Hills, Shillong plateau, northeast India. Journal of Earth System Science, 113(4): 683-697

     

    Storey BC. 1995. The role of mantle plumes in continental breakup: Case histories from Gondwanaland. Nature, 377(6547): 301-308

     

    Sun SS and McDonough WF. 1989. Chemical and isotope systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in ocean Basins. Geological Society, London, Publication, 42(1): 313-345

     

    Tong JS, Liu J, Zhong HM, Xia J, Lu RK and Li YH. 2007. Zircon U-Pb dating and geochemistry of mafic dike swarms in the Lhozag area, southern Tibet, China, and their tectonic implications. Geological Bulletin of China, 26(12): 1654-1664 (in Chinese with English abstract)

     

    Toplis MJ. 2005. The thermodynamics of iron and magnesium partitioning between olivine and liquid: Criteria for assessing and predicting equilibrium in natural and experimental systems. Contributions to Mineralogy and Petrology, 149(1): 22-39

     

    Vervoort, JD and Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3-4): 533-556

     

    Wang CS, Hu XM, Sarti M, Scott RW and Li XH. 2005. Upper Cretaceous oceanic red beds in southern Tibet: A major change from anoxic to oxic, deep-sea environments. Cretaceous Research, 26(1): 21-32

     

    Wang CS, Hu XM, Huang YJ, Wagreich M, Scott R and Hay W. 2011. Cretaceous oceanic red beds as possible consequence of oceanic anoxic events. Sedimentary Geology, 235(1-2): 27-37

     

    Weissert H and Erba E. 2004. Volcanism, CO2 and palaeoclimate: A Late Jurassic-Early Cretaceous carbon and oxygen isotope record. Geological Society of London Journal, 161(4): 695-702

     

    White RS and McKenzie D. 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 94(B6): 7685-7729

     

    White RV and Saunders AD. 2005. Volcanism, impact and mass extinctions: Incredible or credible coincidences? Lithos, 79(3-4): 299-316

     

    Wignall PB. 2001. Large igneous provinces and mass extinctions. Earth Sciences Review, 53(1-2): 1-33

     

    Xia Y, Zhu DC, Zhao ZD, Wang Q, Yuan SH, Chen Y and Mo XX. 2012. Whole-rock geochemistry and zircon Hf isotope of the OIB-type mafic rocks from the Comei Large Igneous Province in southeastern Tibet. Acta Petrologica Sinica, 28(5): 1588-1602 (in Chinese with English abstract)

     

    Xiao L, Xu YG, Mei HJ, Zheng YF, He B and Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plume-lithosphere interaction. Earth and Planetary Science Letters, 228(3-4): 525-546

     

    Yu GM and Wang CS. 1990. Sedimentary Geology of the Xizang (Tibet) Tethys. Beijing Geological Publishing House, 10-49 (in Chinese)

     

    Zhang ZC, Mahoney JJ, Mao JW and Wang FS. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997-2019

     

    Zhong HM, Tong JS, Xia J, Lu RK and Qiu JQ. 2005. Characteristics and tectonic setting of volcanic rocks of the Sangxiu Formation in the southern part of Yamzho Yumco. Geological Bulletin of China, 24(1): 72-79 (in Chinese with English abstract)

     

    Zhu DC, Pan GT, Mo XX, Liao ZL, Jiang XS and Wang LQ. 2004. Permian to Cretaceous volcanic activities in the central segment of the Tethyan Himalayas (I): Distribution characteristics and significance. Geological Bulletin of China, 23(7): 645-654 (in Chinese with English abstract)

     

    Zhu DC, Pan GT, Mo XX, Liao ZL, Jiang XS, Wang LQ and Zhao ZD. 2005a. Geochemistry and petrogenesis of the Sangxiu Formation basalts in the central segment of Tethyan Himalaya. Geochimica, 34(1): 7-19 (in Chinese with English abstract)

     

    Zhu DC, Pan GT, Mo XX, Wang LQ, Liao ZL, Jiang XS and Geng QR. 2005b. SHRIMP U-Pb zircon dating for the dacite of the Sangxiu Formation in the central segment of Tethyan Himalaya and its implications. Chinese Science Bulletin, 50(6): 563-568

     

    Zhu DC, Pan GT, Mo XX, Liao ZL, Jiang XS, Wang LQ and Zhao ZD. 2007. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: A probable example of plume-lithosphere interaction. Journal of Asian Earth Sciences, 29(2-3): 320-335

     

    Zhu DC, Mo XX, Pan GT, Zhao ZD, Dong GC, Shi YR, Liao ZL and Zhou CY. 2008. Petrogenesis of the earliest Early Cretaceous mafic rocks from the Cona area of the eastern Tethyan Himalaya in South Tibet: Interaction between the incubating Kerguelen plume and the eastern Greater India lithosphere? Lithos, 100(1-4): 147-173

     

    Zhu DC, Chung SL, Mo XX, Zhao ZD, Niu YL, Song B and Yang YH. 2009. The 132Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology, 37(7): 583-586

     

    Zhu DC, Mo XX, Zhao ZD, Niu YL, Pan GT, Wang LQ and Liao ZL. 2009. Permian and Early Cretaceous tectonomagmatism in southern Tibet and Tethyan evolution: New perspective. Earth Science Frontiers, 16(2): 1-20 (in Chinese with English abstract)

     

    Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454

     

    陈曦, 王成善, 胡修棉, 黄永建. 2008. 西藏江孜地区海相白垩系铁赋存状态及古海洋意义. 地质学报, 82(1): 77-84

     

    胡修棉. 2005. 白垩纪中期异常地质事件与全球变化. 地学前缘, 12(2): 222-230

     

    胡修棉, 王成善, 李祥辉, Jansa L. 2006. 藏南上白垩统深水海相红层: 岩石类型、沉积环境与颜色成因. 中国科学(D辑), 36(9): 811-821

     

    江思宏, 聂凤军, 胡朋, 刘妍, 赖新荣. 2007. 藏南基性岩墙群的地球化学特征. 地质学报, 81(1): 60-71

     

    裘碧波, 朱弟成, 赵志丹, 王立全. 2010. 藏南措美残余大火成岩省的西延及意义. 岩石学报, 26(7): 2207-2216

     

    童劲松, 刘俊, 钟华明, 夏军, 鲁如魁, 李运怀. 2007. 藏南洛扎地区基性岩墙群锆石U-Pb定年-地球化学特征及构造意义. 地质通报, 26(12): 1654-1664

     

    西藏自治区地质矿产局. 1993. 西藏自治区地质志. 北京: 地质出版社, 449-450

     

    夏瑛, 朱弟成, 赵志丹, 王青, 袁四化, 陈越, 莫宣学. 2012. 藏东南措美大火成岩省中OIB型镁铁质岩的全岩地球化学和锆石Hf同位素. 岩石学报, 28(5): 1588-1602

     

    余光明, 王成善. 1990. 西藏特提斯沉积地质. 北京: 地质出版社, 10-49

     

    钟华明, 童劲松, 夏军, 鲁如魁, 邱军强. 2005. 藏南羊卓雍错南部桑秀组火山岩的特征及构造环境. 地质通报, 24(1): 72-79

     

    朱弟成, 潘桂棠, 莫宣学, 廖忠礼, 江新胜, 王立全. 2004. 藏南特提斯喜马拉雅带中段二叠纪-白垩纪的火山活动(I): 分布特点及其意义. 地质通报, 23(7): 645-654

     

    朱弟成, 潘桂棠, 莫宣学, 廖忠礼, 江新胜, 王立全, 赵志丹. 2005a. 特提斯喜马拉雅带中段桑秀组玄武岩的地球化学和岩石成因. 地球化学, 34(1): 7-19

     

    朱弟成, 潘桂棠, 莫宣学, 王立全, 廖忠礼, 江新胜, 耿全如. 2005b. 特提斯喜马拉雅桑秀组英安岩锆石 SHRIMP 年龄及其意义. 科学通报, 50(4): 375-379

     

    朱弟成, 莫宣学, 赵志丹, 牛耀龄, 潘桂堂, 王立全, 廖忠礼. 2009. 西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化: 新观点. 岩石学报, 16(2): 1-20

  • 加载中

(7)

计量
  • 文章访问数:  8001
  • PDF下载数:  10014
  • 施引文献:  0
出版历程
收稿日期:  2013-07-01
修回日期:  2013-10-01
刊出日期:  2013-11-01

目录