新疆西天山呼斯特杂岩体岩石学、锆石U-Pb年龄及Hf同位素特征

章永梅, 张力强, 高虎, 李卫东, 胡志军, 万阈, 袁鹏. 新疆西天山呼斯特杂岩体岩石学、锆石U-Pb年龄及Hf同位素特征[J]. 岩石学报, 2016, 32(6): 1749-1769.
引用本文: 章永梅, 张力强, 高虎, 李卫东, 胡志军, 万阈, 袁鹏. 新疆西天山呼斯特杂岩体岩石学、锆石U-Pb年龄及Hf同位素特征[J]. 岩石学报, 2016, 32(6): 1749-1769.
ZHANG YongMei, ZHANG LiQiang, GAO Hu, LI WeiDong, HU ZhiJun, WAN Yu, YUAN Peng. Petrology, zircon U-Pb geochronology and Hf isotopes of the Husite complex in West Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2016, 32(6): 1749-1769.
Citation: ZHANG YongMei, ZHANG LiQiang, GAO Hu, LI WeiDong, HU ZhiJun, WAN Yu, YUAN Peng. Petrology, zircon U-Pb geochronology and Hf isotopes of the Husite complex in West Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2016, 32(6): 1749-1769.

新疆西天山呼斯特杂岩体岩石学、锆石U-Pb年龄及Hf同位素特征

  • 基金项目:

    本文受国家自然科学基金项目(41572062、41302064、U1303292)、中央返还两权价款资金综合研究项目(Y15-1-LQ04)、国家科技支撑计划项目(2011BAB06B02-02)、高等学校博士学科点专项科研基金新教师类资助课题(20130022120016)和中央高校基本科研业务费专项资金(2-9-2013-010)联合资助.

Petrology, zircon U-Pb geochronology and Hf isotopes of the Husite complex in West Tianshan, Xinjiang

  • 呼斯特岩体是新疆西天山博罗科努岛弧带上的一个与矽卡岩成矿有关的复式杂岩体,由二长花岗岩、花岗闪长岩、正长花岗岩、花岗细晶岩、闪长玢岩、辉长岩和中基性包体等组成。本文对该岩体不同岩相岩石开展了岩石学、锆石LA-ICP-MS U-Pb同位素定年和Hf同位素研究,探讨岩石成因及构造意义。锆石U-Pb定年结果表明,正长花岗岩、闪长玢岩、花岗闪长岩和二长花岗岩加权平均年龄分别为380.2±4.6Ma、372.8±5.9Ma、367.7±4.5Ma和366.2±4.5Ma,岩体侵位时代为晚泥盆世,在大约15Myr期间,至少发生了3~4次岩浆侵入。在地球化学组成上,除辉长岩外,岩体为准铝质-弱过铝质、高钾钙碱性-低钾(拉斑)系列的I型花岗岩,轻重稀土分馏明显,具Eu负异常;富集Th、U,亏损Ba、P和高场强元素(如Nb、Ta、Zr、Ti),为晚古生代北天山洋向南俯冲于伊犁地块背景下岩浆活动的产物。二长花岗岩锆石Hf同位素组成较为均一,εHf(t)值为1.3~3.0,二阶段Hf模式年龄为1171~1280Ma,远大于成岩年龄,说明原始岩浆从地幔分异后经历了较长时间的地壳滞留。研究认为,高钾中酸性岩(花岗岩、闪长玢岩和中基性包体)由元古代新生基性下地壳部分熔融而成,伴有受俯冲沉积物熔体交代的幔源岩浆混合。低钾花岗闪长岩高Sr、低Y和Yb,属O型埃达克岩,与同源的辉长岩一起由俯冲的大洋板片部分熔融形成,源岩为低钾的拉斑玄武岩。
  • 加载中
  • [1]

    An F and Zhu YF. 2008. Study on trace elements geochemistry and SHRIMP chronology of volcanic rocks in Tulasu Basin, Northwest Tianshan. Acta Petrologica Sinica, 24(12): 2741-2748 (in Chinese with English abstract)

    [2]

    Annen C, Blundy JD and Sparks RSJ. 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. Journal of Petrology, 47(3): 505-539

    [3]

    Bolhar R, Weaver SD, Whitehouse MJ, Palin JM, Woodhead JD and Cole JW. 2008. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth and Planetary Science Letters, 268(3-4): 312-324

    [4]

    Castillo PR. 2012. Adakite petrogenesis. Lithos, 134-135: 304-316

    [5]

    Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology, 8: 173-174

    [6]

    Chappell BW and White AJR. 1992. I- and S-type granites in the Lachlan Fold Belt. In: Brown PE and Chappell BW (eds). The Second Hutton Symposium on the Origin of Granites and Related Rocks, Special Paper, Vol. 272. Boulder: Geological Society of America, 1-26

    [7]

    Chiaradia M, Fontboté L and Beate B. 2004. Cenozoic continental arc magmatism and associated mineralization in Ecuador. Mineralium Deposita, 39(2): 204-222

    [8]

    Chiaradia M, Müntener O, Beate B and Fontignie D. 2009. Adakite-like volcanism of Ecuador: Lower crust magmatic evolution and recycling. Contributions to Mineralogy and Petrology, 158(5): 563-588

    [9]

    Coleman RG. 1989. Continental growth of Northwest China. Tectonics, 8(3): 621-635

    [10]

    Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665

    [11]

    Devine JD. 1995. Petrogenesis of the basalt-andesite-dacite association of Grenada, Lesser Antilles island arc, revisited. Journal of Volcanology and Geothermal Research, 69(1-2): 1-33

    [12]

    Feng J, Xue CJ and Wu GG. 2011. Prognosis of Porphyry-Related Cu-Mo-Au Deposit in Lailisigaoer-Dabate belt, Western Tianshan. Beijing: Geological Publishing House, 1-317 (in Chinese)

    [13]

    Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ and Frost CD. 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033-2048

    [14]

    Frost TP and Mahood GA. 1987. Field, chemical, and physical constraints on mafic-felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. Geological Society of America Bulletin, 99(2): 272-291

    [15]

    Gagnevin D, Daly JS, Horstwood MSA and Whitehouse MJ. 2011. In-situ zircon U-Pb, oxygen and hafnium isotopic evidence for magma mixing and mantle metasomatism in the Tuscan Magmatic Province, Italy. Earth and Planetary Science Letters, 305(1-2): 45-56

    [16]

    Gu XX, Zhang YM, Wang XL, Zhang LQ, Dong LH, Tu QJ, Liu RP and Gao H. 2013. Geochronology of intrusive rocks and associated ores of the Kekesala-Aimusidaiyi Fe-Cu deposit in the West Tianshan, Xinjiang and its geologic significance. Earth Science Frontiers, 20(6): 195-209 (in Chinese with English abstract)

    [17]

    Gu XX, Zhang YM, Peng YW, Zhang LQ, Wang XL, Gao H, Dong LH and Tu QJ. 2014. The Fe-Cu-Mo polymetallic mineralization system related to intermediate-acid intrusions in the Boluokenu metallogenic belt of the West Tianshan, Xinjiang: Rock- and ore-forming geochemistry and tectonomagmatic evolution. Earth Science Frontiers, 21(5): 156-175 (in Chinese with English abstract)

    [18]

    Hong DW. 1994. Recent developments in granite research. Earth Science Frontiers, 1(1-2): 79-86 (in Chinese with English abstract)

    [19]

    Hua RM. 2011. On some basic problems related to the genetic classification and mineralization of granites: A discussion with Mr. Zhang Qi. Mineral Deposits, 30(1): 163-170 (in Chinese with English abstract)

    [20]

    Iwamori H. 1998. Transportation of H2O and melting in subduction zones. Earth and Planetary Science Letters, 160(1-2): 65-80

    [21]

    Iwamori H, Richardson C and Maruyama S. 2007. Numerical modeling of thermal structure, circulation of H2O, and magmatism-metamorphism in subduction zones: Implications for evolution of arcs. Gondwana Research, 11(1-2): 109-119

    [22]

    Kay RW. 1984. Elemental abundances relevant to identification of magma sources. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 310(1514): 535-547

    [23]

    Kepezhinskas P, McDermott F, Defant MJ, Hochstaedter A, Drummond MS, Hawkesworth CJ, Koloskov A, Maury RC and Bellon H. 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600

    [24]

    Lan CY, Jahn BM, Mertzman SA and Wu TW. 1996. Subduction-related granitic rocks of Taiwan. Journal of Southeast Asian Earth Sciences, 14(1-2): 11-28

    [25]

    Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J and Chen HH. 2010. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546

    [26]

    Loiselle MC and Wones DR. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstracts with Programs, 11(7): 468

    [27]

    Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643

    [28]

    Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3-4): 215-224

    [29]

    Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321-355

    [30]

    Nakamura H and Iwamori H. 2009. Contribution of slab-fluid in arc magmas beneath the Japan arcs. Gondwana Research, 16(3-4): 431-445

    [31]

    Næraa T, Scherstén A, Rosing MT, Kemp AIS, Hoffmann JE, Kokfelt TF and Whitehouse MJ. 2012. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2Gyr ago. Nature, 485(7400): 627-630

    [32]

    Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983

    [33]

    Pearce JA and Peate DW. 1995. Tectonic implications of the composition of volcanic ARC magmas. Annual Review of Earth and Planetary Sciences, 23(1): 251-286

    [34]

    Qi XX, Zhu LH, Hu ZC and Li ZQ. 2011. Zircon SHRIMP U-Pb dating and Lu-Hf isotopic composition for Early Cretaceous plutonic rocks in Tengchong block, southeastern Tibet, and its tectonic implications. Acta Petrologica Sinica, 27(11): 3409-3421 (in Chinese with English abstract)

    [35]

    Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931

    [36]

    Rapp RP, Shimizu N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8GPa. Chemical Geology, 160(4): 335-356

    [37]

    Richards JP, Boyce AJ and Pringle MS. 2001. Geologic evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96(2): 271-305

    [38]

    Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263

    [39]

    Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Singapore: Longman

    [40]

    Schmidt MW, Vielzeuf D and Auzanneau E. 2004. Melting and dissolution of subducting crust at high pressures: The key role of white mica. Earth and Planetary Science Letters, 228(1-2): 65-84

    [41]

    Sen C and Dunn T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0GPa: Implications for the origin of adakites. Contributions to Mineralogy and Petrology, 117(4): 394-409

    [42]

    Sun LX, Ren BF, Zhao FQ and Peng LN. 2012. Zircon U-Pb ages and Hf isotope characteristics of Taipingchuan large porphyritic granite pluton of Erguna Massif in the Great Xing'an Range. Earth Science Frontiers, 19(5): 114-122 (in Chinese with English abstract)

    [43]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

    [44]

    Tang GJ, Wang Q, Wyman DA, Sun M, Li ZX, Zhao ZH, Sun WD, Jia XH and Jiang ZQ. 2010. Geochronology and geochemistry of Late Paleozoic magmatic rocks in the Lamasu-Dabate area, northwestern Tianshan (West China): Evidence for a tectonic transition from arc to post-collisional setting. Lithos, 119(3-4): 393-411

    [45]

    Tang GJ, Wang Q, Wyman DA, Sun M, Zhao ZH and Jiang ZQ. 2013. Petrogenesis of gold-mineralized magmatic rocks of the Taerbieke area, northwestern Tianshan (western China): Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopic compositions. Journal of Asian Earth Sciences, 74: 113-128

    [46]

    Tatsumi Y and Eggins S. 1995. Subduction Zone Magmatism. Boston: Blackwell Publishing

    [47]

    Tian N, Wei JH, Fu LB and Tan J. 2015. Timing and geodynamic setting of the Late Paleozoic polymetallic mineralization in Chinese northwestern Tianshan: Insights from geochronology and petrogenesis of granitoids. In: PACRIM 2015 Congress. Hongkong, China: PACRIM, 171-174

    [48]

    Wan Y, Yuan YJ, Yuan P and Song YH. 2011. Analysis of metallogenic regularity of skarn type copper-iron deposit and mineral explorating potential of Husite rock in Jinhe County, Xinjiang. Xinjiang Geology, 29(1): 50-54 (in Chinese with English abstract)

    [49]

    Wang Q, Zhao ZH, Xu JF, Wyman DA, Xiong XL, Zi F and Bai ZH. 2006. Carboniferous adakite-high-Mg andesite-Nb-enriched basaltic rock suites in the northern Tianshan area: Implications for Phanerozoic crustal growth in the Central Asia Orogenic Belt and Cu-Au mineralization. Acta Petrologica Sinica, 22(1): 11-30 (in Chinese with English abstract)

    [50]

    Wang Q, Li ZX, Chung SL, Wyman DA, Sun YL, Zhao ZH, Zhu YT and Qiu HN. 2011. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications. Lithos, 126(1-2): 54-67

    [51]

    Wang XL, Gu XX, Peng YW, Zhang YM, Zhang YH, Gao H, He G and Zhou C. 2014. Isotopic geochemical characteristics and sources of metallogenetic elements of the Halegati Fe-Cu deposit in the western Tianshan area, Xinjiang, China. Bulletin of Mineralogy, Petrology and Geochemistry, 33(3): 279-288 (in Chinese with English abstract)

    [52]

    Wang Y and Zhang Q. 2000. Adakite: Geochemical characteristics and tectonic significances. Scientia Geologica Sinica, 35(2): 251-256 (in Chinese with English abstract)

    [53]

    Woodhead JD, Eggins SM and Johnson RW. 1998. Magma genesis in the New Britain island arc: Further insights into melting and mass transfer processes. Journal of Petrology, 39(9): 1641-1668

    [54]

    Woodhead JD and Hergt JM. 2005. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostandards and Geoanalytical Research, 29(2): 183-195

    [55]

    Wright JB. 1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine, 106(4): 370-384

    [56]

    Xiao WJ, Windley BF, Badarch G, Sun S, Li J, Qin KZ and Wang ZH. 2004a. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. Journal of the Geological Society, London, 161(3): 339-342

    [57]

    Xiao WJ, Zhang LC, Qin KZ, Sun S and Li JL. 2004b. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia. American Journal of Science, 304(4): 370-395

    [58]

    Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117

    [59]

    Xue CJ, Wang HG, Zhao XB and Chen LY. 2013. Kexiaxi cluster of small intrusions in the Tulasu gold mineralization district, western Tianshan, Xinjiang, and its copper exploration prospect. Earth Science Frontiers, 20(6): 180-194 (in Chinese with English abstract)

    [60]

    Zhang DY, Zhang ZC, Ai Y and Su HM. 2009. Geochronology, geochemistry of the ores-bearing porphyries in the Lailisigao'er region, western Tianshan: Implications for their tectonic setting and mineralization. Acta Petrologica Sinica, 25(6): 1319-1331 (in Chinese with English abstract)

    [61]

    Zhang DY, Zhang ZC, Xue CJ, Zhao ZD and Liu JL. 2010. Geochronology and geochemistry of the ore-forming porphyries in the Lailisigao'er-Lamasu region of the western Tianshan Mountains, Xinjiang, NW China: Implications for petrogenesis, metallogenesis, and tectonic setting. The Journal of Geology, 118(5): 543-563

    [62]

    Zhang DY, Zhang ZC, Xue CJ and Ai Y. 2010. Petrology and geochemistry of the ore-forming porphyries in the Lamasu copper deposit, western Tianshan: Implications for petrogenesis. Acta Petrologica Sinica, 26(3): 680-694 (in Chinese with English abstract)

    [63]

    Zhang DY, Zhang ZC, Encarnación J, Xue CJ, Duan SG, Zhao ZD and Liu JL. 2012. Petrogenesis of the Kekesai composite intrusion, western Tianshan, NW China: Implications for tectonic evolution during Late Paleozoic time. Lithos, 146-147: 65-79

    [64]

    Zhang Q, Jin WJ, Xiong XL, Li CD and Wang YL. 2009. Characteristics and implication of O-type adakite in China during different geological periods. Geotectonica et Metallogenia, 33(3): 432-447 (in Chinese with English abstract)

    [65]

    Zhou C, Gu XX, Zhang YM, Peng YW, Wang XL, He G and Liu RP. 2014. Fluid inclusions study of the Muzuke skarn Pb-Zn deposit in the West Tianshan, Xinjiang. Bulletin of Mineralogy, Petrology and Geochemistry, 33(5): 700-710 (in Chinese with English abstract)

    [66]

    Zhu MT, Wu G, Xie HJ, Wan Y, Zhong W, Mi M and Liu J. 2010. Re-Os isotopic geochronology and fluid inclusion study of the Lailisigao'er porphyry Cu-Mo deposit in western Tianshan, Xinjiang, NW China. Acta Petrologica Sinica, 26(12): 3667-3682 (in Chinese with English abstract)

    [67]

    Zhu YF, Zhang LF, Gu LB, Guo X and Zhou J. 2005. The zircon SHRIMP chronology and trace element geochemistry of the Carboniferous volcanic rocks in western Tianshan Mountains. Chinese Science Bulletin, 50(19): 2201-2212

    [68]

    Zuo GC, Zhang ZH, Wang ZL, Liu M and Wang LS. 2008. Tectonic division, stratigraphical system and the evolution of western Tianshan mountains, Xinjiang. Geological Review, 54(6): 748-767 (in Chinese with English abstract)

    [69]

    安芳, 朱永峰. 2008. 西北天山吐拉苏盆地火山岩SHRIMP年代学和微量元素地球化学研究. 岩石学报, 24(12): 2741-2748

    [70]

    冯京, 薛春纪, 吴淦国. 2011. 西天山莱历斯高尔-达巴特一带与斑岩相关的铜钼金矿产预测. 北京: 地质出版社: 1-317

    [71]

    顾雪祥, 章永梅, 王新利, 张力强, 董连慧, 涂其军, 刘瑞萍, 高虎. 2013. 新疆西天山可克萨拉-艾木斯呆依铁铜矿床成岩成矿年代学及其地质意义. 地学前缘, 20(6): 195-209

    [72]

    顾雪祥, 章永梅, 彭义伟, 张力强, 王新利, 高虎, 董连慧, 涂其军. 2014. 西天山博罗科努成矿带与侵入岩有关的铁铜钼多金属成矿系统: 成岩成矿地球化学与构造-岩浆演化. 地学前缘, 21(5): 156-175

    [73]

    洪大卫. 1994. 花岗岩研究的最新进展及发展趋势. 地学前缘, 1(1-2): 79-86

    [74]

    华仁民. 2011. 关于花岗岩成因分类与花岗岩成矿作用若干基本问题的思考——与张旗先生等商榷. 矿床地质, 30(1): 163-170

    [75]

    戚学祥, 朱路华, 胡兆初, 李志群. 2011. 青藏高原东南缘腾冲早白垩世岩浆岩锆石SHRIMP U-Pb定年和Lu-Hf同位素组成及其构造意义. 岩石学报, 27(11): 3409-3421

    [76]

    孙立新, 任邦方, 赵凤清, 彭丽娜. 2012. 额尔古纳地块太平川巨斑状花岗岩的锆石U-Pb年龄和Hf同位素特征. 地学前缘, 19(5): 114-122

    [77]

    万阈, 袁永江, 袁鹏, 宋云辉. 2011. 呼斯特岩体矽卡岩型铜铁矿成矿地质特征及找矿潜力分析. 新疆地质, 29(1): 50-54

    [78]

    王强, 赵振华, 许继峰, Wyman DA, 熊小林, 资峰, 白正华. 2006. 天山北部石炭纪埃达克岩-高镁安山岩-富Nb岛弧玄武质岩: 对中亚造山带显生宙地壳增生与铜金成矿的意义. 岩石学报, 22(1): 11-30

    [79]

    王新利, 顾雪祥, 彭义伟, 章永梅, 章幼惠, 高虎, 何格, 周超. 2014. 新疆西天山哈勒尕提铁铜矿床同位素地球化学特征及成矿物质来源. 矿物岩石地球化学通报, 33(3): 279-288

    [80]

    王焰, 张旗. 2000. 埃达克岩(adakite)的地球化学特征及其构造意义. 地质科学, 35(2): 251-256

    [81]

    薛春纪, 王洪刚, 赵晓波, 陈黎昀. 2013. 新疆西天山吐拉苏金矿集区克峡希小岩体群及其铜矿找矿前景. 地学前缘, 20(6): 180-194

    [82]

    张东阳, 张招崇, 艾羽, 苏慧敏. 2009. 西天山莱历斯高尔一带铜(钼)矿成矿斑岩年代学、地球化学及其意义. 岩石学报, 25(6): 1319-1331

    [83]

    张东阳, 张招崇, 薛春纪, 艾羽. 2010. 西天山喇嘛苏铜矿成矿斑岩的岩石学、地球化学特征及成因探讨. 岩石学报, 26(3): 680-694

    [84]

    张旗, 金惟俊, 熊小林, 李承东, 王元龙. 2009. 中国不同时代O型埃达克岩的特征及其意义. 大地构造与成矿学, 33(3): 432-447

    [85]

    周超, 顾雪祥, 章永梅, 彭义伟, 王新利, 何格, 刘瑞萍. 2014. 新疆西天山木祖克矽卡岩型铅锌矿床流体包裹体研究. 矿物岩石地球化学通报, 33(5): 700-710

    [86]

    朱明田, 武广, 解洪晶, 万阈, 钟伟, 糜梅, 刘军. 2010. 新疆西天山莱历斯高尔斑岩型铜钼矿床辉钼矿Re-Os同位素年龄及流体包裹体研究. 岩石学报, 26(12): 3667-3682

    [87]

    左国朝, 张作衡, 王志良, 刘敏, 王龙生. 2008. 新疆西天山地区构造单元划分、地层系统及其构造演化. 地质论评, 54(6): 748-767

  • 加载中
计量
  • 文章访问数:  6144
  • PDF下载数:  5447
  • 施引文献:  0
出版历程
收稿日期:  2015-11-15
修回日期:  2016-03-01
刊出日期:  2016-06-30

目录