重要的地球化学"信息库"

肖益林, 黄建, 刘磊, 李东永. 重要的地球化学'信息库'[J]. 岩石学报, 2011, 27(2): 398-416.
引用本文: 肖益林, 黄建, 刘磊, 李东永. 重要的地球化学"信息库"[J]. 岩石学报, 2011, 27(2): 398-416.
XIAO YiLin, HUANG Jian, LIU Lei, LI DongYong. Rutile: An important 'reservoir' for geochemical information[J]. Acta Petrologica Sinica, 2011, 27(2): 398-416.
Citation: XIAO YiLin, HUANG Jian, LIU Lei, LI DongYong. Rutile: An important "reservoir" for geochemical information[J]. Acta Petrologica Sinica, 2011, 27(2): 398-416.

重要的地球化学"信息库"

  • 基金项目:

    本文受中国科学院"百人计划"项目、高校博士点基金(20103402110063)和国家自然科学基金项目(40773003、40921002)联合资助.

Rutile: An important "reservoir" for geochemical information

  • 金红石是各种岩石特别是地壳组成岩石中重要的副矿物,它在成岩、风化和各种不同程度的变质过程中均能保持极大的稳定性。同时,除主要成分TiO2外,金红石还含有为数众多的其它微量元素(例如: Nb, Ta, Zr, Hf, Sn, Mo, Sb, Cr, V, W, U和Pb等),这些微量元素的变化特征,对于包含金红石的主体岩石所经历的地质过程具有非常重要的指示意义。近二十年特别是近十年来,金红石已成为地球化学研究领域的一个热点。对各种元素和同位素在金红石中变化特征的调查,被广泛地应用于对各种地质过程的了解,其研究应用的范围涉及到了整体地球的元素平衡、大陆地壳的形成机制、含金红石岩石的形成源区、变质岩石的温压条件和形成时代的研究等多个方面,同时其所包含的各种同位素体系也被广泛用于各种地质过程的示踪。本文综合近年来金红石研究的最新进展,系统表述了金红石作为一个近年来发展起来的重要地质信息储库,在地球化学研究中各个方面的应用。
  • 加载中
  • [1]

    Addy SK and Garlick GD. 1974. Oxygen isotope fractionation between rutile and water. Contrib. Mineral. Petrol., 45:119-121

    [2]

    Agrinier P. 1991. The natural calibration of O18-O16 geothermometers: Application to the quartz-rutile mineral pair. Chem. Geol., 91:49-64

    [3]

    Akaogi M, Kusaba K, Susaki JI, Yagi T, Matsui M, Kikegawa T, Yusa H and Ito E.1992. High-pressure high-temperature stability of α-PbO2-type TiO2 and MgSiO3 majorite: Calorimetric and in situ X-ray diffraction studies. In: Syono Y and Manghnani MH (eds.). High-Pressure Research: Application to Earth and Planetary Sciences. TERRAPUB American Geophysical Union, Washington, DC, 447-455

    [4]

    Allen CM and H Campbell L. 2007. Pot dating of detrital rutile by LA-Q-ICP-MS: A powerful provenance tool. GSA Denver Annual Meeting

    [5]

    Antignano A and Manning CE. 2008. Rutile solubility in H2O, H2O-SiO2, and H2O-NaAlSi3O8 fluids at 0.7~2.0GPa and 700~1000℃: Implications for mobility of nominally insoluble elements. Chem. Geol., 255: 283-293

    [6]

    Audetat A and Keppler H. 2005. Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth. Planet. Sci. Lett., 232: 393-402

    [7]

    Aulbach S, OReilly SY, Griffin WL and Pearson NJ. 2008. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites. Nature Geoscience, 1: 468-472

    [8]

    Ayers JC and Watson EB. 1993. Rutile solubility and mobility in supercritical aqueous fluids. Contrib. Mineral. Petrol., 114: 321-330

    [9]

    Bakun-Czubarow N, Kusy D and Fiala J. 2005. Trace element abundances in rutile from eclogite-granulite rock series of the Zlote mountains in the Sudetes (SW Poland). Polskie Towarzystwo Mineralogiczne-Prace Specjalne Mineralogcal Society of Poland-Special Papers Zeszyt, 26: 132-136

    [10]

    Barth MG, McDonough WF and Rudnick RL. 2000. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol., 165: 197-213

    [11]

    Beinlich A, Klemd R, John T and Gao J. 2010. Trace-element mobilization during Ca-metasomatism along a major fluid conduit: Eclogitization of blueschist as a consequence of fluid-rock interaction. Geochim. Cosmochim. Acta, 74:1892-1922

    [12]

    Bibikova E, Skild T, Bogdanova S, Gorbatschev R and Slabunov A. 2001. Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield. Precambrian Res., 105: 315-330

    [13]

    Brenan JM, Shaw HF, Phinney DL and Ryerson FJ. 1994. Rutile-aqueous fluid partitioning of Nb, Ta, Hf, Zr, U and Th: Implications for high field strength element depletions in island-arc basalts. Earth. Planet. Sci. Lett., 128: 327-339

    [14]

    Bromiley G, Hilaret N and McCammon C. 2004. Solubility of hydrogen and ferric iron in rutile and TiO2(II): Implications for phase assemblages during ultrahigh-pressure metamorphism and for the stability of silica polymorphs in the lower mantle. Geophys. Res. Lett., 31: 1-5

    [15]

    Bromiley GD and Hilairet N. 2005. Hydrogen and minor element incorporation in synthetic rutile. Mineral. Mag., 69: 345-358

    [16]

    Buseck PR and Keil K. 1966. Meteoritic rutile. Am. Mineral., 51: 1506-1515

    [17]

    Cai JF, Wang LB and Li JP. 2008. Mineralogical features of rutiles of different modes of occurrence and genetic types and their research significance. Mineral Deposits, 27:531-538 (in Chinese with English abstract)

    [18]

    Carruzzo S, Clarke DB, Pelrine KM and MacDonald MA. 2006. Texture, composition, and origin of rutile in the South Mountain Batholith, Nova Scotia. Can. Mineral., 44: 715-729

    [19]

    Chacko T, Hu X, Mayeda TK, Clayton RN and Goldsmith JR. 1996. Oxygen isotope fractionations in muscovite, phlogopite, and rutile. Geochim. Cosmochim. Acta, 60: 2595-2608

    [20]

    Chen J and Fu Z. 2006. α-PbO2-type nanophase of TiO2 from coesite-bearing eclogite in the Dabie Mountains, China: Comment. Am. Mineral., 91: 1699-1700

    [21]

    Chen RX, Zheng YF, Gong B et al. 2007. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: Constraints from mineral hydrogen isotope and water content changes in eclogite-gneiss transitions in the Sulu orogen. Geochim. Cosmochim. Acta, 71: 2299-2325

    [22]

    Cherniak DJ. 2000. Pb diffusion in rutile. Contrib. Mineral. Petrol., 139: 198-207

    [23]

    Choukroun M, OReilly SY, Griffin WL, Pearson NJ and Dawson JB. 2005. Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle. Geology, 33: 45-48

    [24]

    Cox RA, Dunning GR and Indares A. 1998. Petrology and U-Pb geochronology of mafic, high-pressure, metamorphic coronites from the Tshenukutish domain, eastern Grenville Province. Precambrian Res., 90: 59-83

    [25]

    Davis DW, Schandl ES and Wasteneys HA. 1994. U-Pb dating of minerals in alteration halos of Superior Province massive sulfide deposits: Syngenesis versus metamorphism. Contrib. Mineral. Petrol., 115: 427-437

    [26]

    Davis WJ. 1997. U-Pb zircon and rutile ages from granulite xenoliths in the Slave province: Evidence for mafic magmatism in the lower crust coincident with Proterozoic dike swarms. Geology, 25: 343-346

    [27]

    Dickinson Jr JE and Hess PC. 1985. Rutile solubility and titanium coordination in silicate melts. Geochim. Cosmochim. Acta, 49: 2289-2296

    [28]

    Ding X, Lundstrom C, Huang F, Li J, Zhang Z, Sun X, Liang J and Sun W. 2009. Natural and experimental constraints on formation of the continental crust based on niobium-tantalum fractionation. Int. Geol. Rev., 51: 473-501

    [29]

    Dubrovinskaia N, Dubrovinsky L, Ahuja R, Prokopenko V, Dmitriev V, Weber HP, Osorio-Guillen J and Johansson B. 2001. Experimental and theoretical identification of a new high-pressure TiO2 polymorph. Phys. Rev. Lett., 87: 2755011-2755014

    [30]

    Dubrovinsky L, Dubrovinskaia N, Swamy V, Muscat J, Harrison NM, Ahuja R, Holm B and Johansson B. 2001. Materials science: The hardest known oxide. Nature, 410: 653-654

    [31]

    Ernst WG and Liu J. 1998. Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB: A semiquantitative thermobarometer. Am. Mineral., 83: 952-969

    [32]

    Ewing TA, Rubatto D, Eggins SM and Hermann J. 2011. In situ measurement of hafnium isotopes in rutile by LA-MC-ICPMS: Protocol and applications. Chem. Geol., 281:72-82

    [33]

    Foley SF, Barth MG and Jenner GA. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochim. Cosmochim. Acta, 64: 933-938

    [34]

    Foley SF, Tiepolo M and Vannucci R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417: 837-840

    [35]

    Force ER. 1980. The provenance of rutile. J Sediment. Res., 50: 485-488

    [36]

    Force ER. 1991. Geology of titanium-mineral deposits. Geologcial Society of America, Special Paper, 259: 1-112

    [37]

    Franz L, Romer RL, Klemd R, Schmid R, Oberhansli R, Wagner T and Shuwen D. 2001. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China): Pressure-temperature-time-deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contrib. Mineral. Petrol., 141: 322-346

    [38]

    Frost BR and Lindsley DH. 1991. Occurrence of iron-titanium oxides in igneous rocks. Rev. Mineral. Geochem, 25: 433-468

    [39]

    Gaetani G, Asimow P and Stolper E. 2008. A model for rutile saturation in silicate melts with applications to eclogite partial melting in subduction zones and mantle plumes. Earth. Planet. Sci. Lett., 272: 720-729

    [40]

    Gao J, John T, Klemd R and Xiong X. 2007. Mobilization of Ti-Nb-Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochim. Cosmochim. Acta, 71: 4974-4996

    [41]

    Gao TS, Wang SS, Gong B, Wu YB and Zheng YF. 2006. Postcollisional flow of aqueous fluid within ultrahigh-pressure eclogite in the Dabie orogen. J. Geochem. Explor., 89: 115-118

    [42]

    Gao XY and Zheng YF. 2011. On the Zr-in-rutile and Ti-in-zircon geothermometers. Acta Petrologica Sinica, 27(2): 417-432(in Chinese with English abstract)

    [43]

    Goldsmith R and Force ER. 1978. Distribution of rutile in metamorphic rocks and implications for placer deposits. Mineralium Deposita, 13: 329-343

    [44]

    Gong B, Zheng YF and Chen RX. 2007a. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys. Chem. Minerals, 34: 687-698

    [45]

    Gong B, Zheng YF, Wu YB et al. 2007b. Geochronology and stable isotope geochemistry of UHP metamorphic rocks at Taohang in the Sulu orogen, east-central China. Intern. Geol. Rev., 49: 259-286

    [46]

    Goresy AE, Chen M, Gillet P, Dubrobvinsky L, Graup G and Ahuja R. 2001a. A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries crater in Germany. Earth. Planet. Sci. Lett., 192: 485-495

    [47]

    Goresy AE, Chen M, Dubrobvinsky L, Gillet P and Graup G. 2001b. An ultradense polymorph of rutile with seven-coordinated titanium from the Ries Crater. Science, 293: 1467-1470

    [48]

    Green TH and Pearson NJ. 1986. Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P,T. Chem. Geol., 54: 185-201

    [49]

    Green TH and Pearson NJ. 1987. An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim. Cosmochim. Acta, 51: 55-62

    [50]

    Green TH and Adam J. 2002. Pressure effect on Ti- or P-rich accessory mineral saturation in evolved granitic melts with differing K2O/Na2O ratios. Lithos, 61: 271-282

    [51]

    Hassan WF. 1994. Geochemistry and mineralogy of Ta-Nb rutile from Peninsular Malaysia. J. Southeast Asian Earth Sci., 10: 11-23

    [52]

    Hayden L and Watson E. 2007. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth. Planet. Sci. Lett., 258: 561-568

    [53]

    Hwang SL, Shen P, Chu HT and Yui TF. 2000. Nanometer-size α-PbO2-type TiO2 in garnet: A thermobarometer for ultrahigh-pressure metamorphism. Science, 288: 321-324

    [54]

    Hwang SL, Yui TF, Chu HT, Shen P, Schertl HP, Zhang RY and Liou JG. 2007. On the origin of oriented rutile needles in garnet from UHP eclogites. J. Metamorph. Geol., 25: 349-362

    [55]

    Jackson JC. 2006. A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A. Am. Mineral., 91: 604-608

    [56]

    Janousek V, Krenn E. Finger F, Mikova J and Fryda J. 2007. Hyperpotassic granulites from Blansky les (Moldanubian Zone, Bohemian Massif) revisited. J Geosci., 52: 73-112

    [57]

    Jochum KP, Seufert HM, Spettel B and Palme H. 1986. The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies. Geochim. Cosmochim. Acta, 50: 1173-1183

    [58]

    Jochum KP, McDonough WF, Palme H and Spettel B. 1989. Compositional constraints on the continental lithospheric mantle from trace elements in spinel peridotite xenoliths. Nature, 340: 548-550

    [59]

    Jochum KP, Pfander J, Snow JE and Hofmann AW. 1997. Nb/Ta in mantle and crust. EOS (Trans. Am. Geophys.Union), 78: 804

    [60]

    John T, Klemd R, Gao J and Garbe-Schoberg CD. 2008. Trace-element mobilization in slabs due to non steady-state fluid-rock interaction: Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos, 103: 1-24

    [61]

    Kalfoun F, Ionov D and Merlet C. 2002. HFSE residence and Nb/Ta ratios in metasomatised, rutile-bearing mantle peridotites. Earth. Planet. Sci. Lett., 199: 49-65

    [62]

    Kamber BS and Collerson KD. 2000. Role of "hidden" deeply subducted slabs in mantle depletion. Chem. Geol., 166: 241-254

    [63]

    Klemme S, Blundy JD and Wood BJ. 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim. Cosmochim. Acta, 66: 3109-3123

    [64]

    Klemme S, Prowatke S, Hametner K and Günther D. 2005. Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones. Geochim. Cosmochim. Acta, 69: 2361-2371

    [65]

    Kooijman E, Mezger K and Berndt J. 2010. Constraints on the U-Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth. Planet. Sci. Lett., 293: 321-330.

    [66]

    Korneliussen A. and Foslie G. 1985. Rutile-bearing eclogites in the Sunnfjord region of western Norway. Norges Geologiske Underskelse Bulletin, 402: 65-71

    [67]

    Kusaba K, Kikuchi M, Fukuoka K and Syono Y. 1988. Anisotropic phase transition of rutile under shock compression. Phys. Chem. Miner., 15: 238-245

    [68]

    Kylander-Clark ARC, Hacker BR and Mattinson JM. 2008. Slow exhumation of UHP terranes: Titanite and rutile ages of the Western Gneiss Region, Norway. Earth. Planet. Sci. Lett., 272: 531-540

    [69]

    Li QL, Li SG, Zheng YF, Li HM, Massonne HJ and Wang QC. 2003. A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: A new constraint on the cooling history. Chem. Geol., 200: 255-265

    [70]

    Li XP, Zheng YF, Wu YB et al. 2004. Low-T eclogite in the Dabie terrane of China: Petrological and isotopic constraints on fluid activity and radiometric dating. Contrib. Mineral. Petrol., 148: 443-470

    [71]

    Li QL, Lin W, Su W et al. 2011. SIMS U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China. Lithos, doi:10.1016/j.lithos.2010.11.007

    [72]

    Liang JL, Sun XM, Xu L et al. 2007a. U-Pb dating of rutile from the CCSD UHP eclogites and its implications. Acta Petrologica Sinica, 23:3275-3279 (in Chinese with English abstract)

    [73]

    Liang JL, Sun XM, Xu L et al. 2007b. Structural hydroxyl of rutile in UHP metamorphic rocks from Chinese Continental Scientific Drilling Project (CCSD) and areas nearby and its implication for geodynamics. Geological Review, 53:267-272 (in Chinese with English abstract)

    [74]

    Liang JL, Ding X, Sun XM, Zhang ZM, Zhang H and Sun WD. 2009. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chem. Geol., 268: 27-40

    [75]

    Linde RK and DeCarli PS. 1969. Polymorphic behavior of titania under dynamic loading. The Journal of Chemical Physics, 50: 319-325

    [76]

    Linnen RL. 2005. The effect of water on accessory phase solubility in subaluminous and peralkaline granitic melts. Lithos, 80: 267-280

    [77]

    Liou JG, Zhang RY, Ernst WG, Rumble D and Maruyama S. 1998. High-pressure minerals from deeply subducted metamorphic rocks. Rev. Mineral. Geochem., 37: 33-96

    [78]

    Luvizotto GL and Zack T. 2009. Nb and Zr behavior in rutile during high-grade metamorphism and retrogression: An example from the Ivrea-Verbano Zone. Chem. Geol., 261: 303-317

    [79]

    Luvizotto G, Zack T, Triebold S and von Eynatten H. 2009a. Rutile occurrence and trace element behavior in medium-grade metasedimentary rocks: Example from the Erzgebirge, Germany. Miner. Petrol., 97: 233-249

    [80]

    Luvizotto GL, Zack T, Meyer HP, Ludwig T, Triebold S, Kronz A, Munker C, Stockli DF, Prowatke S, Klemme S, Jacob DE and von Eynatten H. 2009b. 2010. Trace elements in zircon and coexisting minerals from low-T/UHP metagranite in the Dabie orogen: Implications for fluid regime during continental subduction-zone metamorphism. Lithos, 114: 385-412

    [81]

    Xiao Y, Hoefs J, van den Kerkhof AM, Fiebig J and Zheng Y. 2000. Fluid history of UHP metamorphism in Dabie Shan, China: A fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling. Contrib. Mineral. Petrol., 139: 1-16

    [82]

    Xiao Y, Sun W, Hoefs J, Simon K, Zhang Z, Li S and Hofmann AW. 2006. Making continental crust through slab melting: Constraints from niobium-tantalum fractionation in UHP metamorphic rutile. Geochim. Cosmochim. Acta, 70: 4770-4782

    [83]

    Xiong X, Adam J and Green T. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis. Chem. Geol., 218: 339-359

    [84]

    Xiong X, Keppler H, Audetat A, Gudfinnsson G, Sun W, Song M, Xiao W and Yuan L. 2009. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. Am. Mineral., 94: 1175-1186

    [85]

    Ye K, Cong B and Ye D. 2000. The possible subduction of continental material to depths greater than 200km. Nature, 407: 734-736

    [86]

    Yu JJ, Chen ZY, Wang PA et al. 2006a. Trace element geochemical characteristics of rutiles in eclogites from North Jiangsu. Acta Patrologica Sinica, 22:1883-1890 (in Chinese with English abstract)

    [87]

    Yu JJ, Xu Y, Chen ZY et al. 2006b. Trace element geochemistry of rutiles in the eclogites from the Chinese Continental Scientific Drilling Project Main Hole. Acta Geologica Sinica, 80:1835-1841(in Chinese with English abstract)

    [88]

    Zack T, Kronz A, Foley SF and Rivers T. 2002. Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem. Geol., 184: 97-122

    [89]

    Zack T, von Eynatten H and Kronz A. 2004a. Rutile geochemistry and its potential use in quantitative provenance studies. Sediment. Geol., 171: 37-58

    [90]

    Zack T, Moraes R and Kronz A. 2004b. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol., 148: 471-488

    [91]

    Zack T, Luvizotto GL, Stockli F and Barth M. 2008. Texturally controlled U/Pb dating of rutile from the Ivrea Zone. Goldenschmidt Conference Abstract, 74: A1069

    [92]

    Zhang G, Ellis D, Christy A, Zhang L and Song S. 2010. Zr-in-rutile thermometry in HP/UHP eclogites from western China. Contrib. Mineral. Petrol., 160: 427-439

    [93]

    ZhanⅧ JF, Jin ZM, Green HW and Jin SY. 2001. Hydroxyl in continental deep subduction zone: Evidence from UHP eclogites of the Dabie Mountains. Chinese Sci. Bull., 46: 592-596

    [94]

    Zhang RY, Liou JG and Cong BL. 1995. Talc-, magnesite- and Ti-clinohumite-bearing ultrahigh-pressure meta-mafic and ultramafic complex in the Dabie Mountains, China. J. Petrol., 36: 1011-1037

    [95]

    Zhang RY, Zhai SM, Fei YW and Liou JG. 2003. Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: The significance of exsolved rutile in garnet. Earth. Planet. Sci. Lett., 216: 591-601

    [96]

    Zhang RY, Iizuka Y, Ernst WG, Liou JG, Xu ZQ, Tsujimori T, Lo CH and Jahn BM. 2009. Metamorphic P-T conditions and thermal structure of Chinese Continental Scientific Drilling main hole eclogites: Fe-Mg partitioning thermometer vs. Zr-in-rutile thermometer. J. Metamorph. Geol., 27: 757-772

    [97]

    Zhang ZM, Liou JG, Zhan XD and Shi C. 2006. Petrogenesis of Maobei rutile eclogites from the southern Sulu ultrahigh-pressure metamorphic elt, eastern China. J. Metamorph. Geol., 24: 727-741

    [98]

    Zhang Z, Shen K, Sun W, Liu Y, Liou J, Shi C and Wang J. 2008. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim. Cosmochim. Acta, 72: 3200-3228

    [99]

    Zheng YF. 1991. Calculation of oxygen isotope fractionation in metal oxides. Geochim. Cosmochim. Acta, 55: 2299-2307

    [100]

    Zheng YF, Fu B, Li YL et al. 1998. Oxygen and hydrogen isotope geochemistry of ultrahigh-pressure eclogites from the Dabie Mountains and Sulu terrane. Earth Planet. Sci. Lett., 155: 113-129

    [101]

    Zheng YF, Fu B, Xiao YL, Li YL and Gong B. 1999. Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre- and post-UHP metamorphism in the Dabie Mountains. Lithos, 46: 677-693

    [102]

    Zheng YF, Fu B, Gong B and Li L. 2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for g?odynamics and fluid regime. Earth-Sci. Rev., 62: 105-161

    [103]

    Zheng YF, Wu YB, Gong B et al. 2007. Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen isotope signature of meteoric water in granite. Earth Planet. Sci. Lett., 256: 196-210

    [104]

    Zheng YF. 2009. Fluid regime in continental subduction zones: Petrological insights from ultrahigh-pressure metamorphic rocks. J. Geol. Soc., 166: 763-782

    [105]

    Zheng YF, Chen RX and Zhao ZF. 2009. Chemical geodynamics of continental subduction-zone metamorphism: Insights from studies of the Chinese Continental Scientific Drilling (CCSD) core samples. Tectonophysics, 475: 327-358

    [106]

    Zheng YF, Gao 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol., 145: 325-394

    [107]

    Rapp JF, Klemme S, Butler IB and Harley SL. 2010. Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: An experimental investigation. Geology, 38: 323-326

    [108]

    Rapp RP, Shimizu N and Norman MD. 2003. Growth of early continental crust by partial melting of eclogite. Nature, 425: 605-609

    [109]

    Rice CM, Darke KE, Still JW and Lachowski EE. 1998. Tungsten-bearing rutile from the Kori Kollo gold mine, Bolivia. Mineral. Mag., 62: 421-429

    [110]

    Rossman GR and Smyth JR. 1990. Hydroxyl contents of accessory minerals in mantle eclogites and related rocks. Am. Mineral., 75: 775-780

    [111]

    Rudnick RL and Fountain DM. 1995. Nature and composition of the continental-crust: A lower crustal perspective. Rev. Geophys., 33: 267-309

    [112]

    Rudnick RL, Barth M, Horn I and McDonough WF. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287: 278-281

    [113]

    Rudnick RL and Gao S. 2003. Composition of the continental crust. Treatise on Geochem., 3: 1-64

    [114]

    Ryerson FJ and Watson EB. 1987. Rutile saturation in magmas: Implications for Ti-Nb-Ta depletion in island-arc basalts. Earth. Planet. Sci. Lett., 86: 225-239

    [115]

    Sassi R, Harte B, Carswell DA and Yujing H. 2000. Trace element distribution in Central Dabie eclogites. Contrib. Mineral. Petrol., 139: 298-315

    [116]

    Schrer U and Labrousse L. 2003. Dating the exhumation of UHP rocks and associated crustal melting in the Norwegian Caledonides. Contrib. Mineral. Petrol., 144: 758-770

    [117]

    Schandl ES, Davis DW and Krogh TE. 1990. Are the alteration halos of massive sulfide deposits syngenetic? Evidence from U-Pb dating of hydrothermal rutile at the Kidd volcanic center, Abitibi subprovince. Can. Geol., 18: 505-508

    [118]

    Schmidt A, Weyer S, John T and Brey GP. 2009. HFSE systematics of rutile-bearing eclogites: New insights into subduction zone processes and implications for the earths HFSE budget. Geochim. Cosmochim. Acta, 73: 455-468

    [119]

    Schmidt MW, Dardon A, Chazot G and Vannucci R. 2004. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes. Earth. Planet. Sci. Lett., 226: 415-432

    [120]

    Scott KM. 2005. Rutile geochemistry as a guide to porphyry Cu-Au mineralization, Northparkes, New South Wales, Australia. Geochem-Explor. Env., A5: 247-253

    [121]

    Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., 32: 751-767

    [122]

    Shau YH, Yang HY and Peacor DR. 1991. On oriented titanite and rutile inclusions in sagenitic biotite. Am. Mineral., 76: 1205-1217

    [123]

    Sheng YM, Xia QK and Hao YT. 2007. Water in rutiles from UHP eclogites in the Dabie orogen. Acta Petrologica et Mineralogica, 26: 269-274 (in Chinese with English abstract)

    [124]

    Smith DC and Perseil EA. 1997. Sb-rich rutile in the manganese concentrations at St. Marcel-Praborna, Aosta valley, Italy: Petrology and crystal-chemistry. Mineral. Mag., 61: 655-669

    [125]

    Spandler C, Hermann J, Arculus R and Mavrogenes J. 2003. Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies: Implications for deep subduction-zone processes. Contrib. Mineral. Petrol., 146: 205-222

    [126]

    Stacey JS and Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth. Planet. Sci. Lett., 26: 207-221

    [127]

    Stendal H, Toteu SF, Frei R, Penaye J, Njel UO, Bassahak J, Nni J, Kankeu B, Ngako V and Hell JV. 2006. Derivation of detrital rutile in the Yaoundé region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa). J. Afr. Earth Sci., 44: 443-458

    [128]

    Stolz AJ, Jochum KP, Spettel B and Hofmann AW. 1996. Fluid- and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts. Geology, 24: 587-590

    [129]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42: 313-345

    [130]

    Tang J and Endo S. 1994. X-ray study of the transitions among the rutile, a-PbO2 and baddeleyite phases of TiO2 at high pressure and high temperature. In: Schmidt SC, Shaner JW, Samara GA and Ross M (eds.). High-Pressure Science and Technology. American Institute of Physics, 367-370

    [131]

    Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P and Zanetti A. 2000. Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: Crystal-chemical constraints and implications for natural systems. Earth. Planet. Sci. Lett., 176: 185-201

    [132]

    Tomkins HS, Powell R and Ellis DJ. 2007. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol., 25: 703-713

    [133]

    Treloar PJ, OBrien PJ, Parrish RR and Khan MA. 2003. Exhumation of early Tertiary, coesite-bearing eclogites from the Pakistan Himalaya. J. Geol. Soc. London, 160: 367-376

    [134]

    Triebold S, Voneynatten H, Luvizotto G and Zack T. 2007. Deducing source rock lithology from detrital rutile geochemistry: An example from the Erzgebirge, Germany. Chem. Geol., 244: 421-436

    [135]

    Tropper P and Manning CE. 2005. Very low solubility of rutile in H2O at high pressure and temperature, and its implications for Ti mobility in subduction zones. Am. Mineral., 90: 502-505

    [136]

    Van Roermund HLM, Drury MR, Barnhoorn A and De Ronde A. 2000. Non-silicate inclusions in garnet from an ultra-deep orogenic peridotite. J. Geol., 35: 209-229

    [137]

    Vera Hammer MF and Beran A. 1991. Variations in the OH concentration of rutiles from different geological environments. Miner. Petrol., 45: 1-9

    [138]

    Vlassopoulos D. 1993. Coupled substitution of H and minor elements in rutile and the implications of high OH contents in Nb- and Cr-rich rutile from the upper mantle. Am. Mineral., 78: 1181-1191

    [139]

    Vry JK and Baker JA. 2006. LA-MC-ICPMS Pb-Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile. Geochim. Cosmochim. Acta, 70: 1807-1820

    [140]

    Wang RC, Wang S, Qiu JS et al. 2009. Characterization of high-Ti eclogitic garnets in the Dabie-Sulu UHP metamorphic belt (China): Compositional heterogeneity and possible relations to rutile needles in garnet. Acta Petrologica Sinica, 25: 1603-1611 (in Chinese with English abstract)

    [141]

    Withers AC, Essene EJ and Zhang Y. 2003. Rutile/TiO2II phase equilibria. Contrib. Mineral. Petrol., 145: 199-204

    [142]

    Wong L, Davis DW, Krogh TE and Robert F. 1991. U-Pb zircon and rutile chronology of Archean greenstone formation and gold mineralization in the Val dOr region, Quebec. Earth. Planet. Sci. Lett., 104: 325-336

    [143]

    Wu XL. 2005. α-PbO2-type nanophase of TiO2 from coesite-bearing eclogite in the Dabie Mountains, China. Am. Mineral., 90: 1458-1461

    [144]

    Xia QX, Zheng YF and Hu ZC.

  • 加载中
计量
  • 文章访问数:  8569
  • PDF下载数:  8933
  • 施引文献:  0
出版历程
收稿日期:  2010-11-02
修回日期:  2010-12-28
刊出日期:  2011-02-28

目录