华北克拉通北缘Columbia超大陆裂解事件:来自燕辽裂陷槽中部长城系碱性火山岩的地球化学、锆石U-Pb年代学和Hf同位素证据

张健, 田辉, 李怀坤, 苏文博, 周红英, 相振群, 耿建珍, 杨立功. 华北克拉通北缘Columbia超大陆裂解事件:来自燕辽裂陷槽中部长城系碱性火山岩的地球化学、锆石U-Pb年代学和Hf同位素证据[J]. 岩石学报, 2015, 31(10): 3129-3146.
引用本文: 张健, 田辉, 李怀坤, 苏文博, 周红英, 相振群, 耿建珍, 杨立功. 华北克拉通北缘Columbia超大陆裂解事件:来自燕辽裂陷槽中部长城系碱性火山岩的地球化学、锆石U-Pb年代学和Hf同位素证据[J]. 岩石学报, 2015, 31(10): 3129-3146.
ZHANG Jian, TIAN Hui, LI HuaiKun, SU WenBo, ZHOU HongYing, XIANG ZhenQun, GENG JianZhen, YANG LiGong. Age, geochemistry and zircon Hf isotope of the alkaline basaltic rocks in the middle section of the Yan-Liao aulacogen along the northern margin of the North China Craton: New evidence for the breakup of the Columbia Supercontinent[J]. Acta Petrologica Sinica, 2015, 31(10): 3129-3146.
Citation: ZHANG Jian, TIAN Hui, LI HuaiKun, SU WenBo, ZHOU HongYing, XIANG ZhenQun, GENG JianZhen, YANG LiGong. Age, geochemistry and zircon Hf isotope of the alkaline basaltic rocks in the middle section of the Yan-Liao aulacogen along the northern margin of the North China Craton: New evidence for the breakup of the Columbia Supercontinent[J]. Acta Petrologica Sinica, 2015, 31(10): 3129-3146.

华北克拉通北缘Columbia超大陆裂解事件:来自燕辽裂陷槽中部长城系碱性火山岩的地球化学、锆石U-Pb年代学和Hf同位素证据

  • 基金项目:

    本文受中国地质调查项目(12120113013900、1212011120142、12120115070501)、国家自然科学基金项目(41430210、41272046)和科技部科技基础性工作专项(2015FY310100)联合资助.

详细信息

Age, geochemistry and zircon Hf isotope of the alkaline basaltic rocks in the middle section of the Yan-Liao aulacogen along the northern margin of the North China Craton: New evidence for the breakup of the Columbia Supercontinent

More Information
  • 本文报导了华北克拉通北缘燕辽裂陷槽中部长城系大红峪组、团山子组碱性玄武质岩和侵入串岭沟组基性岩脉的岩石学、地球化学以及锆石SHRIMP U-Pb年龄和Hf同位素特征。结合区域地质资料与前人研究成果,对这些碱性玄武岩与基性岩脉的时代问题、岩浆岩起源和源区类型以及岩浆作用的动力学背景进行了讨论。研究表明大红峪组碱性玄武岩和串岭沟组基性岩脉分别形成于1624±9Ma和1620±9Ma,二者在误差范围内一致;这些基性岩浆岩普遍具有高的Zr含量(94×10-6~196×10-6)、富集轻稀土((La/Yb)N=10.63~ 21.97)及大离子亲石元素,大多数样品无明显的Eu异常,微量元素组成与OIB相似。锆石Hf同位素显示弱亏损特征,ε Hf(t)值为 -0.6~3.8。燕辽裂陷槽中部长城系碱性岩的原始岩浆可能起源于同一软流圈地幔源区的低程度部分熔融(2%~3%),且有岩石圈地幔物质加入。岩浆受地壳混染的程度低,经历了强烈的结晶分异作用。研究进一步表明,燕辽裂陷槽中部长城系碱性岩从1635Ma(团山子组)开始喷发,1625Ma达到峰期,大红峪组地层沉积时间晚于1635Ma。联系该阶段全球各大陆情况,华北地区该期的碱性岩岩浆事件应与哥伦比亚超大陆裂解有关。
  • 加载中
  • [1]

    Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ and Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155-170

    [2]

    Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258

    [3]

    China Commission on Stratigraphy. 2002. Explanation of China Regional Stratigraphic Chart. Beijing: Geological Publishing House, 1-72 (in Chinese)

    [4]

    Compston W, Williams IS and Meyer C. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research, 89(S2): 525-534

    [5]

    Compston W, Williams IS, Krischvink JL, Zhang ZC and Guogan MA. 1992. Zircon U-Pb ages for the Early Cambrian time-scale. Journal of the Geological Society, 149(2): 171-184

    [6]

    Condie KC. 2002. Breakup of a Paleoproterozoic supercontinent. Gondwana Research, 5(1): 41-43

    [7]

    Deng JF, Zhao HL, Mo XX, Wu ZX and Luo ZH. 1996. Continental Roots-Plume Tectonics of China: Key to the Continental Dynamics. Beijing: Geological Publishing House, 3-87(in Chinese)

    [8]

    DePaolo DJ and Daley EE. 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology, 169(1-2): 157-185

    [9]

    Dasgupta R, Hirschmann MM and Smith ND. 2007. Partial melting experiments of peridotite+CO2 at 3GPa and genesis of alkalic ocean island basalts. Journal of Petrology, 48(11): 2093-2124

    [10]

    Dupuy C, Liotard JM and Dostal J. 1992. Zr/Hf fractionation in intraplate basaltic rocks: Carbonate metasomatism in the mantle source. Geochimica et Cosmochimica Acta, 56(6): 2417-2423

    [11]

    Ernst RE, Wingate MTD, Buchan KL and Li ZX. 2008. Global record of 1600~700Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents. Precambrian Research, 160(1-2): 159-178

    [12]

    Farmer GL. 2003. Continental basaltic rocks. Treatise on geochemistry 3: 85-121

    [13]

    Floyd PA and Winchester JA. 1975. Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters, 27(2): 211-218

    [14]

    Gao LZ, Zhang CH, Shi XY, Zhou HR and Wang ZQ. 2007. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China. Geological Bulletin of China, 26 (3): 249-255 (in Chinese with English abstract)

    [15]

    Gao LZ, Zhang CH, Yin CY, Shi XY, Wang ZQ, Liu YM, Liu PJ, Tang F and Song B. 2008. SHRIMP zircon ages: Basis for refining the chronostratigraphic classification of the Meso- and Neoproterozoic strata in North China Old land. Acta Geoscientica Sinica, 29(3): 366-376 (in Chinese with English abstract)

    [16]

    Gao W, Zhang CH, Gao LZ, Shi XY, Liu YM and Song B. 2008. Zircon SHRIMP U-Pb age of rapakivi granite in Miyun, Beijing, China, and its tectono-stratigraphic implications. Geological Bulletin of China, 27(6): 793-798 (in Chinese with English abstract)

    [17]

    Geng JZ, Li HK, Zhang J, Zhou HY and Li HM. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China, 30(10): 1508-1513 (in Chinese with English abstract)

    [18]

    Geng YS, Du LL and Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes. Gondwana Research, 21(2-3): 517-529

    [19]

    Guo JH, O'Brien PJ and Zhai MG. 2002. High-pressure granulites in the Sanggan area, North China craton: Metamorphic evolution, P-T paths and geotectonic significance. Journal of Metamorphic Geology, 20(8): 741-756

    [20]

    He ZJ, Niu BG, Zhang XY, Zhao L and Liu RY. 2011. Discovery of the paleo-weathered mantle of the rapakivi granite covered by the Proterozoic Changzhougou Formation in the Miyun area, Beijing and their detrital zircon dating. Geological Bulletin of China, 30(5): 798-802 (in Chinese with English abstract)

    [21]

    Hou GT, Liu YL and Li JH. 2006. Evidence for ~1.8Ga extension of the Eastern Block of the North China Craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Sciences, 27(4): 392-401

    [22]

    Hu JL, Zhao TP, Xu YH and Chen W. 2007. Geochemistry and petrogenesis of the high-K volcanic rocks in the Dahongyu Formation, North China Craton. Journal of Mineralogy and Petrology, 27(4): 70-77 (in Chinese with English abstract)

    [23]

    Jiang N, Guo JH and Zhai MG. 2011. Nature and origin of the Wenquan granite: Implications for the provenance of Proterozoic A-type granites in the North China Craton. Journal of Asian Earth Sciences, 42(1-2): 76-82

    [24]

    Kröner A, Wilde SA, Li JH and Wang KY. 2005. Age and evolution of a Late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences, 24(5): 577-595

    [25]

    Kusky TM and Li JH. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences, 22(4): 383-397

    [26]

    Langmuir CH, Klein EM and Plank T. 1992. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. Mantle Flow and Melt Generation at Mid-ocean Ridges, 71: 183-280

    [27]

    Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750

    [28]

    Li HK, Li HM and Lu SN. 1995. Grain zircon U-Pb ages for volcanic rocks from Tuanshanzi Formation of Changcheng System and their geological implications. Geochimica, 24(1): 43-48 (in Chinese with English abstract)

    [29]

    Li HK, Lu SN, Li HM, Sun LX, Xiang ZQ, Geng JZ and Zhou HY. 2009. Zircon and beddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation, North China. Geological Bulletin of China, 28(10): 1396-1404 (in Chinese with English abstract)

    [30]

    Li HK, Zhu SX, Xiang ZQ, Su WB, Lu SN, Zhou HY, Geng JZ, Li S and Yang FJ. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract)

    [31]

    Li HK, Su WB, Zhou HY, Geng JZ, Xiang ZQ, Cui YR, Liu WC and Lu SN. 2011. The base age of the Changchengian system at the Northern North China Craton should be younger than 1670Ma: Constraints from Zircon U-Pb LA-MC-ICPMS dating of a granite-porphyry dike in Miyun County, Beijing. Earth Science Frontiers, 18(3): 108-120 (in Chinese with English abstract)

    [32]

    Li HK, Lu SN, Su WB, Xiang ZQ, Zhou HY and Zhang YQ. 2013. Recent advances in the study of the Mesoproterozoic geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227

    [33]

    Li HK, Su WB, Zhou HY, Xiang ZQ, Tian H, Yang LG, Warren DH and Frank RE. 2014. The first precise age constraint on the Jixian System of the Meso- to Neoproterozoic Standard Section of China, SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling formations in the Jixian Section, North China. Acta Petrologica Sinica, 30(10): 2999-3012 (in Chinese with English abstract)

    [34]

    Liu SW, Santos M, Wang W, Bai X and Yang PT. 2011. Zircon U-Pb chronology of the Jianping Complex: Implications for the Precambrian crustal evolution history of the northern margin of North China Craton. Gondwana Research, 20(1): 48-63

    [35]

    Lu SN and Li HM. 1991. A precise U-Pb single zircon age determination for the volcanics of the Dahongyu Formation, Changcheng System in Jinxian. Bulletin of the Chinese Academy of Geological Sciences, 22(1): 137-145 (in Chinese with English abstract).

    [36]

    Lu SN, Yang CL, Li HK and Li HM. 2002. A group of rifting events in the terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131

    [37]

    Lu SN, Yang CL, Li HK and Chen ZH. 2002. North China continent and Columbia supercontinent. Earth Science Frontiers, 9(4): 225-233 (in Chinese with English abstract)

    [38]

    Lu SN, Li HK, Li HM, Song B, Wang SY, Zhou HY and Chen ZH. 2003. U-Pb isotopic ages and their significance of alkaline granite in the southern margin of the North China Craton. Geological Bulletin of China, 22(10): 762-768(in Chinese with English abstract)

    [39]

    Lu SN, Zhao GC, Wang HC and Hao GJ. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review. Precambrian Research, 160(1-2): 77-93

    [40]

    Ludwig KR. 2001. Users manual for Isoplot/Ex rev. 2.49. Berkeley Geochronology Centre Special Publication, No. 1a: 1-56

    [41]

    Ludwig KR. 2003. User's manual for Isoplot/Ex v., version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4(1): 1-70

    [42]

    Luo ZH, Mo XX, Wan YS, Li L and Wei Y. 2006. Geological implications of the youngest SHRIMP U-Pb age of the alkaline basalt in the Tibetan Plateau. Acta Petrologica Sinica, 22(3): 578-584 (in Chinese with English abstract)

    [43]

    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218

    [44]

    Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224

    [45]

    Nasdala L, Hofmeister W, Norberg N, Mattinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan YS, Götze J, Hger T, Kröner A and Valley JW. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265

    [46]

    Niu YL and O'Hara MJ. 2003. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research Solid Earth, 108(B4): 283-299

    [47]

    Niu YL. 2008. The origin of alkaline lavas. Science, 320(5878): 883-884

    [48]

    Niu YL, Wilson M, Humphreys ER and O'Hara MJ. 2012. A trace element perspective on the source of ocean island basalts (OIB) and fate of subducted ocean crust (soc) and mantle lithosphere (SML). Episodes, 35(2): 310-327

    [49]

    Nicholson H and Latin D. 1992. Olivine tholeiites from Krafla, Iceland: Evidence for variations in melt fraction within a plume. Journal of Petrology, 33(5): 1105-1124

    [50]

    O'Reilly SY and Griffin WL. 1988. Mantle metasomatism beneath western Victoria, Australia: I. metasomatic processes in Cr-diopside lherzolites. Geochimica et Cosmochimica Acta, 52(2): 433-447

    [51]

    Patchett PJ, Kouvo O, Hedge CE and Tatsumoto M. 1982. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 78(3): 279-297

    [52]

    Pearce JA and Cann JR. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2): 290-300

    [53]

    Pearce JA. 1996. A user's guide to basalt discrimination diagrams. Geological Association of Canada Special Publication, 12: 79-113

    [54]

    Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48

    [55]

    Pearce JA. 2014. Immobile element fingerprinting of ophiolites. Elements, 10(2): 101-108

    [56]

    Peng P, Zhai MG, Zhang HF and Guo JG. 2005. Geochronological constraints on the Paleoproterozoic evolution of the North China Craton: SHRIMP zircon ages of different types of mafic dykes. International Geology Review, 47(5): 492-508

    [57]

    Peng P, Liu F, Zhai MG and Guo JH. 2012. Age of the Miyun dike swarm: Constraints on the maximum depositional age of the Changcheng System. Chinese Science Bulletin, 57(1): 105-110

    [58]

    Polat A, Hofmann AW and Rosing MT. 2002. Boninite-like volcanic rocks in the 3.7~3.8Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184(3): 231-254

    [59]

    Rogers JJW and Santosh M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22

    [60]

    Rogers JJW and Santosh M. 2003. Supercontinents in Earth history. Gondwana Research, 6(3): 357-368

    [61]

    Rogers JJW and Santosh M. 2009. Tectonics and surface effects of the supercontinent Columbia. Gondwana Research, 15(3-4): 373-380

    [62]

    Rudnick RL and David MF. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33(3): 267-309

    [63]

    Santosh M, Wilde SA and Li JH. 2007. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton: Evidence from SHRIMP U-Pb zircon geochronology. Precambrian Research, 159(3-4): 178-196

    [64]

    Santosh M. 2010. Assembling North China Craton within the Columbia supercontinent: The role of double-sided subduction. Precambrian Research, 178(1-4): 149-167

    [65]

    Santosh M, Zhao DP and Kusky T. 2010. Mantle dynamics of the Paleoproterozoic North China Craton: A perspective based on seismic tomography. Journal of Geodynamics, 49(1): 39-53

    [66]

    Santosh M, Liu SJ, Tsunogae T and Li JH. 2012. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton: Implications for tectonic models on extreme crustal metamorphism. Precambrian Research, 222-223: 77-106

    [67]

    Santosh M, Liu DY, Shi YR and Liu SJ. 2013. Paleoproterozoic accretionary orogenesis in the North China Craton: A SHRIMP zircon study. Precambrian Research, 227: 29-54

    [68]

    Su WB, Zhang SH, Huff WD, Li HK, Ettensohn FR, Chen XY, Yang HM, Han YG, Song B and Santosh M. 2008. SHRIMP U-Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso- to Neoproterozoic history of the North China Craton. Gondwana Research, 14(3): 543-553

    [69]

    Su WB, Li HK, Huff WD, Ettensohn FR, Zhang SH, Zhou HY and Wan YS. 2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China. Chinese Science Bulletin, 55(29): 3312-3323

    [70]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

    [71]

    Tian H, Zhang J, Li HK, Su WB, Zhou HY, Yang LG, Xiang ZQ, Geng JZ, Liu H, Zhu SX and Xu ZQ. 2015. Zircon LA-MC-ICPMS U-Pb dating of tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and its geological significance. Acta Geoscientica Sinica, 63(5): 647-658 (in Chinese with English abstract)

    [72]

    Vervoort JD, Patchett PJ, Blichert-Toft J and Albarède F. 1999. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, 168(1): 79-99

    [73]

    Wang W, Liu SW, Santosh M, Deng ZB, Guo BR, Zhao Y, Zhang SH, Yang PT, Bai X and Guo RR. 2015a. Late Paleoproterozoic geodynamics of the North China Craton: Geochemical and zircon U-Pb-Hf records from a volcanic suite in the Yanliao rift. Gondwana Research, 27(1): 300-325

    [74]

    Wang W, Liu SW, Santosh M, Zhang LF, Bai X, Zhao Y, Zhang SH and Guo RR. 2015b. 1.23Ga mafic dykes in the North China Craton and their implications for the reconstruction of the Columbia supercontinent. Gondwana Research, 27(4): 1407-1418

    [75]

    Wang XL, Jiang SY, Dai BZ and Kern J. 2013. Lithospheric thinning and reworking of Late Archean juvenile crust on the southern margin of the North China Craton: Evidence from the Longwangzhuang Paleoproterozoic A-type granites and their surrounding Cretaceous adakite-like granites. Geological Journal, 48(5): 498-515

    [76]

    Wang ZJ, Huang ZG, Yao JX and Ma XL. 2014. Characteristics and main progress of the stratigraphic Chart of China and Directions. Acta Geoscientica Sinica, 35(3): 271-276 (in Chinese with English abstract)

    [77]

    Wan YS, Zhang QD and Song TR. 2003. SHRIMP ages of detrital zircons from the Changcheng System in the Ming Tombs area, Beijing: Constraints on the protolith nature and maximum depositional age of the Mesoproterozoic cover of the North China Craton. Chinese Science Bulletin, 48(22): 2500-2506

    [78]

    Wilde SA, Zhao GC and Sun M. 2002. Development of the North China Craton during the Late Archaean and its final amalgamation at 1.8Ga: Some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research, 5(1): 85-94

    [79]

    Wilde SA and Zhao GC. 2005. Archean to Paleoproterozoic evolution of the North China Craton. Journal of Asian Earth Sciences, 24(5): 519-522

    [80]

    Williams IS. 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC and Ridley WI (eds.). Applications of Microanalytical Techniques to Understanding Mineralizing Process. Review of Economic Geology, 7: 1-35

    [81]

    Wood DA. 1979. A variably veined suboceanic upper mantle-genetic significance for mid-ocean ridge basalts from geochemical evidence. Geology, 7(10): 499-503

    [82]

    Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126

    [83]

    Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)

    [84]

    Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1554-1569

    [85]

    Xiang ZQ, Li HK, Lu SN, Zhou HY, Li HM, Wang HC, Chen ZH and Niu J. 2012. Emplacement age of the gabbro-diabase dike in the Hongmen scenic region of Mount Tai, Shandong Province, North China: Baddeleyite U-Pb precise dating. Acta Petrologica Sinica, 28(9): 2831-2842 (in Chinese with English abstract)

    [86]

    Xia P and Xu YG. 2004. Lithosphere mantle domain discrimination and enrichment mechanism in West Yunnan: A study on the contrast of two types of Cenozoic ultra-potassic volcanic rocks. Science in China (Series D), 34(12): 1118-1128 (in Chinese)

    [87]

    Xu YG, Ma JL, Frey FA, Feigenson MD and Liu JF. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology, 224(4): 247-271

    [88]

    Xu YG. 2006. Using basalt geochemistry to constrain Mesozoic-Cenozoic evolution of the lithosphere beneath North China Craton. Earth Science Frontiers, 13(2): 93-104 (in Chinese with English abstract)

    [89]

    Yang JH, Wu FY, Liu XM and Xie LW. 2005. Zircon U-Pb ages and Hf isotopes and their geological significance of the Miyun rapakivi granites from Beijing, China. Acta Petrologica Sinica, 21(6): 1633-1644 (in Chinese with English abstract)

    [90]

    Yang WR, Ji KC, Sun JY and Xing JS. 1995. Some frontier problems in the study of continental rift. Earth Science Frontiers, 2(1-2): 93-102 (in Chinese with English abstract)

    [91]

    Yu JH, Fu HQ, Haapala I, Ramo TO, Vaasjoki M and Mortense JK. 1996. A 1.70Ga anorogenic rapakivi granite suite in the northern part of North China Craton. Journal of Geology and Mineral Resource of North China, 11(3): 341-350 (in Chinese with English abstract)

    [92]

    Yu XX, Mo XX, Zhao ZD, He WY and Li Y. 2011. Cenozoic bimodal volcanic rocks of the West Qinling: Implication for the genesis and nature of the rifting of north-south tectonic belt. Acta Petrologica Sinica, 27(7): 2195-2202 (in Chinese with English abstract)

    [93]

    Zhai MG and Liu WJ. 2003. Palaeoproterozoic tectonic history of the North China craton: A review. Precambrian Research, 122(1-4): 183-199

    [94]

    Zhai MG, Guo JH and Liu WJ. 2005. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: A review. Journal of Asian Earth Sciences, 24(5): 547-561

    [95]

    Zhai MG and Santosh M. 2011. The Early Precambrian odyssey of the North China Craton: A synoptic overview. Gondwana Research, 20(1): 6-25

    [96]

    Zhai MG, Hu B, Peng P and Zhao TP. 2014. Meso-Neoproterozoic magmatic events and multi-stage rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract)

    [97]

    Zhang SH, Liu SW, Zhao Y, Yang JH, Song B and Liu XM. 2007. The 1.75~1.68Ga anorthosite-mangerite-alkali granitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen. Precambrian Research, 155(3-4): 287-312

    [98]

    Zhang SH, Zhao Y, Yang ZY, He ZF and Wu H. 2009. The 1.35Ga diabase sills from the northern North China Craton: Implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters, 288(3-4): 588-600

    [99]

    Zhang SH, Zhao Y and Santosh M. 2012a. Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: Implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Research, 222-223: 339-367

    [100]

    Zhang SH, Li ZX, Evans DAD, Wu HC, Li HY and Dong J. 2012b. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353-354: 145-155

    [101]

    Zhang SH, Zhao Y, Ye H, Hu JM and Wu F. 2013. New constraints on ages of the Chuanlinggou and Tuanshanzi formations of the Changcheng System in the Yan-Liao area in the northern North China Craton. Acta Petrologica Sinica, 29(7): 2481-2490 (in Chinese with English abstract)

    [102]

    Zhao GC, Wilde SA, Cawood PA and Lu LZ. 1999. Thermal evolution of two textural types of mafic granulites in the North China Craton: Evidence for both mantle plume and collisional tectonics. Geological Magazine, 136(3): 223-240

    [103]

    Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73

    [104]

    Zhao GC, Cawood PA, Wilde SA and Sun M. 2002. A review of the global 2.1~1.8Ga orogens: Implications for a pre-Rodinian supercontinent. Earth-Science Reviews, 59(1-4): 125-162

    [105]

    Zhao GC, Sun M, Wilde SA and Li SZ. 2004. A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup. Earth-Science Reviews, 67(1-2): 91-123

    [106]

    Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202

    [107]

    Zhao GC, He YH and Sun M. 2009a. The Xiong'er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent. Gondwana Research, 16(2): 170-181

    [108]

    Zhao GC, Li SZ, Sun M and Wilde S. 2010. Assembly, accretion, and break-up of the Palaeo-Mesoproterozoic Columbia supercontinent: Record in the North China Craton revisited. International Geology Review, 53(11-12): 1331-1356

    [109]

    Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 55-76

    [110]

    Zhao TP, Chen W and Zhou MF. 2009b. Geochemical and Nd-Hf isotopic constraints on the origin of the ~1.74Ga Damiao anorthosite complex, North China Craton. Lithos, 113(3-4): 673-690

    [111]

    Zheng YF, Zhao ZF, Wu YB, Zhang SB, Liu XM and Wu FY. 2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chemical Geology, 231(1-2): 135-158

    [112]

    邓晋福, 赵海玲, 莫宣学等. 1996. 中国大陆根-柱构造——大陆动力学的钥匙. 北京: 地质出版社, 3-87

    [113]

    高林志, 张传恒, 史晓颖, 周洪瑞, 王自强. 2007. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年. 地质通报, 26(3): 249-255

    [114]

    高林志, 张传恒, 尹崇玉, 史晓颖, 王自强, 刘耀明, 刘鹏举, 唐峰, 宋彪. 2008. 华北古陆中、新元古代年代地层框架SHRIMP锆石年龄新依据. 地球学报, 29(3): 366-376

    [115]

    高维, 张传恒, 高林志, 史晓颖, 刘耀明, 宋彪. 2008. 北京密云环斑花岗岩的锆石SHRIMP U-Pb年龄及其构造意义. 地质通报, 27(6): 793-798

    [116]

    耿建珍, 李怀坤, 张健, 周红英, 李惠民. 2011. 锆石 Hf 同位素组成的LA-MC-ICP-MS测定. 地质通报, 30(10): 1508-1513

    [117]

    和政军, 牛宝贵, 张新元, 赵磊, 刘仁燕. 2011. 北京密云元古宙常州沟组之下环斑花岗岩古风化壳岩石的发现及其碎屑锆石年龄. 地质通报, 30(5): 798-802

    [118]

    胡俊良, 赵太平, 徐勇航, 陈伟. 2007. 华北克拉通大红峪组高钾火山岩的地球化学特征及其岩石成因. 矿物岩石, 27(4): 70-77

    [119]

    李怀坤, 李惠民, 陆松年. 1995. 长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义. 地球化学, 24(1): 43-48

    [120]

    李怀坤, 陆松年, 李惠民, 孙立新, 相振群, 耿建珍, 周红英. 2009. 侵入下马岭组的基性岩床的锆石和斜锆石U-Pb精确定年——对华北中元古界地层划分方案的制约. 地质通报, 28(10): 1396-1404

    [121]

    李怀坤, 朱士兴, 相振群, 苏文博, 陆松年, 周红英, 耿建珍, 李生, 杨峰杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140

    [122]

    李怀坤, 苏文博, 周红英, 耿建珍, 相振群, 崔玉荣, 刘文灿, 陆松年. 2011. 华北克拉通北部长城系底界年龄小于1670Ma——来自北京密云花岗斑岩岩脉锆石LA-MC-ICPMS U-Pb年龄的约束. 地学前缘, 18(3): 108-120

    [123]

    李怀坤, 苏文博, 周红英, 相振群, 田辉, 杨立功, Warren DH, Frank RE. 2014. 中-新元古界标准剖面蓟县系首获高精度年龄制约——蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMP U-Pb同位素定年研究. 岩石学报, 30(10): 2999-3012

    [124]

    陆松年, 李惠民. 1991. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年. 中国地质科学院院报, 22(1): 137-145

    [125]

    陆松年, 杨春亮, 李怀坤, 陈志宏. 2002. 华北古大陆与哥伦比亚超大陆. 地学前缘, 9(4): 225-233

    [126]

    陆松年, 李怀坤, 李惠民, 宋彪, 王世炎, 周红英, 陈志宏. 2003. 华北克拉通南缘龙王幢碱性花岗岩U-Pb年龄及其地质意义. 地质通报, 22(10): 762-768

    [127]

    罗照华, 莫宣学, 万渝生, 李莉, 魏阳. 2006. 青藏高原最年轻碱性玄武岩 SHRIMP 年龄的地质意义. 岩石学报, 22(3): 578-584

    [128]

    彭澎, 刘富, 翟明国, 郭敬辉. 2011. 密云岩墙群的时代及其对长城系底界年龄的制约. 科学通报, 56(35): 2975-2980

    [129]

    全国地层委员会. 2002. 中国区域年代地层(地质年代)表说明书. 北京: 地质出版社, 1-72

    [130]

    苏文博, 李怀坤, Huff WD, Ettemsohn FR, Zhang SH, Zhou HY, Wan YS. 2010. 铁岭组钾质斑脱岩锆石SHRIMP U-Pb年代学研究及其地质意义. 科学通报, 55(22): 2197-2206

    [131]

    田辉, 张健, 李怀坤, 苏文博, 周红英, 杨立公, 相振群, 耿建珍, 刘欢, 朱士兴, 许振清. 2015. 蓟县中元古代高于庄组凝灰岩锆石LA-MC-ICPMS U-Pb定年及其地质意义. 地球学报,36(5): 647-658

    [132]

    吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf 同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220

    [133]

    王泽九, 黄枝高, 姚建新, 马秀兰. 2014. 中国地层表及说明书的特点与主要进展. 地球学报, 35(3): 271-276

    [134]

    吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对 U-Pb 年龄解释的制约. 科学通报, 49(16): 1589-1604

    [135]

    相振群, 李怀坤, 陆松年, 周红英, 李惠民, 王惠初, 陈志宏, 牛健. 2012. 泰山地区古元古代末期基性岩墙形成时代厘定——斜锆石 U-Pb 精确定年. 岩石学报, 28(9): 2831-2842

    [136]

    夏萍, 徐义刚. 2004. 滇西岩石圈地幔域分区和富集机制: 新生代两类超钾质火山岩的对比研究. 中国科学(D辑), 34(12): 1118-1128

    [137]

    徐义刚. 2006. 用玄武岩组成反演中-新生代华北岩石圈的演化. 地学前缘, 13(2): 93-104

    [138]

    杨进辉, 吴福元, 柳晓明, 谢烈文. 2005. 北京密云环斑花岗岩锆石 U-Pb 年龄和 Hf 同位素及其地质意义. 岩石学报, 21(6): 1633-1644

    [139]

    杨巍然, 纪克诚, 孙继源, 邢集善. 1995. 大陆裂谷研究中的几个前沿课题. 地学前缘, 2(1-2): 93-102

    [140]

    郁建华, 付会芹, Haapala I, Ramo TO, Vaasjoki M, Mortense JK. 1996. 华北克拉通北部 1.70Ga 非造山环斑花岗岩岩套. 华北地质矿产杂志, 11(3): 341-350

    [141]

    喻学惠, 莫宣学, 赵志丹, 和文言, 李勇. 2011. 西秦岭新生代双峰式火山作用及南北构造带成因初探. 岩石学报, 27(7): 2195-220

    [142]

    翟明国, 胡波, 彭澎, 赵太平. 2014. 华北中-新元古代的岩浆作用与多期裂谷事件. 地学前缘, 21(1): 100-119

    [143]

    张拴宏, 赵越, 叶浩, 胡建民, 吴飞. 2013. 燕辽地区长城系串岭沟组及团山子组沉积时代的新制约. 岩石学报, 29(7): 2481-2490

  • 加载中
计量
  • 文章访问数:  9571
  • PDF下载数:  6009
  • 施引文献:  0
出版历程
收稿日期:  2015-05-04
修回日期:  2015-07-01
刊出日期:  2015-10-31

目录