华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究

刘平华, 刘福来, 蔡佳, 刘建辉, 施建荣, 王舫. 2013. 华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究. 岩石学报, 29(2): 462-484.
引用本文: 刘平华, 刘福来, 蔡佳, 刘建辉, 施建荣, 王舫. 2013. 华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究. 岩石学报, 29(2): 462-484.
LIU PingHua, LIU FuLai, CAI Jia, LIU JianHui, SHI JianRong, WANG Fang. 2013. Geochronological and geochemical study of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex, the central Khondalite Belt in the North China Craton. Acta Petrologica Sinica, 29(2): 462-484.
Citation: LIU PingHua, LIU FuLai, CAI Jia, LIU JianHui, SHI JianRong, WANG Fang. 2013. Geochronological and geochemical study of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex, the central Khondalite Belt in the North China Craton. Acta Petrologica Sinica, 29(2): 462-484.

华北克拉通孔兹岩带中段大青山-乌拉山变质杂岩立甲子基性麻粒岩年代学及地球化学研究

  • 基金项目:

    本文受科技部973项目(2012CB416603);国家杰出青年科学基金项目(40725007);中国地质调查局地质大调查项目(1212010811065、1212011120150)和中国地质科学院地质研究所基本科研业务经费(J1212)联合资助.

详细信息
    作者简介:

    刘平华,男,1981年生,博士,岩石学专业,E-mail: lph1213@126.com

  • 中图分类号: P588.347;P597.3

Geochronological and geochemical study of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex, the central Khondalite Belt in the North China Craton

  • 大青山-乌拉山变质杂岩立甲子基性麻粒岩主要由角闪二辉麻粒岩、含榴角闪二辉麻粒岩和黑云角闪二辉麻粒岩所组成,并以变形岩墙和不规则透镜体形式赋存于富铝片麻岩和花岗质片麻岩之中。立甲子基性麻粒岩中变质锆石含有单斜辉石(Cpx)+角闪石(Amp)+斜长石(Pl)+磷灰石(Ap)的包体矿物,与寄主岩石--基性麻粒岩矿物组合及其化学成分十分一致,相应的207Pb/206Pb表面年龄变化于1933±39Ma~1834±40Ma,加权平均年龄为1892±7Ma (MSWD=0.50, n=46),应代表立甲子基性麻粒岩原岩经历中低压麻粒岩相的变质时代。在变质过程中,以大离子亲石元素(K、Na、Sr、Rb)为代表的活动元素发生了显著的改变;而高场强元素(Nb、Zr、Ti)和稀土元素基本无变化,保持稳定。立甲子基性麻粒岩原岩属于拉斑玄武质岩石系列,其SiO2集中变化于45.58%~51.40%,Mg#值集中介于41~54之间;在球粒陨石标准化稀土配分图中,立甲子基性麻粒岩具有平坦型的稀土配分曲线特征((La/Yb)CN=1.30~1.51),Eu异常不明显(Eu/Eu*=0.93~1.04)。与显生宙岛弧拉斑玄武岩类似,立甲子基性麻粒岩所有样品皆具有Nb、Zr、Ti负异常特征。综合分析认为,立甲子基性麻粒岩原岩形成于2450~1930Ma,并于~1900Ma经历中低压麻粒岩相变质作用的改造,其主量元素和微量元素组成具有岛弧拉斑玄武质岩石的地球化学特征,其原岩可能是板块汇聚动力学背景下,岛弧构造环境中形成的辉长岩或辉绿岩。

  • 加载中
  • 图 1 

    大青山-乌拉山变质杂岩地质简图及采样位置(a, b据Zhao et al., 2005; c, 据刘正宏等, 2007)

    Figure 1. 

    Simplified geological map showing the geological setting of the Daqingshan-Wulashan metamorphic complex and the sample locations of the mafic granulites (a, b, after Zhao et al., 2005; c, Liu et al., 2007)

    图 2 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩地质剖面图

    Figure 2. 

    Geologic section map of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex

    图 3 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩典型地质产状

    Figure 3. 

    Typical field photographs showing the relationships between the Lijiazi mafic granulites and their country rocks from the Daqingshan-Wulashan metamorphic complex

    图 4 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩典型显微结构照片

    Figure 4. 

    Photomicrographs showing metamorphic assemblages of the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex

    图 5 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩(BT35-2)中岩浆锆石的阴极发光图像与LA-ICP-MS定年结果

    Figure 5. 

    Cathodoluminescence (CL) images and LA-ICP-MS U-Pb ages of magmatic zircons from the mafic granulite (sample BT35-2) from the Daqingshan-Wulashan metamorphic complex

    图 6 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩(BT35-2)中变质锆石的阴极发光图像与LA-ICP-MS定年结果

    Figure 6. 

    Cathodoluminescence (CL) images and LA-ICP-MS U-Pb ages of metamorphic zircons from the mafic granulite (sample BT35-2) from the Daqingshan-Wulashan metamorphic complex

    图 7 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩(BT35-2)中锆石207Pb/235U-206Pb/238U年龄关系图

    Figure 7. 

    207Pb/235U-206Pb/238U diagrams showing U-Pb analyses for zircons of the Lijiazi mafic granulite (BT35-2) from the Daqingshan-Wulashan metamorphic complex

    图 8 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩稀土配分图解(球粒陨石值据Sun and McDonough, 1989)

    Figure 8. 

    Chondrite-normalized REE diagrams for the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex (Chondrite values after Sun and McDonough, 1989)

    图 9 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩微量元素地幔标准化配分图解(原始地幔值据Sun and McDonough, 1989)

    Figure 9. 

    Primitive mantle-normalized trace element diagrams for the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex (Primitive mantle values after Sun and McDonough, 1989)

    图 10 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩变质锆石中典型矿物包体的背散射电子图像

    Figure 10. 

    Back scattering electron (BSE) images showing the typical mineral inclusions of metamorphic zircons from the Lijiazi mafic granulite, the Daqingshan-Wulashan metamorphic complex

    图 11 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩Zr与主、微量元素(REE、Nb、Ti、P)变化图

    Figure 11. 

    Zr vs. selected major and trace elements variation diagrams for the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex

    图 12 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩Zr与主、微量元素(Rb、Th、K、Na)变化图

    Figure 12. 

    Zr vs. selected major and trace elements variation for the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex

    图 13 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩Rb (×10-6)-K (%) (a)与La/Th-Th/U (b)关系图解

    Figure 13. 

    Rb (×10-6) vs. K (%) (a) and La/Th vs. Th/U (b) diagrams for the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex

    图 14 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩Nb/Y-Zr/(TiO2×104)(据Pearce, 1996)与Nb/Y-SiO2(据Winchester and Floyd, 1977)

    Figure 14. 

    Nb/Y vs. Zr/TiO2(after Pearce, 1996) and Nb/Y vs. SiO2(after Winchester and Floyd, 1977) diagrams for the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex

    图 15 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩Zr-Y与FeOT/MgO-SiO2分类图解(据Miyashiro,1974)

    Figure 15. 

    Zr vs. Y and FeOT/MgO vs. SiO2diagrams for the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex (after Miyashiro, 1974)

    图 16 

    大青山-乌拉山变质杂岩立甲子基性麻粒岩构造环境判别图解

    Figure 16. 

    Immobile trace element tectonic discrimination diagrams for the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex

    图 17 

    大青山-乌拉山变质杂岩中立甲子基性麻粒岩构造环境判别图解(a,据Pearce, 2008;(b-d,据Agrawal et al., 2008)

    Figure 17. 

    Immobile trace element tectonic discrimination diagrams for the Lijiazi mafic granulites from the Daqingshan-Wulashan metamorphic complex (a, after Pearce, 2008; b-d, after Agrawal et al., 2008)

  •  

    Agrawal S, Guevara M and Verma SP. 2008. Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements. International Geology Review, 50(12): 1057-1079

     

    Amelin Y, Lee DC and Halliday AN. 2000. Early-Middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta, 64(24): 4205-4225

     

    Cai J, Liu PH, Liu FL, Liu JH, Wang F and Shi JR. 2013. Genetic mineralogy and metamorphic evolution of Al-rich gneisses in the Shiguai area, Daqingshan-Wulashan metamorphic complex belt. Acta Petrologica Sinica, 29(2):437-461 (in Chinese with English abstract)

     

    Chen XF, Liu ZH, Xu ZY, Zhao QY and Wu XW. 2008. The characters and genesis of the lower crust Daqingshan ductile shear zones in the Inner Mongolia. Journal of Mineralogy and Petrology, 28(1): 48-53(in Chinese with English abstract)

     

    Clough PWL and Field D. 1980. Chemical variation in metabasites from a Proterozoic amphibolite-granulite transition zone, South Norway. Contributions to Mineralogy and Petrology, 73(3): 277-286

     

    Cui WY, Li WB and Shu GM. 1988. Mineralogy and P-T conditions of crystallization in the rocks of granulite facies from Baotou-Hujigou area. Acta Petrologica et Mineralogica, 7(2): 127-137(in Chinese with English abstract)

     

    Dong CY, Liu DY, Wan YS, Xu ZY, Liu ZH and Yang ZS. 2009a. Crustally derived carbonatite from the Daqingshan area: Zircon features and SHRIMP dating. Acta Geologica Sinica, 83(3): 388-398(in Chinese with English abstract)

     

    Dong CY, Liu DY, Wan YS, Xu ZY, Wang W and Xie HQ. 2009b. Hf isotope composition and REE pattern of zircons from Early Precambrian metamorphic rocks in the Daqing Mountains, Inner Mongolia. Geological Review, 55(4): 509-520(in Chinese with English abstract)

     

    Dong CY, Wan YS, Xu ZY, Liu DY, Yang ZS, Ma MZ and Xie HQ. 2012. SHRIMP zircon U-Pb dating of Late Paleoproterozoic kondalites in the Daqing Mountains area on the North China Craton. Science China (Earth Sciences), 56(1): 115-125

     

    Dong QX and Zhou JC. 1984. Stratigraphic division of the original Wulashan Group in the Wula Mountains, Inner Mongolia. Regional Geology of China, 10(3): 19-37(in Chinese)

     

    Dong XJ. 2012. Composition and evolution of the Early Precambrian basement in Daingshan region. Ph. D. Dissertation. Changchun: Jilin University (in Chinese)

     

    Dupuy C and Dostal J. 1984. Trace element geochemistry of some continental tholeiites. Earth and Planetary Science Letters, 67(1): 61-69

     

    Ernst RE, Buchan KL and Campbell IH. 2005. Frontiers in large igneous province research. Lithos, 79(3-4): 271-297

     

    Ewart A, Bryan W, Chappell B and Rudnick R. 1994. Regional geochemistry of the Lau-Tonga arc and backarc systems. In: Hawkins JW, Parson LM, Allan JF et al. (eds.). Proceedings of the Ocean Drilling Program. College Station, 385-425

     

    Field D and Clough PWL. 1976. K/Rb ratios and metasomatism in metabasites from a Precambrian amphibolite-granulite transition zone. Journal of the Geological Society, 132(3): 277-288

     

    Gan SF. 1991. Metamorphic P-T conditions of the rocks of Archean (Wulashan Group) granulite facies in Inner Mongolia, North China. Mineralogy and Petrology, 11(2): 10-18(in Chinese with English abstract)

     

    Gan SF and Qian XL. 1991. REE geochemistry and petrogenetic environment of the High-grade metamorphic rocks of Archean Wulashan Group, Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, 27(2): 210-219(in Chinese with English abstract)

     

    Gan SF and Qian XL. 1992. Typomorphic characters of metamorphic minerals in the granulite facies rocks of the Archean Wulashan Group in Inner Mongolia. Acta Mineralogica Sinica, 12(4): 334-343(in Chinese with English abstract)

     

    Gan SF and Qian XL. 1996. A plate-tectonic model for the evolution of the Daqingshan granulite belt in Inner Mongolia, China. Acta Geologica Sinica, 70(4): 298-308(in Chinese with English abstract)

     

    Gao S, Luo TC, Zhang BR, Zhang HF, Han Y, Zhao ZD and Hu YK. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62(11): 1959-1975

     

    Green TH, Brunfelt AO and Heier KS. 1972. Rare-earth element distribution and K/Rb ratios in granulites, mangerites and anorthosites, Lofoten-Vesteraalen, Norway. Geochimica et Cosmochimica Acta, 36(2): 241-257

     

    Guo JH, Peng P, Chen Y, Jiao SJ and Windley BF. 2012. UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124-142

     

    Hawkesworth CJ and Kemp AIS. 2006. The differentiation and rates of generation of the continental crust. Chemical Geology, 226(3-4): 134-143

     

    Hawkins JW. 1995. The geology of the Lau Basin. In: Taylor B (ed.). Backarc Basins: Tectonics and Magmatism. New York: Plenum Press, 63-138

     

    Hofmann AW. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314

     

    Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492(in Chinese with English abstract)

     

    Hou WR, Nie FJ, Hu JM, Liu YF, Xiao W, Liu Y and Zhang K. 2011. Geochronology and geochemistry of Shadegai granites in Wulashan area, Inner Mongolia and its geological significance. Journal of Jilin University (Earth Science Edition), 41(6): 1914-1927(in Chinese with English abstract)

     

    Hu FX. 2000. Geological significance on migmatization-anatectic features of Wulashan-Daqingshan area Archaean group stratum in Inner Mongolia. Geology of Inner Mangolia, (3): 31-37(in Chinese with English abstract)

     

    Hu JM, Liu XS, Li ZH, Zhao Y, Zhang SH, Liu XC, Qu HJ and Chen H. 2012. SHRIMP U-Pb zircon dating of the Ordos Basin basement and its tectonic significance. Chinese Science Bulletin, 58(1): 118-127

     

    Jahn BM and Zhang ZQ. 1984. Archean granulite gneisses from eastern Hebei Province, China: Rare earth geochemistry and tectonic implications. Contributions to Mineralogy and Petrology, 85(3): 224-243

     

    Jia HY, Liu YF, Zhang ZX and Gao BM. 2004. Metamorphic characteristics of Archean Wulashan rock suite in middle region of Inner Mongolia, China. Journal of Chengdu University of Technology (Science and Technology Edition), 31(5): 467-472(in Chinese with English abstract)

     

    Jin W. 1989. Geological evolution and metamorphic dynamic of Early Precabriam basement rocks along the north margin (central section) of the North China Cration. Ph. D. Dissertation. Changchun: Changchun College of Geology (in Chinese)

     

    Jin W, Li SX and Liu XS. 1991. A study on characteristics of Early Precambrian high-grade metamorphic rock series and their metamorphic dynamics. Acta Petrologica Sinica, 11(4): 27-35(in Chinese with English abstract)

     

    Jin W and Li SX. 1996. PTt path and crustal thermodynamic model of Late Archaean-Early Proterozoic high grade metamorphic terrain in North China. Acta Petrologica Sinica, 12(2): 42-55(in Chinese with English abstract)

     

    Jin XD and Zhu HP. 2000. Determination of 43 trace elements in rock samples by double focusing high resolution inductively coupled plasma-mass spectrometry. Chinese Journal of Analytical Chemistry, 28(5): 563-567(in Chinese with English abstract)

     

    Kelemen PB, Johnson KTM, Kinzler RJ and Irving AJ. 1990. High-field-strength element depletions in arc basalts due to mantle-magma interaction. Nature, 345(6275): 521-523

     

    Kerrich R, Polat A, Wyman D and Hollings P. 1999. Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province: Implications for Archean mantle reservoirs and greenstone belt genesis. Lithos, 46(1):163-187

     

    Li L, Gao DZ, Zhang WJ, Geng MS and Wang T. 2000. Deformation of Archaean Wulashan Group in Guyang region of Inner Mongolia. Journal of Geomechanics, 6(4): 67-72(in Chinese with English abstract)

     

    Li P, Dai ZM, Qiu CY, Wang LK and Wang JW. 1963. Absolute ages dating by K-Ar of the pegmatites and granites from the Nanlin and Inner Mongulia area. Scientia Geologica Sinica, 4(1): 1-9(in Chinese with English abstract)

     

    Li SX, Xu XC, Liu XS and Sun DY. 1994. Early Precambrian Geology of Wulashan Region, Inner Mongolia. Beijing: Geological Publishing House, 1-140(in Chinese with English abstract)

     

    Liu JH, Liu FL, Ding ZJ, Chen JQ, Liu PH, Shi JR, Cai J, Wang F and Geng JZ. 2013. Zircon U-Pb chronology, geochemistry and their petrogenesis of Early Paleoproterozoic granitoid gneisses in Ulashan area, North China Craton. Acta Petrologica Sinica, 29(2): 485-500 (in Chinese with English abstract)

     

    Liu PH, Liu FL, Wang F and Liu JH. 2011. Genetic characteristics of the ultramafic rocks from the Early Precambrian high-grade metamorphic basement in Shandong Peninsula, China. Acta Petrologica Sinica, 27(4): 922-942(in Chinese with English abstract)

     

    Liu XS, Li SX and Liu JL. 1992. Deformation-Metamorphism and Metallogenesis. Beijing: Scientific and Technical Publishing House of China, 72-88 (in Chinese with English abstract)

     

    Liu XS, Jin W and Li SX. 1993a. Low-pressure metamorphism of granulite facies in an Early Proterozoic orogenic event in Central Inner Mongolia. Acta Geologica Sinica, 6(1): 63-77

     

    Liu XS, Jin W, Li SX and Xu XC. 1993b. Two types of Precambrian high-grade metamorphism, Inner Mongolia, China. Journal of Metamorphic Geology, 11(4): 499-510

     

    Liu XS. 1994. Characteristics of basement reworked complex and implication for Daqingshan orogenic belt. Acta Petrologica Sinica, 10(4): 413-426(in Chinese with English abstract)

     

    Liu XS. 1996. Progressive metamorphic genesis of Archaean granulites in Central Nei Mongol. Acta Petrologica Sinica, 12(2): 121-132(in Chinese with English abstract)

     

    Liu ZH, Xu ZY and Wang KY. 2007. Evidence of microstructures and fluid inclusions for the origin of polycrystalline quartz ribbons in high-grade metamorphic rocks in Daqingshan region. Science in China (Series D), 50(4): 496-504

     

    Liu ZH, Li SC, Xu ZY, Dong XJ and Wang XA. 2011a. Characteristics of melt lineation of high-grade metamorphic rocks at Daqingshan region of Inner Mongolia. Earth Science Frontiers, 18(2): 55-61(in Chinese with English abstract)

     

    Liu ZH, Xu ZY and Yang ZS. 2011b. Tectonic-gneiss and its origin mechanism. Journal of Jilin University (Earth Science Edition), 41(5): 1314-1321(in Chinese with English abstract)

     

    Ma MZ, Wan YS, Santosh M, Xu ZY, Xie HQ, Dong CY, Liu DY and Guo CL. 2012. Decoding multiple tectonothermal events in zircons from single rock samples: SHRIMP zircon U-Pb data from the Late Neoarchean rocks of Daqingshan, North China Craton. Gondwana Research, 22(3-4): 810-827

     

    Ma MZ, Wan YS, Xu ZY, Liu SJ, Xie HQ, Dong CY and Liu DY. 2012. Late Paleoproterozoic K-feldspar pegmatite veins in Daqingshan area, North China Craton: SHRIMP age and Hf composition of zircons. Geological Bulletin of China, 31(6): 825-833(in Chinese with English abstract)

     

    McCulloch MT and Gamble JA. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102(3-4): 358-374

     

    Meng BR. 2007. Isotopic chronological restriction of granulite facies metamorphism in Daqingshan Area, Inner Mongolia. Master Degree Thesis. Changchun: Jilin University (in Chinese)

     

    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218

     

    Miao LC, Qiu YM, Guan K, McNaughton N, Qiu YS, Luo ZK and Groves D. 2000. SHRIMP chronological study of the granitoids and mineralization in the gold deposit, Inner Mongolia. Mineral Deposit, 19(2): 182-190(in Chinese with English abstract)

     

    Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321-355

     

    Mullen ED. 1983. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53-62

     

    Peacock SM. 1993. The importance of blueschist→eclogite dehydration reactions in subducting oceanic crust. Geological Society of America Bulletin, 105(5): 684-694

     

    Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Orogenic Andesites and Related Rocks. Chichester: Wiley, 525-548

     

    Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. Geological Society, London, Special Publications, 16(1): 77-94

     

    Pearce JA, Ernewein M, Bloomer SH, Parson LM, Murton BJ and Jahnson LE. 1994. Geochemistry of Lau Basin volcanic rocks: influence of ridge segmentation and arc proximity. In: Smellie JL (ed.). Volcanism Associated with Extension at Consuming Plate Margins. Geological Society, London Special, Publications, 81(1): 53-76

     

    Pearce JA. 1996. A users guide to basalt discrimination diagrams. In: Wyman DA (ed.). Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes. 12, 79-113

     

    Pearce JA. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1-4): 14-48

     

    Peng P, Guo JH, Zhai MG and Bleeker W. 2010. Paleoproterozoic gabbronoritic and granitic magmatism in the northern margin of the North China craton: Evidence of crust-mantle interaction. Precambrian Research, 183(3): 635-659

     

    Peng P, Guo JH, Windley B and Li XH. 2011. Halaqin volcano-sedimentary succession in the central-northern margin of the North China Craton: Products of Late Paleoproterozoic ridge subduction. Precambrian Research, 187(1-2): 165-180

     

    Peng P, Guo JH, Zhai MG, Windley BF, Li TS and Liu F. 2012. Genesis of the Hengling magmatic belt in the North China Craton: Implications for Paleoproterozoic tectonics. Lithos, 148: 27-44

     

    Polat A, Hofmann AW and Rosing MT. 2002. Boninite-like volcanic rocks in the 3.7~3.8Ga Isua greenstone belt, West Greenland: Geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical geology, 184(3-4): 231-254

     

    Polat A and Hofmann AW. 2003. Alteration and geochemical patterns in the 3.7~3.8Ga Isua greenstone belt, West Greenland. Precambrian Research, 126(3): 197-218

     

    Polat A, Appel PWU, Fryer B, Windley B, Frei R, Samson IM and Huang H. 2009. Trace element systematics of the Neoarchean Fiskensset anorthosite complex and associated meta-volcanic rocks, SW Greenland: Evidence for a magmatic arc origin. Precambrian Research, 175(1-4): 87-115

     

    Polat A, Appel PWU and Fryer BJ. 2011. An overview of the geochemistry of Eoarchean to Mesoarchean ultramafic to mafic volcanic rocks, SW Greenland: Implications for mantle depletion and petrogenetic processes at subduction zones in the early Earth. Gondwana Research, 20(2-3): 255-283

     

    Polat A, Fryer BJ, Samson IM, Weisener C, Appel PWU, Frei R and Windley BF. 2012. Geochemistry of ultramafic rocks and hornblendite veins in the Fiskensset layered anorthosite complex, SW Greenland: Evidence for hydrous upper mantle in the Archean. Precambrian Research, 214-215: 124-153

     

    Rogers JJW and Adams JAS. 1978. Th: Abundances in common igneous rocks. In: Wedepohl KH (ed.). Handbook of Geochemistry. Berlin: Springer, 1-12

     

    Rollison HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. London: Longman Group, 1-352

     

    Rudnick RL, McLennan SM and Taylor SR. 1985. Large ion lithophile elements in rocks from high-pressure granulite facies terrains. Geochimica et Cosmochimica Acta, 49(7): 1645-1655

     

    Rudnick RL. 1995. Making continental crust. Nature, 378(6557): 571-571

     

    Scambelluri M and Philippot P. 2001. Deep fluids in subduction zones. Lithos, 55(1-4): 213-227

     

    Shaw DM. 1968. A review of K-Rb fractionation trends by covariance analysis. Geochimica et Cosmochimica Acta, 32(6): 573-601

     

    Shen QH, Xu HF, Zhang ZQ, Gao JF, Wu JS and Ji CL . 1992. Early Precambrian Granulites, China. Beijing: Geological Publishing House, 57-62(in Chinese)

     

    Song HF and Xu ZY. 2003. Sub-horizontal shearing structures and anatexis of Archean lower crustal rocks in Daqingshan area, Inner Mongolia. Global Geology, 22(1): 30-35(in Chinese with English abstract)

     

    Song HF, Xu ZY and Liu ZH. 2005. Geochemical characteristics and origin of garnet migmatitic granites in Daqingshan area, Inner Mongolia. Acta Petrologica et Mineralogica, 24(5): 489-495(in Chinese with English abstract)

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes.. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345

     

    Tan YJ, Zhang WJ and Song YS. 2002. Mechanism and evolution of the migmatization in the Wulashan Rock Group, Guyang, Inner Mongolia. Geoscience, 16(1): 31-36(in Chinese with English abstract)

     

    Tarney J and Windley BF. 1977. Chemistry, thermal gradients and evolution of the lower continental crust. Journal of the Geological Society, 134(2): 153-172

     

    Tatsumi Y. 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research, 94(B4): 4697-4707

     

    Tatsumi Y and Eggins SM. 1995. Subduction Zone Magmatism. Cambridge: Blackwell Science, 1-211

     

    Tatsumi Y and Kogiso T. 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 2. Origin of chemical and physical characteristics in arc magmatism. Earth and Planetary Science Letters, 148(1-2): 207-221

     

    Wan YS, Liu DY, Dong CY, Xu ZY, Wang ZJ, Wilde SA, Yang YH, Liu ZH and Zhou HY. 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: Evidence for multiple metamorphic events in the Palaeoproterozoic era. Geological Society, London, Special Publications, 323(1): 73-97

     

    Wan YS, Dong CY, Xie HQ, Wang SJ, Song MC, Xu ZY, Wang SY, Zhou HY, Ma MZ and Liu DY. 2012. Formation ages of Early Precambrian BIFs in the North China Craton: SHRIMP zircon U-Pb dating. Acta Geologica Sinica, 86(9): 1447-1478(in Chinese with English abstract)

     

    Wan YS, Xu ZY, Dong CY, Nutman A, Ma MZ, Xie HQ, Liu SJ, Liu DY, Wang HC and Cu H. 2013. Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85 Ga) mafic magmatism and associated high temperature metamorphism in the Daqingshan area, North China Craton: SHRIMP zircon U-Pb dating and whole-rock geochemistry. Precambrian Research, 224: 71-93

     

    Wang KY. 1986. K/Rb ratios in Archaean granulites in the eastern part of Hebei Province. Acta Petrologica Sinica, 2(2): 74-83(in Chinese with English abstract)

     

    Whitney DL and Evans BW. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185-187

     

    Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343

     

    Wood DA. 1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1): 11-30

     

    Woodhead JD. 1988. The origin of geochemical variations in Mariana Lavas: A general model for Petrogenesis in Intra-Oceanic Island Arcs? Journal of Petrology, 29(4): 805-830

     

    Wu CH, Sun M, Li HM, Zhao GC and Xia XP. 2006. LA-ICP-MS U-Pb zircon ages of the khondalites from the Wulashan and Jining high-grade terrain in northern margin of the North China Craton: Constraints on sedimentary age of the khondalite. Acta Petrologica Sinica, 22(11): 2639-2654(in Chinese with English abstract)

     

    Xia XP, Sun M, Zhao GC, Wu FY, Xu P, Zhang JP and Luo Y. 2006. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 241(3-4): 581-593

     

    Xu XC. 1991a. Evolution of metamorphism and its dynamics in Wulashan region, Inner Mongolia. Journal of Changchun University of Earth Science, 21(1): 25-32, 96(in Chinese with English abstract)

     

    Xu XC. 1991b. Geological features and ore-forming Mechanism of the ductile shear belt type gold deposit in Wulashan region, Inner Mongolia. Geology and Prospecting, (7): 12-15(in Chinese with English abstract)

     

    Xu XC. 1991c. Relation between the ductile shear retrogressive metamorphism and gold deposit in Wulashan region, Inner Mongolia. Mineral Resources and Geology, 5(2): 107-114(in Chinese with English abstract)

     

    Xu XC. 1992. The behavior and evolution of granulite facies metamorphic fluids in the Wulashan area, Inner Mongolia. Geological Review, 38(5): 398-406(in Chinese with English abstract)

     

    Xu XC. 1995. P-T condition and P-T-t paths of metamorphism in the Wulashan region, Inner Mongolia. Jinlin Geology, 14(2): 1-9(in Chinese with English abstract)

     

    Xu ZY, Liu ZH and Yang ZS. 2001. The composition and characteristics of the Early Precambrian metamorphic strata in Daqingshan region, Inner Mongolia. Global Geology, 20(3): 209-218(in Chinese with English abstract)

     

    Xu ZY, Liu ZH and Yang ZS. 2002. The strata texture of khondalite in Daqingshan area, Inner Mongolia. Jouranl of Jilin University (Earth Science Edition), 32(4): 313-318(in Chinese with English abstract)

     

    Xu ZY, Liu ZH and Yang ZS. 2003. The discovery of Zaoergou angular uncomformity and establishment of Meidaizhao Group-complex in Daqing Mountains, Inner Mongolia-Paleaoproterozoic low-grade metamorphic strata on the Khondalite series. Geological Bulletin of China, 22(7): 480-486(in Chinese with English abstract)

     

    Xu ZY, Liu ZH, Hu FX and Yang ZS. 2005a. Geochemical characteristics of the calc-silicate rocks in khondalite series in Daqingshan area, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 35(6): 681-689(in Chinese with English abstract)

     

    Xu ZY, Liu ZH and Yang ZS. 2005b. Structures of early metamorphic strata in the khondalite series in the Daqingshan-Wulashan area, Inner Mongolia: Results of the sub-horizontal bedding-parallel detachment deformation in the lower crust. Journal of Stratigraphy, 29(S1): 423-432(in Chinese with English abstract)

     

    Xu ZY, Liu ZH, Yang ZS, Wu XW and Chen XF. 2007. Structure of metamorphic strata of the khondalite series in the Daqingshan-Wulashan area, central Inner Mongolia, China, and their geodynamic implications. Geological Bulletin of China, 26(5): 526-536(in Chinese with English abstract)

     

    Xu ZY, Liu ZH, Dong XJ, Dong CY and Wan YS. 2011. Discovery of kyanite garnet quartz feldspathic gneiss in the north side of Daqing Mts., Inner Mongolia, and its petrography, geochemistry and zircon SHRIMP dating. Geological Review, 57(2): 243-252(in Chinese with English abstract)

     

    Yang ZS, Xu ZY, Liu ZH and Peng XD. 2003. Consideration and practice of the construction of litho stratigraphic systems in high-grade metamorphic terrains: A case study in the Daqingshan-Wulashan area. Geology in China, 30(4): 343-351(in Chinese with English abstract)

     

    Yang ZS, Xu ZY, Liu ZH and Wang DL. 2006. Major progress in Early Precambrian research in the Daqingshan-Wulashan central Inner Mongolia, China, and some suggestions for stratigraphic work in high-grade metamorphic areas. Geological Bulletin of China, 25(4): 427-433(in Chinese with English abstract)

     

    You CF, Castillo PR, Gieskes JM, Chan LH and Spivack AJ. 1996. Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters, 140(1-4): 41-52

     

    Zhang YM, Gu XX, Cheng WB, Huang ZQ, Li FL, Yang WL and Yang Y. 2011. Geochronological study of the pegmatites in Wulashan area, Inner Mogulia. Acta Mineralogica Sinica, 31(Suppl.1): 143-144(in Chinese)

     

    Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202

     

    Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CY. 2012. Amalgamation of the North China Craton: Key issues and discussion. Precambrian Research, 222-223: 56-76

     

    Zhao QY. 2003. The lithogeochemical characteristics and protolith formation of khondalite series in Daqingshan Region, Inner Mongolia. Master Degree Thesis. Changchun: Jilin University (in Chinese)

  • 加载中

(17)

计量
  • 文章访问数:  8428
  • PDF下载数:  10393
  • 施引文献:  0
出版历程
收稿日期:  2012-09-18
修回日期:  2013-01-07
刊出日期:  2013-02-01

目录