胶北地体多期变质事件的P-T-t轨迹及其对胶-辽-吉带形成与演化的制约

刘平华, 刘福来, 王舫, 刘超辉, 杨红, 刘建辉, 蔡佳, 施建荣. 胶北地体多期变质事件的P-T-t轨迹及其对胶-辽-吉带形成与演化的制约[J]. 岩石学报, 2015, 31(10): 2889-2941.
引用本文: 刘平华, 刘福来, 王舫, 刘超辉, 杨红, 刘建辉, 蔡佳, 施建荣. 胶北地体多期变质事件的P-T-t轨迹及其对胶-辽-吉带形成与演化的制约[J]. 岩石学报, 2015, 31(10): 2889-2941.
LIU PingHua, LIU FuLai, WANG Fang, LIU ChaoHui, YANG Hong, LIU JianHui, CAI Jia, SHI JianRong. P-T-t paths of the multiple metamorphic events of the Jiaobei terrane in the southeastern segment of the Jiao-Liao-Ji Belt (JLJB), in the North China Craton: Impication for formation and evolution of the JLJB[J]. Acta Petrologica Sinica, 2015, 31(10): 2889-2941.
Citation: LIU PingHua, LIU FuLai, WANG Fang, LIU ChaoHui, YANG Hong, LIU JianHui, CAI Jia, SHI JianRong. P-T-t paths of the multiple metamorphic events of the Jiaobei terrane in the southeastern segment of the Jiao-Liao-Ji Belt (JLJB), in the North China Craton: Impication for formation and evolution of the JLJB[J]. Acta Petrologica Sinica, 2015, 31(10): 2889-2941.

胶北地体多期变质事件的P-T-t轨迹及其对胶-辽-吉带形成与演化的制约

  • 基金项目:

    本文受国家自然科学基金项目(41430210、41302153)、科技部973项目(2012CB416603)、中国地质调查局地质大调查项目(12120114021401、12120114061901、1212010811065、1212011120150)和中国地质科学院地质研究所基本科研业务经费(J1212、J1509)联合资助.

P-T-t paths of the multiple metamorphic events of the Jiaobei terrane in the southeastern segment of the Jiao-Liao-Ji Belt (JLJB), in the North China Craton: Impication for formation and evolution of the JLJB

  • 胶北地体位于华北克拉通东部陆块胶-辽-吉带南端,主要由闪长质-TTG-花岗质片麻岩、变质表壳岩系和变质镁铁-超镁铁质岩所组成。本文通过对胶北早前寒武纪变质岩系的岩石学、矿物化学、变质反应结构和序列、变质温度和压力估算与同位素年代学资料的综合研究和总结,得出以下重要结论:(1)与华北克拉通东部陆块其它地区太古宙变质基底类似,本区也存在~2500Ma区域性新太古代变质事件,且与本区2550~2500Ma岩浆作用在时间上非常接近,其变质作用发生的时间比岩浆作用要晚10~50Myr,指示本区~ 2500Ma区域性变质事件可能与大规模的幔源岩浆底侵作用存在密切的成因关系。(2)胶北还存在1950~1850Ma区域性古元古代变质事件,并导致了大量高压基性和泥质麻粒岩的形成,高压基性麻粒岩主要以不规则透镜体、变形岩墙群或岩脉群的形式赋存于闪长质-TTG-花岗质片麻岩之中,并集中分布在安丘-平度-莱西-莱阳-栖霞一带,大致沿北东-南西向断续带状分布,构成了一条长约300km的古元古代高压麻粒岩相变质带。(3)本区古元古代高压麻粒岩以记录近等温减压(ITD)及随后近等压降温(IBC)的顺时针P-T-t轨迹为特征,指示本区变质杂岩在古元古代晚期曾强烈地卷入了与俯冲-拼贴-碰撞造山有关的构造过程,并可能经历了如下复杂的构造演化:(I)在古元古代晚期2000~1950Ma,随着有限大洋地壳的持续俯冲作用,本区各类变质岩的原岩开始经历一次构造增厚事件,并导致了它们的原岩经历了早期绿片岩相-角闪岩相进变质作用;(II)1950~1870Ma,大洋地壳俯冲作用结束,本区开始发生弧-陆拼贴和陆-陆碰撞作用,大陆地壳持续缩短和加厚,在加厚下地壳或岛弧根部带约50km的深度,发生了区域性高压麻粒岩相变质作用,并导致了本区变基性岩和变泥质岩分别形成了石榴石+单斜辉石+斜长石±角闪石±石英±铁-钛氧化物和石榴石+蓝晶石+钾长石+斜长石+黑云母+石英+铁-钛氧化物+熔体的高压麻粒岩相矿物组合。(III)1870~1800Ma,在同碰撞峰期变质结束之后,本区造山作用进入了后碰撞构造折返-伸展演化阶段,先后经历了早期快速构造折返和晚期缓慢冷却降温两个构造热演化阶段。其中,在早期快速构造折返阶段,高压麻粒岩经历了峰后近等温或略微增温减压退变质作用的叠加,高压基性麻粒岩表现为沿石榴石边部形成了含斜方辉石的后成合晶。与此同时,早期快速构造折返阶段还伴随着热松弛和伸展作用,出现一系列的幔源基性岩浆活动,不仅导致了本区大量未经历高压麻粒岩相变质的变基性岩群的形成,同时也诱发了区内大规模的地壳深熔作用的发生。自温度高峰期之后,本区地壳岩石还经历了一个近等压冷却降温过程,并发生了区域性角闪岩相退变质作用,高压基性麻粒岩表现为石榴石和斜方辉石边部常出现含角闪石的退变边或后成合晶。最终,在1800Ma左右,本区含电气石花岗伟晶质岩脉的大量出现,则标志着胶北地体古元古代晚期(2000~1800Ma)俯冲-拼贴-碰撞造山作用的最终结束。
  • 加载中
  • [1]

    Anovitz LM. 1991. Al zoning in pyroxene and plagioclase: Window on late pro-grade to early retrograde P-T paths in granulite terranes. American Mineralogist, 76(7-8): 1328-1343

    [2]

    Appel P, Möller A and Schenk V. 1998. High-pressure granulite facies metamorphism in the Pan-African belt of eastern Tanzania: P-T-t evidence against granulite formation by continent collision. Journal of Metamorphic Geology, 16(4):491-509

    [3]

    Bai J. 1993. The Precambrian Geology and Pb-Zn Mineralization in the Northern Margin of North China Platform. Beijing: Geological Publishing House, 102-104 (in Chinese)

    [4]

    Bai J and Dai FY. 1998. Archean and Early Proterozoic crust. In: Ma XY and Bai J (eds.). Precambrian Crust Evolution of China. Beijing: Springer-Geological Publishing House, 15-157

    [5]

    Bai WJ, Zhou MF, Hu XF, Chai YC and Zheng XH. 1993. Mafic-ultramafic Magmatism and Tectonic Evolution of the Northern China Craton. Beijing: Seismological Press, 71-81 (in Chinese with English abstract)

    [6]

    Bédard JH. 2006. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochimica et Cosmochimica Acta, 70(5): 1188-1214

    [7]

    Bhattacharyya C. 1971. An evaluation of the chemical distinctions between igneous and metamorphic orthopyroxenes. American Mineralogist, 56: 499-506

    [8]

    Black LP and Jagodzinski EA. 2003. Importance of establishing sources of uncertainty for the derivation of reliable SHRIMP ages. Australian Journal of Earth Sciences, 50(4): 503-512

    [9]

    Black LP, Kamo SL, Allen CM, Aleinikoff JK, Davis, DW, Korsch RJ and Foudoulis C. 2003. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200(1-2): 155-170

    [10]

    Bohlen SR. 1987. Pressure-temperature-time paths and a tectonic model for the evolution of granulites. The Journal of Geology, 95(5): 617-632

    [11]

    Bohlen SR. 1991. On the formation of granulites. Journal of Metamorphic Geology, 9(3): 223-229

    [12]

    Brown M. 1993. P-T-t evolution of orogenic belts and the causes of regional metamorphism. Journal of the Geological Society, 150(2): 227-241

    [13]

    Brown M. 2006. A duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 34(11): 961-964

    [14]

    Brown M. 2007. Metamorphic conditions in orogenic belts: A record of secular change. International Geology Review, 49(3): 193-234

    [15]

    Brown M. 2008. Characteristic thermal regimes of plate tectonics and their metamorphic imprint throughout Earth history. In: Condie K and Pease V (eds.). When Did Plate Tectonics Begin? Washington: Geological Society of America Special Papers, 440: 97-128

    [16]

    Brown M. 2014. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers, 5(4): 553-569

    [17]

    Bureau of Geology and Mineral Resources of Shandong Province. 1991. Regional Geology of Shandong Province. Beijing: Geological Publishing House, 1-594 (in Chinese)

    [18]

    Cai J, Liu FL, Liu PH, Liu CH, Wang F and Shi JR. 2014. Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan Complex, North China Craton. Precambrian Research, 241:161-184

    [19]

    Campbell IH, Griffiths RW and Hill RI. 1989. Melting in an Archaean mantle plume: Heads it\'s basalts, tails it\'s komatiites. Nature, 339(6227): 697-699

    [20]

    Carmichael DM. 1969. On the mechanism of prograde metamorphic reactions in quartz-bearing pelitic rocks. Contributions to Mineralogy and Petrology, 20(3): 244-267

    [21]

    Carswell DA and O\'Brien PJ. 1993. Thermobarometry and geotectonic significance of high-pressure granulites: Examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria. Journal of Petrology, 34(3): 427-459

    [22]

    Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD and Windley BF. 2009. Earth Accretionary orogens through Earth history. In: Cawood PA and Kröner A (eds.). Earth Accretionary Systems in Space and Time. London: London Special Publications, 318: 1-36

    [23]

    Chu H, Lu SN, Wang HC, Xiang ZL and Liu H. 2011. U-Pb age spectrum of detrital zircons from the Fuzikuang Formation, Penglai Group in Changdao, Shandong Province. Acta Petrologica Sinica, 27(4): 1017-1028 (in Chinese with English abstract)

    [24]

    Condie KC. 1997. Contrasting sources for upper and lower continental crust: The greenstone connection. The Journal of Geology, 105(6): 729-736

    [25]

    Cooke RA. 2000. High-pressure/temperature metamorphism in the St. Leonhard granulite Massif, Austria: Evidence from intermediate pyroxene-bearing granulites. International Journal of Earth Sciences, 89(3): 631-651

    [26]

    Deer WA, Howie RA and Zussman J. 1997. Rock-forming Minerals. Second Editon. Washington D.C.: Geological Society Publishing House, 3-4

    [27]

    Dong CY, Wang SJ, Liu DY, Wang JG, Xie HQ, Wang W, Song ZY and Wan YS. 2011. Late Paleoproterozoic crustal evolution of the North China Craton and formation time of the Jingshan Group: Constraints from SHRIMP U-Pb zircon dating of meta-intermediate-basic intrusive rocks in eastern Shandong Province. Acta Petrologica Sinica, 27(6): 1699-1706 (in Chinese with English abstract)

    [28]

    Dong, CY, Ma MZ, Liu SG, Xie HQ, Liu DY, Li XM and Wan YS. 2012. Middle Paleoproterozoic crustal extensional regime in the North China Craton: New evidence from SHRIMP zircon U-Pb dating and whole-rock geochemistry of meta-gabbro in the Anshan-Gongchangling area. Acta Petrologica Sinica, 28(9): 2785-2792 (in Chinese with English abstract)

    [29]

    Du LL, Guo JH, Nutman AP, Wyman D, Geng YS, Yang CH, Liu FL, Ren LD and Zhou XW. 2014. Implications for Rodinia reconstructions for the initiation of Neoproterozoic subduction at ~860Ma on the western margin of the Yangtze Block: Evidence from the Guandaoshan Pluton. Lithos, 196-197: 67-82

    [30]

    Ellis DJ. 1987. Origin and evolution of granulites in normal and thickened crusts. Geology, 15(2): 167-170

    [31]

    England PC and Thompson AB.1984. Pressure-temperature-time paths of regional metamorphism. I. Heat transfer during the evolution of regions of thickened continental crust. Journal of Petrology, 25(4): 894-928

    [32]

    Faure M, Lin W, Monié P and Bruguier O. 2004. Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula (north-east China). Terra Nova, 16(2): 75-80

    [33]

    Foster MD. 1960. Interpretation of the composition of trioctahedral micas. United States Geological Survey Professional Paper, 354: 11-48

    [34]

    Geng JZ, Zhang J, Li HK, Li HM, Zhang YQ and Hao S. 2012. Ten-micron-sized zircon U-Pb dating using LA-MC-ICP-MS. Acta Geoscientica Sinica, 33(6): 877-884 (in Chinese with English abstract)

    [35]

    Geng YS, Du LL and Ren LD. 2012. Growth and reworking of the Early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes. Gondwana Research, 21(2-3): 517-529

    [36]

    Guo JH, O\'Brien PJ and Zhai MG. 2002. High-pressure granulites in the Sanggan area, North China craton: Metamorphic evolution, P-T paths and geotectonic significance. Journal of Metamorphic Geology, 20(8): 741-756

    [37]

    Guo JH, Peng P, Chen Y, Jiao SJ and Windley BF. 2012. UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124-142

    [38]

    Harley SL. 1989. The origins of granulites: A metamorphic perspective. Geological Magazine, 126(3): 215-247

    [39]

    He GP and Ye HW. 1998a. Comparison and main characteristics of Early Proterozoic meteamorphic terranens in eastrn Liaoning and southern Jilin areas. Journal of Changchun University of Science and Technology, 28(2): 121-126, 134 (in Chinese with English abstract)

    [40]

    He GP and Ye HW. 1998b. Two types of Early Proterozoic meteamorphism and its tectonic significance in eastern Liaoning and southern Jilin areas. Acta Petrologica Sinica, 14(2): 152-162 (in Chinese with English abstract)

    [41]

    Henry DJ and Guidotti CV. 2002. Titanium in biotite from metapelitic rocks: Temperature effects, crystal-chemical controls, and petrologic applications. American Mineralogist, 87(4): 375-382

    [42]

    Henry DJ, Guidotti CV and Thomson JA. 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications or geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2-3): 316-328

    [43]

    Hensen BJ and Green DH. 1972. Experimental study of the stability of cordierite and garnet in pelitic compositions at high pressures and temperatures. Contributions to Mineralogy and Petrology, 35(4): 331-354

    [44]

    Hensen BJ. 1977. Cordierite-garnet bearing assemblages as geothermometers and barometers in granulite facies terranes. Tectonophysics, 43(1-2): 73-88

    [45]

    Herzberg C and O\'Hara MJ. 1998. Phase equilibrium constraints on the origin of basalts, picrites, and komatiites. Earth-Science Reviews, 44(1-2): 39-79

    [46]

    Huang T, Yang LQ, Liu XD, Li HL, Zhang BL, Wang JG, Zhao YF and Zhang N. 2014. Crustal evolution of the Jiaobei terrane: Evidence from U-Pb ages, trace element compositions and Hf isotopes of inherited zircons of the Linglong biotite granite. Acta Petrologica Sinica, 30(9): 2574-2594 (in Chinese with English abstract)

    [47]

    Jahn BM, Glikson AY, Peucat JJ and Hickman AH. 1981. REE geochemistry and isotopic data of Archean silicic volcanics and granitoids from the Pilbara Block, Western Australia: Implications for the early crustal evolution. Geochimica et Cosmochimica Acta, 45(9): 1633-1652

    [48]

    Jahn BM, Liu DY, Wan YS, Song B and Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science, 308(3): 232-269

    [49]

    Jamieson RA and Beaumont C. 2011. Coeval thrusting and extension during lower crustal ductile flow-implications for exhumation of high-grade metamorphic rocks. Journal of Metamorphic Geology, 29(1): 33-51

    [50]

    Jayananda M, Peucat JJ, Chardon D and Mahabaleswar B. 1998. Metamorphic history of the Archean domain in Southern India. Indian Minerals, 32: 119-122

    [51]

    Ji ZY. 1993. New data on isotope age of the Proterozoic metamorphic rocks from northern Jiaodong and its geological significance. Shandong Geology, 9(1): 43-51(in Chinese)

    [52]

    Jiao SJ and Guo JH. 2011. Application of the two-feldspar geothermometer to ultrahigh-temperature (UHT) rocks in the khondalite belt, North China craton and its implications. American Mineralogist, 96(2-3): 250-260

    [53]

    Jiao SJ, Guo JH, Mao Q and Zhao RF. 2011. Application of Zr-in-rutile thermometry: A case study from ultrahigh-temperature granulites of the khondalite belt, North China Craton. Contributions to Mineralogy and Petrology, 162(2): 379-393

    [54]

    Jiao SJ, Guo JH, Harley SL and Windley BF. 2013. New constraints from garnetite on the P-T path of the khondalite belt: Implications for the tectonic evolution of the North China Craton. Journal of Petrology, 54(9): 1725-1758

    [55]

    Jin SQ and Li HC. 1980. The Instruction of the Genetic Mineralogy (Next Volume). Changchun: Jilin University Publishing House, 1-146 (in Chinese)

    [56]

    Jin SQ. 1991. Composition characteristics of calc-amphiboles in different regional metamorphic facies. Chinese Science Bulletin, 36(11): 851-854 (in Chinese)

    [57]

    Kearey P, Klepeis KA and Vine FJ. 2013. Global Tectonics. London: Blackwell Science, 150-173

    [58]

    Kusky TM and Santosh M. 2009. The Columbia connection in North China. Geological Society, London, Special Publications, 323(1): 49-71

    [59]

    Lan TG, Fan HR, Yang KF, Cai YC, Wen BJ and Zhang W. 2015. Geochronology, mineralogy and geochemistry of alkali-feldspar granite and albite granite association from the Changyi area of Jiao-Liao-Ji Belt: Implications for Paleoproterozoic rifting of eastern North China Craton. Precambrian Research, 266: 86-107

    [60]

    Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW and Guo YZ. 1997. Nomenclature of amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61: 295-321

  • 加载中
计量
  • 文章访问数:  13306
  • PDF下载数:  4581
  • 施引文献:  0
出版历程
收稿日期:  2015-05-20
修回日期:  2015-07-08
刊出日期:  2015-10-31

目录