193nmLA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析

柳小明,高山,袁洪林,Bodo HATTENDORF,DetlefGNTHER,陈亮,胡圣红. 193nmLA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析[J]. 岩石学报, 2002, 18(3): 408-418.
引用本文: 柳小明,高山,袁洪林,Bodo HATTENDORF,DetlefGNTHER,陈亮,胡圣红. 193nmLA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析[J]. 岩石学报, 2002, 18(3): 408-418.
Analysis of 42 major and trace elements in glass standard reference materials by 193nm LA-ICPMS.[J]. Acta Petrologica Sinica, 2002, 18(3): 408-418.
Citation: Analysis of 42 major and trace elements in glass standard reference materials by 193nm LA-ICPMS.[J]. Acta Petrologica Sinica, 2002, 18(3): 408-418.

193nmLA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析

  • 基金项目:

    教育部骨干教师资助计划项目 (批准号 :教技司 (2 0 0 0 ) 14 3号 ),国家重点基础研究发展规划项目 (批准号 G19990 43 2 0 2 )联合资助

Analysis of 42 major and trace elements in glass standard reference materials by 193nm LA-ICPMS.

  • 本文采用配备有 193nm Ar F准分子 (excimer)激光器的 Geo L as2 0 0 M剥蚀系统和 Elan6 10 0 DRC ICP- MS对 4个美国地质调查所 (USGS)玻璃标准参考物质以及 3个美国国家标准技术研究院 (NIST)人工合成硅酸盐玻璃标准参考物质中几乎覆盖整个质量数范围 (从 7L i到 2 38U)的 38个微量和 4个主量 (Na、Mg、Ti和 Mn)元素进行了分析。分析结果表明 ,无论是对 USGS还是 NIST玻璃 ,元素分析的相对标准偏差 RSDs和分析值与参考值之间的相对偏差 (RDs)一般优于 10 % ,RSD和RD较大的元素主要出现在含量很低或不均匀样品中。稀土元素的 RSD显示 ,除 AGV- 2 G可能存在不均匀现象外 ,其它所测样品在 6 0 μm尺度上 ,元素分布是均匀的。本研究证明 ,由于 ICP- MS具有 10 8cps(每秒计数 )的动态线性范围 ,本实验室的L A- ICPMS系统可定量分析含量在百分之几的主量元素及微量元素。分析精密度和准确度可与常规溶液雾化进样 ICP- MS方法相媲美
  • 加载中
  • [1]

    [1]Becker J S, Dietze H-J. 1998. Inorganic trace analysis by mass spectrometry. Spectrochimica Acta Part B: 1475-1506

    [2]

    [2]Dulski P. 2001. Reference materials for geochemical studies: New analytical data by ICP-MS and critical discussion of reference values. Geostandards Newsletter, 25: 87-125

    [3]

    [3]Eggins S M, Woodhead J D, Kinsley L P J, Mortimer G E, Sylvester P, McCulloch M T, Hert J M and Handler M R. 1997. A simple method for the precise determination of 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology, 134, 311-326

    [4]

    [4]Gao S, Liu XM, Yuan HL, Harttendorf B, Günther D, Hu SH. 2002. Analysis of forty-two major and trace elements of USGS and NIST SRM Glasses by LA-ICPMS. Geostandard Newsletters (in press)

    [5]

    [5]Günther D, Frischknecht R, Heinrich C A. 1997. Capabilities of an Argon Fluoride 193 nm Excimer Laser Ablation Coupled Plasma mass Spectrometry Microanalysis of Geological Materials. J. Anal. At. Spectrom., 12: 939-944

    [6]

    [6]Günther D, Jackson S E and Longerich H P. 1999. Laser ablation and arc/sparc solid sample introduction into inductively coupled plasma mass spectrometers. Spectrochimica Acta Part B, 54: 381-409

    [7]

    [7]Günther D, Heinrich C A. 1999. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier. J. Anal. At. Spectrom., 14: 1363-1368

    [8]

    [8]Günther D, Heinrich C A. 1999. Comparision of the ablation behavior of 266 nm Nd: YAG and 193 nm ArF excimer laser for LA-ICP-MS analysis. J. Anal. At. Spectrom., 14: 1369-1374

    [9]

    [9]Horn I, Hinton R W, Jackson S E, Longerich H P. 1997. Ultra-trace element analysis of NIST SRM 616 and 614 using laser ablation microprobe-inductively coupled plasma mass spectrometry (LAM-ICP-MS): a comparison with secondary ion mass spectrometry (SIMS). Geostandards Newsletters, 21: 191-203

    [10]

    [10]Longerich H P, Günther D, Jackson S E. 1996. Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius J. Anal. Chem., 355:538-542

    [11]

    [11]Norman M D, Pearson N J, Sharma A, Griffin W L. 1996. Quantitative analysis of trace elements in geological materials by laser ablation ICPMS: instrumental operating conditions and calibration values of NIST glasses. Geostandards Newsletter, 20: 247-261

    [12]

    [12]Norman M D, Griffin W L, Pearson N J, Garciac M O, O\'Reilly S Y. 1998. Quantitative analysis of trace element abundances in glasses and minerals: a comparison of laser ablation inductively coupled plasma mass spectrometry, solution inductively coupled plasma mass spectrometry, proton microprobe and electron microprobe data. Journal of Analytical Atomic Spectrometry, 13: 477-482

    [13]

    [13]Pearce N J G, Perkins W T, Westgate J A, Gorton M P, Jackson S E, Neal C R and Chenery S P. 1997. A compilation of new and published major and trace element data for NIST SRM610 and NIST SRM 612 glass reference materials. Geostandards Newsletters, 20: 247-261

    [14]

    [14]Rocholl A. 1998. Major and trace element composition and homogeneity of microbeam reference material: Basalt glass USGS BCR-2G. Geostandards Newsletter, 22: 33-45

    [15]

    [15]Rocholl A, Duski P, Raczek I. 2000. New ID-TIMS, ICP-MS and SIMS data on the trace element composition and homogeneity of NIST certified reference material SRM 610-611. Geostandards Newsletter, 24: 261-274

    [16]

    [16]Rudnick R L, Barth M, Horn I, McDonough W F. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287: 278-281

    [17]

    [17]Rudnick R L, Gao S, McDonough W F. 2002. Compositions and thermobarometry of peridotite xenoliths from the North China craton. Journal of Petrology (in preparation)

    [18]

    [18]Steven F D. 1999. Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects. J. Anal. At. Spectrom., 14: 1385-1403

    [19]

    [19]USGS (2002) Geochemical Reference Materials and Certificateshttp://minerals.cr.usgs.gov/geo_chem_stand/.

  • 加载中
计量
  • 文章访问数:  11182
  • PDF下载数:  7786
  • 施引文献:  0
出版历程
修回日期:  2001-12-05
刊出日期:  2002-08-31

目录