胶北地体早前寒武纪重大岩浆事件、陆壳增生及演化

刘建辉, 刘福来, 丁正江, 刘平华, 王舫. 胶北地体早前寒武纪重大岩浆事件、陆壳增生及演化[J]. 岩石学报, 2015, 31(10): 2942-2958.
引用本文: 刘建辉, 刘福来, 丁正江, 刘平华, 王舫. 胶北地体早前寒武纪重大岩浆事件、陆壳增生及演化[J]. 岩石学报, 2015, 31(10): 2942-2958.
LIU JianHui, LIU FuLai, DING ZhengJiang, LIU PingHua, WANG Fang. Early Precambrian major magmatic events, and growth and evolution of continental crust in the Jiaobei terrane, North China Craton[J]. Acta Petrologica Sinica, 2015, 31(10): 2942-2958.
Citation: LIU JianHui, LIU FuLai, DING ZhengJiang, LIU PingHua, WANG Fang. Early Precambrian major magmatic events, and growth and evolution of continental crust in the Jiaobei terrane, North China Craton[J]. Acta Petrologica Sinica, 2015, 31(10): 2942-2958.

胶北地体早前寒武纪重大岩浆事件、陆壳增生及演化

  • 基金项目:

    本文受国家自然科学重点基金项目(41430210)、科技部973项目(2012CB416603)、中国地质科学院地质研究所基本科研业务经费(J1404、J1214、J1005)和中国地质调查局地质大调查项目(12120114061901、1212011120150)联合资助.

Early Precambrian major magmatic events, and growth and evolution of continental crust in the Jiaobei terrane, North China Craton

  • 早前寒武纪重大岩浆事件是早期陆壳增生及演化的主要地质作用。本文通过系统总结最近几年胶北地体早前寒武纪重大岩浆事件代表性岩石的岩相学、锆石U-Pb年代学、岩石地球化学及锆石Hf同位素研究的最新成果,厘定出太古宙~2.9Ga、2.7Ga及2.5Ga三期以TTGs岩浆事件为代表的陆壳增生事件。这些TTGs具有典型太古宙高铝TTGs的地球化学特征及正的εHf(t)值,锆石Hf模式年龄主要集中在ca.3.2~2.7Ga。两种不同的构造模式被用来理解胶北太古宙TTGs(陆壳)的成因:(1)加厚基性下地壳的部分熔融;(2)俯冲洋壳的部分熔融。根据胶北TTGs在时间上呈事件性侵位,空间上呈面状分布,以及相对较低的Mg#、Cr及Ni含量,前者可能更适合胶北TTGs的成因。确定了胶北古元古代2.2~2.0Ga黑云母/角闪石二长花岗片麻岩及~1.8Ga以二长(正长)花岗岩为代表的多期陆壳重熔事件。综合这些研究结果,初步总结出胶北早前寒武纪陆壳形成及演化历史:1)>2.9Ga,主要为基性地壳(洋壳)的增生,并可能存在规模有限的、被剥蚀殆尽的太古宙早期陆壳;2)在~2.9Ga、~2.7Ga及~2.5Ga,由于地幔(热)柱上涌,ca.3.3~2.7Ga新生的加厚基性玄武质下地壳发生事件性部分熔融,并伴随有早期陆壳的重熔,形成主要由TTGs及少量陆壳重熔型(高钾)花岗岩组成的太古宙陆壳;3)ca.2.2~2.0Ga,可能由于地幔物质上涌,陆壳伸展,形成裂谷,陆壳物质重熔,形成ca.2.2~2.0Ga花岗质岩石;4)ca.1.95~1.85Ga,发生强烈的挤压碰撞构造作用,裂谷闭合,卷入挤压作用的物质发生高角闪岩相到高压麻粒岩相变质;5)~1.8Ga,地幔物质上涌,陆壳伸展减薄,陆壳物质重熔,形成~1.8Ga花岗岩。
  • 加载中
  • [1]

    Adam J, Rushmer T, O'Neil J and Francis D. 2012. Hadean greenstones from the Nuvvuagittuq fold belt and the origin of the Earth's early continental crust. Geology, 40(4): 363-366

    [2]

    Barker F and Arth JG. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4(10): 596-600

    [3]

    Barker F. 1979. Trondhjemite: Definition, environment and hypotheses of origin. In: Barker F (ed.). Trondhjemites, Dacites and Related Rocks. Amsterdam: Elsevier, 1-12

    [4]

    Bureau of Geology and Mineral Resources of Shandong Province (BGMRS). 1991. Regional Geology of Shandong Province. Beijing: Geological Publishing House, 6-524 (in Chinese)

    [5]

    Cawood PA, Hawkesworth CJ and Dhuime B. 2013. The continental record and the generation of continental crust. Geol. Soc. Am. Bull., 125(1-2): 14-32

    [6]

    Condie KC. 1986. Origin and early growth rate of continents. Precambrian Research, 32(4): 261-278

    [7]

    Condie KC. 2005. TTGs and adakites: Are they both slab melts? Lithos, 80(1-4): 33-44

    [8]

    Chu H, Lu SN, Wang HC, Xiang ZQ and Liu H. 2011. U-Pb age spectrum of detrital zircons from the Fuzikuang Formation, Penglai Group in Changdao, Shandong Province. Acta Petrologica Sinica, 27(4): 1017-1028 (in Chinese with English abstract)

    [9]

    Diwu CR, Sun Y, Wilde SA, Wang HL, Dong ZC, Zhang H and Wang Q. 2013. New evidence for ~4.45Ga terrestrial crust from zircon xenocrysts in Ordovician ignimbrite in the North Qinling Orogenic Belt, China. Gondwan Research, 23(4): 1484-1490

    [10]

    Drummond MS and Defant MJ. 1990. A Model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparison. Journal of Geophysical Research, 95(B13): 21503-21521

    [11]

    Faure M, Lin W, Monié P, Le Breton N, Poussineau S, Panis D and Deloule E. 2003. Exhumation tectonics of the ultrahigh-pressure metamorphic rocks in the Qinling orogen in East China: New petrological-structural-radiometric insights from the Shandong Peninsula. Tectonics, 22(3): 1018-1040

    [12]

    Foley SF, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417(6891): 637-640

    [13]

    Frost BR, Arculus RJ, Barnes CG, Collins WJ, Ellis DJ and Frost CD. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033-2048

    [14]

    Gao LZ, Zhao T, Wan YS, Zhao X, Ma YS and Yang SZ. 2006. Report on 3.4Ga SHRIMP zircon age from the Yuntaishan Geopark in Jiaozuo, Henan Province. Acta Geologica Sinica, 80(1): 52-57

    [15]

    Hawkesworth CJ and Kemp AIS. 2006a. Evolution of the continental crust. Nature, 443(7113): 811-817

    [16]

    Hawkesworth CJ and Kemp AIS. 2006b. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology, 226(3-4): 144-162

    [17]

    Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kemp AIS and Storey CD. 2010. The generation and evolution of the continental crust. Journal of the Geological Society, 167(2): 229-248

    [18]

    Jahn BM, Gikson AY, Peucat JJ and Hickman AH. 1981. REE geochemistry and isotopic data of Archean silicic volcanics and grantoids from the Pillbara Block, Western Australia: Implications for the early crustal evolution. Geochimica et Cosmochimica Acta, 45(9): 1633-1652

    [19]

    Jahn BM, Liu DY, Wan YS, Song B and Wu JS. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. Am. J. Sci., 308(3): 232-269

    [20]

    Jian P, Zhang Q, Liu DY, Jin WJ, Jia XQ and Qian Q. 2005. SHRIMP dating and geological significance of Late Achaean high-Mg diorite (sanukite) and hornblende-granite at Guyang of Inner Mongolia. Acta Petrologica Sinica, 21(1): 151-157 (in Chinese with English abstract)

    [21]

    Jin K, Xu WL, Wang QH, Gao S and Liu XC. 2003. Formation time and sources of the Huaiguang "Migmatitic granodiorite" in Bengbu, Anhui Province: Evidence from SHRIMP zircon U-Pb geochronology. Acta Geoscientia Sinica, 24(4): 331-335(in Chinese with English abstract)

    [22]

    Kamber BS, Ewart A, Collerson KD, Bruce MC and McDonald GD. 2002. Fluid-mobile trace element constraints on the role of slab melting and implications for Archean crustal growth models. Contributions to Mineralogy and Petrology, 144(1): 38-56

    [23]

    Kinny PD and Maas R. 2003. Lu-Hf and Sm-Nd isotope systems in zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341

    [24]

    Li XH, Chen FK, Guo JH, Li QL, Xie LW and Siebel W. 2007. South China provenance of the lower-grade Penglai Group north of the Sulu UHP orogenic belt, eastern China: Evidence from detrital zircon ages and Nd-Hf isotopic composition. Geochemical Journal, 41(1): 29-45

    [25]

    Li XP, Guo JH, Zhao GC, Li HK and Song ZJ. 2011. Formation of the Paleoproterozoic calc-silicate and high-pressure mafic granulite in the Jiaobei terrane, eastern Shandong, China. Acta Petrologica Sinica, 27(4): 961-968(in Chinese with English abstract)

    [26]

    Liu DY, Nutman AP, Compston W, Wu JS and Shen QH. 1992. Remnants of ~3800Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 20(4): 339-342

    [27]

    Liu DY, Wilde SA, Wan YS, Wu JS, Zhou HY, Dong CY and Yin XY. 2008. New U-Pb and Hf isotopic data confirm Anshan as the oldest preserved segment of the North China Craton. Am. J. Sci., 308(3): 200-231

    [28]

    Liu FL, Liu PH, Ding ZJ, Liu JH, Yang H and Hu WH. 2012. Genetic mechanism of granitic leucosome within high-pressure granulite from the Early Precambrian metamorphic basement of Shandong Peninsula, SE North China Craton. Acta Petrologica Sinica, 28(9): 2686-2696 (in Chinese with English abstract)

    [29]

    Liu FL, Liu PH, Wang F, Liu JF, Meng E, Cai J and Shi JR. 2014b. U-Pb dating of zircons from granitic leucosomes in migmatites of the Jiaobei Terrane, southwestern Jiao-Liao-Ji Belt, North China Craton: Constraints on the timing and nature of partial melting. Precambrian Research, 245: 80-99

    [30]

    Liu JH, Liu FL, Liu PH, Wang F and Ding ZJ. 2011. Polyphase magmatic and metamorphic events from Early Precambrian metamorphic basement in Jiaobei area: Evidences from the zircon U-Pb dating of TTG and granitic gneisses. Acta Petrologica Sinica, 27(4): 943-960 (in Chinese with English abstract)

    [31]

    Liu JH, Liu FL, Ding ZJ, Liu PH, Wang F and You JJ. 2012. The zircon Hf isotope characteristics of ~2.5Ga magmatic event, and implication for the crustal evolution in the Jiaobei terrane, China. Acta Petrologica Sinica, 28(9): 2697-2704 (in Chinese with English abstract)

    [32]

    Liu JH, Liu FL, Ding ZJ, Liu CH, Yang H, Liu PH, Wang F and Meng E. 2013a. The growth, reworking and metamorphism of Early Precambrian crust in the Jiaobei terrane, the North China Craton: Constraints from U-Th-Pb and Lu-Hf isotopic systematics, and REE concentrations of zircon from Archean granitoid gneisses. Precambrian Research, 224: 287-303

    [33]

    Liu JH, Liu FL, Ding ZJ, Yang H, Liu CH, Liu PH, Xiao LL, Zhao L and Geng JZ. 2013b. U-Pb dating and Hf isotope study of detrital zircons from the Zhifu Group, Jiaobei Terrane, North China Craton: Provenance and implications for Precambrian crustal growth and recycling. Precambrian Research, 235: 230-250

    [34]

    Liu JH, Liu FL, Ding ZJ, Liu PH, Guo CL and Wang F. 2014a. Geochronology, petrogenesis and tectonic implications of Paleoproterozoic granitoid rocks in the Jiaobei Terrane, North China Craton. Precambrian Research, 255(Part 2): 685-698

    [35]

    Liu JH, Liu FL, Ding ZJ, Liu PH and Wang F. 2014. U-Pb dating and Hf isotope study of Early Archean zircons from the Jiaobei Terrane, North China Craton: Evidence for growth and recycling of ancient continental crust. Acta Petrologica Sinica, 30(10): 2941-2950 (in Chinese with English abstract)

    [36]

    Liu PH, Liu FL, Wang F and Liu JH. 2010. Genetic mineralogy and metamorphic evolution of mafic high-pressure (HP) granulites from the Shandong Peninsula, China. Acta Petrologica Sinica, 26(7): 2039-2056 (in Chinese with English abstract)

    [37]

    Liu PH, Liu FL, Wang F and Liu JH. 2011a. In-situ U-Pb dating of zircons from high-pressure granulites in Shandong Peninsula, eastern China and its geological significance. Earth Science Frontiers, 18(2): 33-54 (in Chinese with English abstract)

    [38]

    Liu PH, Liu FL, Wang F and Liu JH. 2011b. Genetic characteristcs of the ultramafic rocks from the Early Precambrian high-grade metamorphic basement in Shandong Peninsula, China. Acta Petrologica Sinica, 27(4): 922-942 (in Chinese with English abstract)

    [39]

    Liu PH, Liu FL, Wang F, Liu JH, Yang H and Shi JR. 2012. Geochemical characteristics and genesis of the high-pressure mafic granulite in the Jiaobei high-grade metamorphic basement. Acta Petrologica Sinica, 28(9): 2705-2720 (in Chinese with English abstract)

    [40]

    Liu PH, Liu FL, Liu CH, Wang F, Liu JH, Yang H, Cai J and Shi JR. 2013c. Petrogenesis, P-T-t path, and tectonic significance of high-pressure mafic granulites from the Jiaobei terrane, North China Craton. Precambrian Research, 233: 237-258

    [41]

    Liu PH, Liu FL, Wang F, Liu JH and Cai J. 2013. Petrological and geochronological preliminary study of the Xiliu ~2.1Ga meta-gabbro from the Jiaobei terrane, the southern segment of the Jiao-Liao-Ji Belt in the North China Craton. Acta Petrologica Sinica, 29(7): 2731-2390 (in Chinese with English abstract)

    [42]

    Liu SJ, Jahn BM, Wan YS, Xie HQ, Wang SJ, Xie SW, Dong CY, Ma MZ and Liu DY. 2015. Neoarchean to Paleoproterozoic high-pressure mafic granulite from the Jiaodong Terrain, North China Craton: Petrology, zircon age determination and geological implications. Gondwana Research, 28(2): 493-508

    [43]

    Liu WJ, Zhai MG and Li YG. 1998. Metamorphism of the high-pressure basic granulite in Laixi, eastern Shandong, China. Acta Petrologica Sinica, 14(4): 449-459 (in Chinese with English abstract)

    [44]

    Lu LZ, Xu XC and Liu FL. 1996. Early Precambrian Khondalites in North China. Changchun: Changchun Press, 219-230 (in Chinese)

    [45]

    Martin H. 1987. Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from Eastern Finland: Major and trace element geochemistry. Journal of Petrology, 28(5): 921-953

    [46]

    Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429

    [47]

    Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2):1-24

    [48]

    Polat A. 2012. Growth of Archean continental crust in oceanic island arcs. Geology, 40(4): 383-384

    [49]

    Rapp RP, Watson EB and Miller CF. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research, 51(1-4): 1-25

    [50]

    Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling. J. Petrol., 36(4): 891-931

    [51]

    Rapp RP, Shimizu N and Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425(6958): 605-608

    [52]

    Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263

    [53]

    Rollinson H. 1997. Eclogite xenoliths in West African kimberlites as residues from Archaean granitoid crust formation. Nature, 389(6647): 173-176

    [54]

    Rollinson H. 2007. Early Earth Systems: A Geochemical Approach. Oxford: Blackwell Publishing

    [55]

    Sengor AMC, Natal in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299-307

    [56]

    Shan HX, Zhai MG, Wang F, Zhou YY, Santosh M, Zhu XY, Zhang HF and Wang W. 2015. Zircon U-Pb ages, geochemistry, and Nd-Hf isotopes of the TTG gneisses from the Jiaobei terrane: Implications for Neoarchean crustal evolution in the North China Craton. Precambrian Research, 98: 61-74

    [57]

    Smithies RH. 2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth Planet. Sci. Lett., 182(1): 115-125

    [58]

    Smithies RH and Champion DC. 2002. The Archaean high-Mg diorite suite: Links to tonalite-trondhjemite-granodiorite magmatism and implications for Early Archaean crustal growth. J. Petrol., 41(12): 1653-1671

    [59]

    Song B, Nutman AP, Liu DY and Wu JS. 1996. 3800 to 2500Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78(1-3): 79-94

    [60]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345

    [61]

    Tam PY, Zhao GC, Liu FL, Zhou XW, Sun M and Li SZ. 2011. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: New SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton. Gondwana Research, 19(1): 150-162

    [62]

    Tam PY, Zhao GC, Zhou XW, Sun M, Guo JH, Li SZ, Yin CQ, Wu ML and He YH. 2012a. Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Research, 22(1): 104-117

    [63]

    Tam PY, Zhao GC, Sun M, Li SZ, Iizuka YY, Ma GSK, Yin CQ, He YH and Wu ML. 2012b. Metamorphic P-T path and tectonic implications of medium-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research, 220-221: 177-191

    [64]

    Tam PY, Zhao GC, Sun M, Li SZ, Wu ML and Yin CQ. 2012c. Petrology and metamorphic PT path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton. Lithos, 155: 94-109

    [65]

    Tang J, Zheng YF, Wu YB, Zha XP and Zhou JB. 2004. Zircon U-Pb ages and oxygen isotopes of metamorphic rocks in the western part of the Shandong Peninsula. Acta Petrologica Sinica, 20(5): 1063-1086 (in Chinese with English abstract)

    [66]

    Tang J, Zheng YF, Wu YB, Gong B and Liu XM. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen. Precambrian Research, 152(1-2): 48-82

    [67]

    Taylor SR and McLennan SM. 1995. The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2): 241-265

    [68]

    Taylor SR and McLennan SM. 1997. The origin and evolution of the Earth's continental crust. Journal of Australian Geology & Geophysics, 17(1): 55-62

    [69]

    Wan YS, Song B, Liu DY, Wilde SA, Wu JS, Shi YR, Yin XY and Zhou HY. 2006. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research, 149(3-4): 249-271

    [70]

    Wang F, Liu FL, Liu PH and Liu JH. 2010. Metamorphic evolution of Early Precambrian khondalite series in North Shandong Province. Acta Petrologica Sincia, 26(7): 2057-2072 (in Chinese with English abstract)

    [71]

    Wang HL, Chen L, Sun Y, Liu XM, Xu XY, Chen JL, Zhang H and Diwu CR. 2007. ~4.1Ga xenocrystal zircon from Ordovician volcanic rocks in western part of North Qinling orogenic belt. Chinese Science Bulletin, 52(21): 3002-3010

    [72]

    Wang LG, Qiu YM, McNaughton NJ, Groves DI, Luo ZK, Huang JZ, Miao LC and Liu YK. 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews, 13(1-5): 275-291

    [73]

    Wang W, Zhai MG, Li TS, Santosh M, Zhao L and Wang HZ. 2014. Archean-Paleoproterozoic crustal evolution in the eastern North China Craton: Zircon U-Th-Pb and Lu-Hf evidence from the Jiaobei terrane. Precambrian Research, 241: 146-160

    [74]

    Wu FY, Yang JH, Liu XM, Li TS, Xie LW and Yang YH. 2005. Hf isotopes of the 3.8Ga zircons in eastern Hebei Province, China: Implications for early crustal evolution of the North China Craton. Chinese Science Bulletin, 50(21): 2473-2480

    [75]

    Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)

    [76]

    Wu FY, Zhang YB, Yang JH, Xie LW and Yang YH. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 167(3-4): 339-362

    [77]

    Wu ML, Zhao GC, Sun M and Li SZ. 2014a. A synthesis of geochemistry and Sm-Nd isotopes of Archean granitoid gneisses in the Jiaodong Terrane: Constraints on petrogenesis andtectonic evolution of the Eastern Block, North China Craton. Precambrian Research, 255: 885-899

    [78]

    Wu ML, Zhao GC, Sun M, Li SZ, Bao Z, Tam PY, Eizenhefer PR and He YH. 2014b. Zircon U-Pb geochronology and Hf isotopes ofmajor lithologies from the Jiaodong Terrane: Implications for the crustal evolution of the Eastern Block of the North China Craton. Lithos, 190-191: 71-84

    [79]

    Xie SW, Xie HQ, Wang SJ, Kroner A, Liu SJ, Zhou HY, Ma MZ, Dong CY, Liu DY and Wan YS. 2014. Ca.2.9Ga granitoid magmatism in eastern Shandong, North China Craton: Zircon dating, Hf-in-zircon isotopic analysis and whole-rock geochemistry. Precambrian Research, 255: 538-562

    [80]

    Xiong XL. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 34(11): 945-948

    [81]

    Zhang SB, Tang J and Zheng YF. 2014. Contrasting Lu-Hf isotopes in zircon from Precambrian metamorphic rocks in the Jiaodong Peninsula: Constraints on the tectonic suture between North China and South China. Precambrian Research, 245: 29-50

    [82]

    Zhao GC, Sun M, Wilde SA and Li SZ. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Research, 136(2): 177-202

    [83]

    Zheng JP, Griffin WL, O'Reilly SY, Lu FX, Wang CY, Zhang M, Wang FZ and Li HM. 2004. 3.6Ga lower crust in central China: New evidence on the assembly of the North China Craton. Geology, 32(3): 229-232

    [84]

    Zhou HY, Liu DY, Wan YS, Wilde SA and Wu JS. 2007. 3.3Ga magmatic events in the Anshan area: New SHRIMP age and geochemical constraints. Acta Petrologica et Mineralogica, 26(2): 123-129

    [85]

    Zhou JB, Wilde SA, Zhao GC, Zheng CQ, Jin W, Zhang XZ and Cheng H. 2008a. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications. Precambrian Research, 160(3-4): 323-340

    [86]

    Zhou XW, Wei CJ, Geng YS and Zhang LF. 2004. Discovery and implications of the high-pressure pelitic granulite from the Jiaobei massif. Chinese Science Bulletin, 49(18): 1942-1948

    [87]

    Zhou XW, Zhao GC, Wei CJ, Geng YS and Sun M. 2008b. EPMA U-Th-Pb monazite and SHRIMP U-Pb zircon geochronology of high-pressure pelitic granulites in the Jiaobei massif of the North China Craton. American Journal of Science, 308(3): 328-350

    [88]

    初航, 陆松年, 王惠初, 相振群, 刘欢. 2011. 山东长岛地区蓬莱群辅子夼组碎屑锆石年年龄谱研究. 岩石学报, 27(4): 1017-1028

    [89]

    简平, 张旗, 刘敦一, 金维浚, 贾秀勤, 钱青. 2005. 内蒙古固阳晚太古代赞岐岩(sanukite)-角闪花岗岩的SHRIMP定年及其意义. 岩石学报, 21(1): 151-157

    [90]

    靳克, 许文良, 王清海, 高山, 刘晓春. 2003. 蚌埠淮光"混合花岗闪长岩的形成时代及源区: 锆石SHRIMP U-Pb地质年代学证据. 地球学报, 24(4): 331-335

    [91]

    李旭平, 郭敬辉, 赵国春, 李洪奎, 宋召军. 2011. 胶北地块早元古代钙硅酸盐岩与高压基性麻粒岩成因及地质意义. 岩石学报, 27(4): 961-968

    [92]

    刘福来, 刘平华, 丁正江, 刘建辉, 杨红, 胡伟华. 2012. 山东半岛高压麻粒岩中花岗质浅色脉体的成因. 岩石学报, 28(9): 2686-2696

    [93]

    刘建辉, 刘福来, 刘平华, 王舫, 丁正江. 2011. 胶北早前寒武纪变质基底多期岩浆-变质热事件: 来自TTG片麻岩和花岗质片麻岩中锆石U-Pb定年的证据. 岩石学报, 27(4): 943-960

    [94]

    刘建辉, 刘福来, 丁正江, 刘平华, 王舫, 游君君. 2012. 胶北~2.5Ga岩浆热事件的锆石Hf同位素特征及其对地壳演化的指示意义. 岩石学报, 28(9): 2697-2704

    [95]

    刘建辉, 刘福来, 丁正江, 刘平华, 王舫. 2014. 胶北太古宙早期锆石U-Pb定年及Hf同位素研究: 华北克拉通古老陆壳增生及再循环的证据. 岩石学报, 30(10): 2941-2950

    [96]

    刘平华,刘福来,王舫,刘建辉. 2010. 山东半岛基性高压麻粒岩的成因矿物学及变质演化. 岩石学报, 26(7): 2039-2056

    [97]

    刘平华, 刘福来, 王舫, 刘建辉. 2011a. 山东半岛高压麻粒岩中锆石的U-Pb定年及其地质意义. 地学前缘, 18(2): 33-54

    [98]

    刘平华, 刘福来, 王舫, 刘建辉. 2011b. 山东半岛早前寒武纪高级变质基底中超镁铁质岩的成因. 岩石学报, 27(4): 922-942

    [99]

    刘平华, 刘福来, 王舫, 刘建辉, 杨红, 施建荣. 2012. 胶北高级变质基底中高压基性麻粒岩的地球化学特征及其成因. 岩石学报, 28(9): 2705-2720

    [100]

    刘平华, 刘福来, 王舫, 刘建辉, 蔡佳. 2013. 胶北西留古元古代~2.1Ga变辉长岩岩石学与年代学初步研究. 岩石学报, 29(7): 2371-2390

    [101]

    刘文军, 翟明国, 李永刚. 1998. 胶东莱西地区基性高压麻粒岩的变质作用. 岩石学报, 14(4): 449-459

    [102]

    卢良兆, 徐学纯, 刘福来. 1996. 中国北方早前寒武纪孔兹岩系. 长春: 长春出版社, 219-230

    [103]

    山东省地质矿产局. 1991. 山东省区域地质志. 北京: 地质出版社, 6-524

    [104]

    唐俊, 郑永飞, 吴元保, 查向平, 周建波. 2004. 胶东地块西部变质岩锆石U-Pb定年和氧同位素研究. 岩石学报, 20(5): 1063-1086

    [105]

    王舫, 刘福来, 刘平华, 刘建辉. 2010. 胶北地区早前寒武纪孔兹岩系的变质演化. 岩石学报, 26(7): 2057-2072

    [106]

    吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220

    [107]

    周喜文, 魏春景, 耿元生, 张立飞. 2004. 胶北栖霞地区泥质高压麻粒岩的发现及其地质意义. 科学通报, 49(14): 1424-1430

  • 加载中
计量
  • 文章访问数:  8667
  • PDF下载数:  6420
  • 施引文献:  0
出版历程
收稿日期:  2015-02-06
修回日期:  2015-05-13
刊出日期:  2015-10-31

目录