苏鲁超高压变质带中海阳所地区变基性岩的地球化学性质及变质演化特征

刘利双, 刘福来, 刘平华, 蔡佳, 施建荣, 刘超辉. 苏鲁超高压变质带中海阳所地区变基性岩的地球化学性质及变质演化特征[J]. 岩石学报, 2015, 31(10): 2863-2888.
引用本文: 刘利双, 刘福来, 刘平华, 蔡佳, 施建荣, 刘超辉. 苏鲁超高压变质带中海阳所地区变基性岩的地球化学性质及变质演化特征[J]. 岩石学报, 2015, 31(10): 2863-2888.
LIU LiShuang, LIU FuLai, LIU PingHua, CAI Jia, SHI JianRong, LIU ChaoHui. Geochemical characteristics and metamorphic evolution of meta-mafic rocks from Haiyangsuo area, Sulu ultrahigh-pressure metamorphic belt[J]. Acta Petrologica Sinica, 2015, 31(10): 2863-2888.
Citation: LIU LiShuang, LIU FuLai, LIU PingHua, CAI Jia, SHI JianRong, LIU ChaoHui. Geochemical characteristics and metamorphic evolution of meta-mafic rocks from Haiyangsuo area, Sulu ultrahigh-pressure metamorphic belt[J]. Acta Petrologica Sinica, 2015, 31(10): 2863-2888.

苏鲁超高压变质带中海阳所地区变基性岩的地球化学性质及变质演化特征

  • 基金项目:

    本文受国家自然科学基金重点项目(41430210)、国家自然科学基金面上项目(41372069)和中国地质调查局地质大调查项目(12120114061901、12120114021401)联合资助.

详细信息

Geochemical characteristics and metamorphic evolution of meta-mafic rocks from Haiyangsuo area, Sulu ultrahigh-pressure metamorphic belt

More Information
  • 苏鲁超高压变质带的海阳所地区广泛分布各类变基性岩,它们主要由"红眼圈"结构的变辉长岩、(石榴)斜长角闪岩组成,且以透镜状或似层状赋存于片麻岩中。根据主量元素和微量元素特征,可将海阳所地区变基性岩划分为两种类型:第一类(A组)样品轻稀土相对富集,其稀土元素配分曲线具有右倾型的特征,微量元素具有Nb、Ta、Zr、Hf、Ti的明显负异常,其蛛网图配分曲线微弱右倾,类似于岛弧玄武岩IAB的特征;第二类(B组)样品稀土元素配分曲线和微量元素蛛网图配分曲线均相对平坦,Nb、Ta、Zr、Hf、Ti略微亏损,与洋中脊玄武岩E-MORB具有一定的相似性。所有变基性岩样品均属于拉斑玄武岩系列,成因类型部分与岛弧环境相关,另一部分则可能与洋中脊环境关系密切。根据岩相学、矿物相转变、变质反应以及温压条件估算的综合研究结果,识别出海阳所变基性岩可能经历了两期变质作用,其中第一期中-高压麻粒岩相变质作用(M1)的标志性矿物组合以基质中保存的粗粒石榴石(Grt1)+粗粒单斜辉石(Cpx1)+粗粒斜长石(Pl1)±石英(Qtz)组合为特征,形成的温压条件为T=725~845℃、P=9.5~12.4kbar;第二期峰期高压麻粒岩相变质阶段(M21)以发育"红眼圈"结构为特征,典型的矿物组合为新生的细粒石榴石(Grt21)+单斜辉石(Cpx21)+斜长石(Pl21)±石英(Qtz),形成的温压条件为T=765~845℃、P=14.8~17.5kbar,而峰后角闪岩相退变质阶段(M21)以形成低温退变质矿物组合绿色角闪石(Amp22)+斜长石(Pl22)±石英(Qtz)±石榴石(Grt22)为特征,形成的温压条件为T=575~680℃、P=6.0~8.0kbar。第二期变质演化P-T轨迹具有近等温降压至减压冷却的顺时针型式。海阳所变基性岩记录的多期变质演化的信息及其P-T条件与苏鲁-大别超高压变质带存在明显差异。结合以往变基性岩新太古代-古元古代原岩年龄信息,可以判断海阳所地区的变基性岩可能来自于华北克拉通东南缘胶北地体的古老变质基底,并卷入苏鲁-大别地体中-晚三叠世造山事件中。这一重要成果对于揭示海阳所及其邻区变基性岩和围岩的成因、胶北地体古老基底的形成演化过程以及重塑苏鲁-大别超高压变质带的构造演化模式具有重要的科学意义。
  • 加载中
  • [1]

    Bhadra S and Bhattacharya A. 2007. The barometer tremolite+tschermakite+2albite=2pargasite+8quartz: Constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages. American Mineralogist, 92(4): 491-502

    [2]

    Bundy FP. 1980. The P, T phase and reaction diagram for elemental carbon. Journal of Geophysical Research, 87(B12): 6930-6936

    [3]

    Cong BL and Wang QC. 1999. The Dabie-Sulu UHP rocks belt: Review and prospect. Chinese Science Bulletin, 44(12): 1074-1086

    [4]

    Deer WA, Howie RA and Zussman J. 1997. The Rock-forming Minerals. 2nd Edtion. Washington D.C.: Geological Society Publishing House, 3-4

    [5]

    Dupuy C and Dostal J. 1984. Trace element geochemistry of some continental tholeiites. Earth and Planetary Science Letters, 67(1): 61-69

    [6]

    Eckert JO Jr, Newton RC and Kleppa OJ. 1991. The △H of reaction and recalibration of garnet-pyroxene-plagioclase-quartz geobarometers in the CMAS system by solution calorimetry. American Mineralogist, 76(1-2): 148-160

    [7]

    Ellis DJ and Green DH. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contributions to Mineralogy and Petrology, 71(1): 13-22

    [8]

    Graham CM and Powell R. 1984. A garnet-hornblende geothermometer: Calibration, testing, and application to the Pelona schist, Southern California. Journal of Metamorphic Geology, 2(1): 13-31

    [9]

    Guo JH, Chen F, Zhang X, Fan HR and Cong BL. 2001. Origin of post-collisional shoshonitic syenites and strongly peraluminous rocks in Sulu UHP belt, eastern China: Zircon U-Pb and petrologic-chemical data. In: Jang BA and Cheong D (eds.). Proceeding of the 8th Korea-China Joint Symposium on Crustal Evolution in Northeast Asia. Kyunju, South Korea: Kongwon National University, 126-129

    [10]

    Guo JH, Zhai MG, Ye K, Liu WJ and Cong BL. 2002. Petrochemistry and geochemistry of HP metabasites from Haiyangsuo in Sulu UHP belt of eastern China. Science in China (Series D), 45(1): 21-33

    [11]

    Harley SL. 1988. Proterozoic granulites from the Rauer Group, East Antarctica. I. Decompressional pressure-temperature paths deduced from mafic and felsic gneisses. Journal of Petrology, 29(5): 1059-1095

    [12]

    Holland T and Blundy J. 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116(4): 433-447

    [13]

    Hu FF, Fan HR, Yang JH, Wan YS, Liu DY, Zhai MG and Jin CW. 2004. Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U-Pb dating on hydrothermal zircon. Chinese Science Bulletin, 49(15): 1629-1636

    [14]

    Kerrich R, Polat A, Wyman D and Hollings P. 1999. Trace element systematics of Mg-, to Fe-tholeiitic basalt suites of the Superior Province: Implications for Archean mantle reservoirs and greenstone belt genesis. Lithos, 46(1): 163-187

    [15]

    Kohn MJ and Spear FS. 1990. Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont. American Mineralogist, 75(1-2): 89-96

    [16]

    Leake BE, Woolley AR, Arps C et al. 1997. Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61(405): 295-321

    [17]

    Li SG, Chen YZ, Song MC, Zhang ZM, Yang C and Zhao DM. 1994. U-Pb Zircon ages of amphibolite from the Haiyangsuo area, eastern Shandong Province: An example for influence of multi-metamorphism to lower and upper intercepts of zircon discordia line at the concordia curve. Acta Geosicientia Sinica, 6(1-2): 37-42 (in Chinese with English abstract)

    [18]

    Liou JG, Hacker BR and Zhang RY. 2000. Into the forbidden zone. Science, 287(5456): 1215-1216

    [19]

    Liou JG, Tsujimori T, Chu W, Zhang RY and Wooden JL. 2006. Protolith and metamorphic ages of the Haiyangsuo Complex, eastern China: A non-UHP exotic tectonic slab in the Sulu ultrahigh-pressure terrane. Mineralogy and Petrology, 88(1-2): 207-226

    [20]

    Liou JG, Ernst WG, Zhang RY, Tsujimori T and Jahn BM. 2009. Ultrahigh-pressure minerals and metamorphic terranes: The view from China. Journal of Asian Earth Sciences, 35(3-4): 199-231

    [21]

    Liu FL, Xu ZQ, Liou JG and Song B. 2004a. SHRIMP U-Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. Journal of Metamorphic Geology, 22(4): 315-326

    [22]

    Liu FL, Xu ZQ and Xue HM. 2004b. Tracing the protolith, UHP metamorphism, and exhumation ages of orthogneiss from the SW Sulu terrane (eastern China): SHRIMP U-Pb dating of mineral inclusion-bearing zircons. Lithos, 78(4): 411-429

    [23]

    Liu FL, Xu ZQ, Liou JG, Dong HL and Xue HM. 2007. Ultrahigh-pressure mineral assemblages in zircons from the surface to 5158m depth in cores of the main drill hole, Chinese Continental Scientific Drilling Project, Southwestern Sulu belt, China. International Geology Review, 49(5): 454-478

    [24]

    Liu FL and Liou JG. 2011. Zircon as the best mineral for P-T-time history of UHP metamorphism: A review on mineral inclusions and U-Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. Journal of Asian Earth Sciences, 40(1): 1-39

    [25]

    Liu FL, Wang F, Liou JG, Meng E, Liu JH, Yang H, Xiao LL, Cai J and Shi JR. 2014. Mid-Late Triassic metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao-Liao-Ji Belt, North China Craton: Evidence from monazite U-Th-Pb and muscovite Ar-Ar dating. Journal of Asian Earth Sciences, 94: 205-225

    [26]

    Liu PH, Liu FL, Wang F and Liu JH. 2010. Genetic mineralogy and metamorphic evolution of mafic high-pressure (HP) granulites from the Shandong Peninsula, China. Acta Petrologica Sinica, 26(7): 2039-2056 (in Chinese with English abstract)

    [27]

    Liu PH, Liu FL, Wang F and Liu JH. 2011. In-situ U-Pb dating of zircons from high-pressure granulites in Shandong Peninsula, Eastern China and its geological significance. Earth Science Frontiers, 18(2): 33-54 (in Chinese with English abstract)

    [28]

    Liu PH, Liu FL, Liu CH, Wang F, Liu JH, Yang H, Cai J and Shi JR. 2013. Petrogenesis, P-T-t path, and tectonic significance of high-pressure mafic granulites from the Jiaobei terrane, North China Craton. Precambrian Research, 233: 237-258

    [29]

    McCulloch MT and Gamble JA. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters, 102(3-4): 358-374

    [30]

    Meschede M. 1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218

    [31]

    Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321-355

    [32]

    Mullen ED. 1983. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53-62

    [33]

    Newton RC and Perkins D III. 1982. Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene (clinopyroxene)-quartz. American Mineralogist, 67(3-4): 203-222

    [34]

    Pearce JA and Norry MJ. 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47

    [35]

    Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Orogenic Andesites and Related Rocks. New York: Wiley, 525-548

    [36]

    Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic arc magmas. Annual Review of Earth and Planetary Sciences, 23: 251-286

    [37]

    Powell R. 1985. Regression diagnostics and robust regression in geothermometer/geobarometer calibration: The garnet-clinopyroxene geothermometer revisited. Journal of Metamorphic Geology, 3(3): 231-243

    [38]

    Rollinson HR. 2014. Using Geochemical Data: Evaluation, Presentation, Interpretation. British: Routledge

    [39]

    Rudnick RL, Mclennan SM and Taylor SR. 1985. L???圀甀?刀堀??圀甀?夀???娀栀愀渀最?匀???夀甀愀渀????愀渀搀?圀甀??夀???  ???刀椀昀琀?洀攀氀琀椀渀最?漀昀?樀甀瘀攀渀椀氀攀?愀爀挀?搀攀爀椀瘀攀搀?挀爀甀猀琀???攀漀挀栀攀洀椀挀愀氀?攀瘀椀搀攀渀挀攀?昀爀漀洀?一攀漀瀀爀漀琀攀爀漀稀漀椀挀?瘀漀氀挀愀渀椀挀?愀渀搀?最爀愀渀椀琀椀挀?爀漀挀欀猀?椀渀?琀栀攀??椀愀渀最渀愀渀?伀爀漀最攀渀??匀漀甀琀栀??栀椀渀愀??倀爀攀挀愀洀戀爀椀愀渀?刀攀猀攀愀爀挀栀????????????????????戀爀?娀栀攀渀最?夀????栀攀渀?刀堀?愀渀搀?娀栀愀漀?娀????  ?愀???栀攀洀椀挀愀氀?最攀漀搀礀渀愀洀椀挀猀?漀昀?挀漀渀琀椀渀攀渀琀愀氀?猀甀戀搀甀挀琀椀漀渀?稀漀渀攀?洀攀琀愀洀漀爀瀀栀椀猀洀???渀猀椀最栀琀猀?昀爀漀洀?猀琀甀搀椀攀猀?漀昀?琀栀攀??栀椀渀攀猀攀??漀渀琀椀渀攀渀琀愀氀?匀挀椀攀渀琀椀昀椀挀??爀椀氀氀椀渀最????匀???挀漀爀攀?猀愀洀瀀氀攀猀??吀攀挀琀漀渀漀瀀栀礀猀椀挀猀??????????????????戀爀?娀栀攀渀最?夀???夀攀???愀渀搀?娀栀愀渀最??????  ?戀???攀瘀攀氀漀瀀椀渀最?琀栀攀?瀀氀愀琀攀?琀攀挀琀漀渀椀挀猀?昀爀漀洀?漀挀攀愀渀椀挀?猀甀戀搀甀挀琀椀漀渀?琀漀?挀漀渀琀椀渀攀渀琀愀氀?挀漀氀氀椀猀椀漀渀???栀椀渀攀猀攀?匀挀椀攀渀挀攀??甀氀氀攀琀椀渀????????????????????戀爀?娀栀攀渀最?夀???堀椀愀?儀堀???栀攀渀?刀堀?愀渀搀??愀漀?堀夀??? ????倀愀爀琀椀愀氀?洀攀氀琀椀渀最??昀氀甀椀搀?猀甀瀀攀爀挀爀椀琀椀挀愀氀椀琀礀?愀渀搀?攀氀攀洀攀渀琀?洀漀戀椀氀椀琀礀?椀渀?甀氀琀爀愀栀椀最栀?瀀爀攀猀猀甀爀攀?洀攀琀愀洀漀爀瀀栀椀挀?爀漀挀欀猀?搀甀爀椀渀最?挀漀渀琀椀渀攀渀琀愀氀?挀漀氀氀椀猀椀漀渀???愀爀琀栀?匀挀椀攀渀挀攀?刀攀瘀椀攀眀猀??? ????????????????戀爀?娀栀漀甀?????娀栀攀渀最?夀????椀???愀渀搀?堀椀攀?娀???  ???伀渀?氀漀眀?最爀愀搀攀?洀攀琀愀洀漀爀瀀栀椀挀?爀漀挀欀?眀椀琀栀椀渀??愀戀椀攀?匀甀氀甀?甀氀琀爀愀栀椀最栀?瀀爀攀猀猀甀爀攀?洀攀琀愀洀漀爀瀀栀椀挀?戀攀氀琀???挀琀愀?倀攀琀爀漀氀漀最椀挀愀?匀椀渀椀挀愀????????????????椀渀??栀椀渀攀猀攀?眀椀琀栀??渀最氀椀猀栀?愀戀猀琀爀愀挀琀??戀爀?娀栀漀甀?????圀椀氀搀攀?匀???娀栀愀漀?????娀栀愀渀最?堀娀??娀栀攀渀最??儀???椀渀?圀?愀渀搀??栀攀渀最?????  ?愀??匀?刀??倀?唀?倀戀?稀椀爀挀漀渀?搀愀琀椀渀最?漀昀?琀栀攀?圀甀氀椀愀渀?挀漀洀瀀氀攀砀???攀昀椀渀椀渀最?琀栀攀?戀漀甀渀搀愀爀礀?戀攀琀眀攀攀渀?琀栀攀?一漀爀琀栀?愀渀搀?匀漀甀琀栀??栀椀渀愀??爀愀琀漀渀猀?椀渀?琀栀攀?匀甀氀甀?伀爀漀最攀渀椀挀??攀氀琀???栀椀渀愀??倀爀攀挀愀洀戀爀椀愀渀?刀攀猀攀愀爀挀栀????????????????????戀爀?娀栀漀甀?????圀椀氀搀攀?匀???娀栀愀漀?????娀栀攀渀最??儀???椀渀?圀??娀栀愀渀最?堀娀?愀渀搀??栀攀渀最?????  ?戀???攀琀爀椀琀愀氀?稀椀爀挀漀渀?唀?倀戀?搀愀琀椀渀最?漀昀?氀漀眀?最爀愀搀攀?洀攀琀愀洀漀爀瀀栀椀挀?爀漀挀欀猀?椀渀?琀栀攀?匀甀氀甀?唀?倀?戀攀氀琀???瘀椀搀攀渀挀攀?昀漀爀?漀瘀攀爀琀栀爀甀猀琀椀渀最?漀昀?琀栀攀?一漀爀琀栀??栀椀渀愀??爀愀琀漀渀?漀渀琀漀?琀栀攀?匀漀甀琀栀??栀椀渀愀??爀愀琀漀渀?搀甀爀椀渀最?挀漀渀琀椀渀攀渀琀愀氀?猀甀戀搀甀挀琀椀漀渀???漀甀爀渀愀氀?漀昀?琀栀攀??攀漀氀漀最椀挀愀氀?匀漀挀椀攀琀礀???漀渀搀漀渀??????????????????戀爀?娀栀漀甀?????圀椀氀搀攀?匀???娀栀愀漀?????娀栀攀渀最??儀???椀渀?圀??娀栀愀渀最?堀娀?愀渀搀??栀攀渀最?????  ?挀??匀?刀??倀?唀?倀戀?稀椀爀挀漀渀?搀愀琀椀渀最?漀昀?琀栀攀?一攀漀瀀爀漀琀攀爀漀稀漀椀挀?倀攀渀最氀愀椀??爀漀甀瀀?愀渀搀??爀挀栀攀愀渀?最渀攀椀猀猀攀猀?昀爀漀洀?琀栀攀??椀愀漀戀攀椀?吀攀爀爀愀渀攀??一漀爀琀栀??栀椀渀愀??愀渀搀?琀栀攀椀爀?琀攀挀琀漀渀椀挀?椀洀瀀氀椀挀愀琀椀漀渀猀??倀爀攀挀愀洀戀爀椀愀渀?刀攀愀猀攀愀爀挀栀???? ????????????? ?戀爀?娀栀漀甀?堀圀??娀栀愀漀?????圀攀椀??????攀渀最?夀匀?愀渀搀?匀甀渀?????  ?搀???倀???唀?吀栀?倀戀?洀漀渀愀稀椀琀攀?愀渀搀?匀?刀??倀?唀?倀戀?稀椀爀挀漀渀?最攀漀挀栀爀漀渀漀氀漀最礀?漀昀?栀椀最栀?瀀爀攀猀猀甀爀攀?瀀攀氀椀琀椀挀?最爀愀渀甀氀椀琀攀猀?椀渀?琀栀攀??椀愀漀戀攀椀?洀愀猀猀椀昀?漀昀?琀栀攀?一漀爀琀栀??栀椀渀愀??爀愀琀漀渀???洀攀爀椀挀愀渀??漀甀爀渀愀氀?漀昀?匀挀椀攀渀挀攀??? ???????????? ?戀爀??沐襥????????????蝒魥????靧???  ?????睎???讚?????葜???晓豛ご??晓?????晹??鄀??????????????? ??戀爀?一?????????謀?╦????佟??栀???甀暍佥??????????睎??鱢罥???葜??啷?倀戀琀葞??????岍?掠???N??瑾葞熟?葔鹶譛?? ?晴?????????????????戀爀??獒乞???轒敹??謀?????襞??? ? ??焀??魓???讚?銞?葜?v楷晲?????????晷??????????? ???? ???戀爀??獒乞???轒敹??謀?????襞??? ????焀??魓?讚?銞????葷啶?倀戀騀瑛?癓け????? 晗?????????????????戀爀????????????????獔??栀????  ?????ぎ块罗??????啷?倀戀騀瑛豞?????癸????晷???? ?????? ???? ???戀爀?謀????轒敹???獒乞????襞??? ? ????こ????晛?呾祛??葼????????晷??????????? ???? ???戀爀???????靧??猀魞???????獓????????焀?睎???銞?????襩?汜?葓???魒晒???癓葑???????晷????????????????戀爀?栀????????一饧???窌???  ???????膂薜?讚???蕞蒐????????晷?????????????????à11-30

    [40]

    Ye K, Cong BL, Takao H and Shohei B. 1999. Transformation from granulite to transitional eclogite at Haiyangsuo, Rushan Country, eastern Shandong Peninsula: The kinetic process and tectonic implications. Acta Petrologica Sinica, 15(1): 21-36 (in Chinese with English abstract)

    [41]

    Ye K, Cong BL and Ye DN. 2000. The possible subduction of continental material to depths greater than 200km. Nature, 407(6805): 734-736

    [42]

    Zhang RY, Liou JG, Tsujimori T and Maruyama S. 2006. Non-ultrahigh-pressure unit bordering the Sulu ultrahigh-pressure terrane, eastern China: Transformation of Proterozoic granulite and gabbro to garnet amphibolite. Geological Society of America Special Papers, 403: 169-206

    [43]

    Zhang RY, Liou JG and Ernst WG. 2009. The Dabie-Sulu continental collision zone: A comprehensive review. Gondwana Research, 16(1): 1-26

    [44]

    Zheng YF, Fu B, Gong B and Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Science Reviews, 62(1-2): 105-161

    [45]

    Zheng YF, Zhou JB, Wu YB and Xie Z. 2005. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt: A passive-margin accretionary wedge deformed during continent subduction. International Geology Review, 47(8): 851-871

    [46]

    Zheng Y

  • 加载中
计量
  • 文章访问数:  8116
  • PDF下载数:  11006
  • 施引文献:  0
出版历程
收稿日期:  2015-07-09
修回日期:  2015-08-21
刊出日期:  2015-10-31

目录