西藏雅鲁藏布江缝合带西段发现高铬型和高铝型豆荚状铬铁矿体

熊发挥, 杨经绥, 刘钊, 郭国林, 陈松永, 徐向珍, 李源, 刘飞. 2013. 西藏雅鲁藏布江缝合带西段发现高铬型和高铝型豆荚状铬铁矿体. 岩石学报, 29(6): 1878-1908.
引用本文: 熊发挥, 杨经绥, 刘钊, 郭国林, 陈松永, 徐向珍, 李源, 刘飞. 2013. 西藏雅鲁藏布江缝合带西段发现高铬型和高铝型豆荚状铬铁矿体. 岩石学报, 29(6): 1878-1908.
XIONG FaHui, YANG JingSui, LIU Zhao, GUO GuoLin, CHEN SongYong, XU XiangZhen, LI Yuan, LIU Fei. 2013. High-Cr and high-Al chromitite found in western Yarlung-Zangbo suture zone in Tibet. Acta Petrologica Sinica, 29(6): 1878-1908.
Citation: XIONG FaHui, YANG JingSui, LIU Zhao, GUO GuoLin, CHEN SongYong, XU XiangZhen, LI Yuan, LIU Fei. 2013. High-Cr and high-Al chromitite found in western Yarlung-Zangbo suture zone in Tibet. Acta Petrologica Sinica, 29(6): 1878-1908.

西藏雅鲁藏布江缝合带西段发现高铬型和高铝型豆荚状铬铁矿体

  • 基金项目:

    本文受国家行业专项(SinoProbe-05-02)、自然科学基金重点项目(40930313)、自然科学基金创新群体项目(40921001)、核资源与环境省部共建国家重点实验室培育基地项目(NRE1203)和中国地质调查局工作项目(1212011121263)联合资助.

详细信息
    作者简介:

    熊发挥,男,1985年生,博士生,矿物学、岩石学、矿床学专业,E-mail: xiongfahui@126.com

    通讯作者: 杨经绥, 男, 1950年生, 研究员, 青藏高原和造山带的岩石大地构造研究,E-mail:yangjingsui@yahoo.com.cn
  • 中图分类号: P588.125

High-Cr and high-Al chromitite found in western Yarlung-Zangbo suture zone in Tibet

More Information
  • 豆荚状铬铁矿按其矿物化学组分分为高铝型(Cr#值为20~60) 和高铬型(Cr#值为60~80) 两类(Thayer, 1970),在全球已报道的豆荚状铬铁矿中普遍为在一岩体内只存一种类型的矿体,而在同一岩体内发现两种类型的铬铁矿体较少见。位于雅鲁藏布江缝合带西段普兰岩体中首次发现同时存在高铬型和高铝型铬铁矿,岩体由地幔橄榄岩、辉长辉绿岩、火山岩等组成。地幔橄榄岩主要为方辉橄榄岩、纯橄岩和少量二辉橄榄岩。在方辉橄榄岩中发现7处透镜状的铬铁矿矿体露头,矿石类型主要有致密块状、稠密浸染状和稀疏浸染状等。矿体长2~6m,厚0.5~2m,矿体的最大延伸方向为北西-南东向,与岩体的展布方向一致,矿石的Cr#=52~88,高铬型铬铁矿包括Cr-2~5矿体,Cr#值为63~89,高铝型铬铁矿有Cr-1和Cr-6矿体,Cr#=52~55。矿石中脉石矿物主要为橄榄石、角闪石、蛇纹石等。普兰地幔橄榄岩的矿物结构显示,岩体经历了强烈的部分熔融以及塑性变形作用,地幔橄榄岩的地球化学特征显示岩体形成于MOR,后受到SSZ环境的改造。并且依据铬尖晶石-橄榄石/单斜辉石的矿物化学成分,识别出普兰地幔橄榄岩至少经历了3次不同的部分熔融,包括早期部分熔融(~10%)、晚期部分熔融(20%~30%) 和局部的减压部分熔融作用(~15%)。对比其他铬铁矿矿体和地幔橄榄岩的矿物组合,矿物化学和地球化学等,显示普兰豆荚状铬铁矿矿体与典型高铬型、高铝型铬铁矿具相似性,并存在较大的找矿空间。

  • 加载中
  • 图 1 

    研究区区域地质简图(据Liu et al., 2010)

    Figure 1. 

    Geological sketch map of the research region (after Liu et al., 2010)

    图 2 

    雅鲁藏布江缝合带西段普兰蛇绿岩地质简图(据野外填图; 河北省地质调查院, 2005a, b修编)

    Figure 2. 

    Geological diagram of Purang ophiolite

    图 3 

    雅鲁藏布江缝合带西段普兰蛇绿岩内实测剖面图

    Figure 3. 

    Profile of the Purang ophiolite western Yarlung-Zangbo suture zone in Tibet

    图 4 

    普兰蛇绿岩岩体及铬铁矿化野外照片

    Figure 4. 

    Field occurrence of the Purang ophiolite

    图 5 

    普兰岩体地幔橄榄岩和铬铁矿显微照片

    Figure 5. 

    Microphotographs of different rock types of the Purang mantle peridotite and chromitite

    图 6 

    普兰铬铁矿矿体中矿石的铬尖晶石Cr-Al-Fe3+原子三角图

    Figure 6. 

    Cr-Al-Fe3+ atoms of the triangular diagram of the Purang chromitite

    图 7 

    西藏普兰地幔橄榄及铬铁矿中斜方辉石的成分图解

    Figure 7. 

    Orthopyroxene composition in the different lithologies of the Purang district

    图 8 

    西藏普兰地幔橄榄及铬铁矿中单斜辉石的成分图解

    Figure 8. 

    Clinopyroxene composition in the different lithologies of the Purang district

    图 9 

    西藏普兰地幔橄榄及铬铁矿中橄榄石的成分图解

    Figure 9. 

    Olivine composition in the different lithologies of the Purang district

    图 10 

    西藏普兰地幔橄榄及铬铁矿中铬尖晶石的成分图解

    Figure 10. 

    Spinel composition in the different lithologies of the Purang district

    图 11 

    西藏普兰铬铁矿中角闪石的COMP图解

    Figure 11. 

    Amphibole COMP diagram in the Purang chromitite

    图 12 

    西藏普兰铬铁矿中角闪石构造环境图解

    Figure 12. 

    Plots of SiO2 vs. Na2O (a) and SiO2 vs. TiO2(b) for amphibole from Purang chromitite

    图 13 

    普兰地幔橄榄的MgO vs. Al2O3c (a) 和Al2O3/SiO2 vs. MgO/SiO2(b) 图解

    Figure 13. 

    Plots of MgO vs Al2O3(a) and Al2O3/SiO2 vs MgO/SiO2(b) for Purang mantle peridotite

    图 14 

    普兰地幔橄榄岩中MgO vs.各主量元素氧化物图

    Figure 14. 

    Variation diagrams of MgO vs. selected major oxides in peridotite of the Purang ophiolite

    图 15 

    普兰地幔橄榄岩体的全岩REE模式图(据McDonough and Sun, 1995)

    Figure 15. 

    Primitive mantle normalized REE pattern diagram of the Purang mantle peridotite (after McDonough and Sun, 1995)

    图 16 

    普兰地幔橄榄岩中MgO vs.部分微量和稀土元素图

    Figure 16. 

    Variation diagrams of MgO vs. selected trace and rare earth elements in peridotites of the Purang ophiolite

    图 17 

    普兰地幔橄榄岩体的全岩微量元素模式图(据McDonough and Sun, 1995)

    Figure 17. 

    Primitive mantle normalized trace elements spider diagram of the Purang mantle peridotite (after McDonough and Sun, 1995)

    图 18 

    普兰地幔橄榄岩和铬铁矿的铂族元素图

    Figure 18. 

    PGE diagram of the Purang ophiolite and chromitite

    图 19 

    原始地幔标准化普兰地幔橄榄岩和铬铁矿的铂族元素图(据Barnes et al., 1988)

    Figure 19. 

    Primitive mantle-normalized PGE patterns of the Purang peridotite and chromitites (after Barnes et al., 1988)

    图 20 

    普兰地幔橄榄岩中铬尖晶石的Cr# vs.单斜辉石的Al2O3图(a) 和普兰地幔橄榄岩及铬铁矿中橄榄石的Fo值vs.铬尖晶石的Cr#的成分图(b, 据Pearce et al., 2000)

    Figure 20. 

    Viariation diagram of Al2O3 of clinopyroxene vs. Cr# of coexisting spinel for Purang peridotites (a) and compositional relationship between Cr# of spinel and Fo content of coexisting olivine for Purang peridotites and chromitites (b, after Pearce et al., 2000)

  •  

    Ahmed AH, Arai S and Attia AK. 2001. Petrological characteristics of podiform chromitites and associated peridotites of the Pan African Proterozoic ophiolite complexes of Egypt. Mineralium Deposita, 36(1): 72-84

     

    Aitchison JC, Badengzhu, Davies AM et al. 2000. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet). Earth and Planetary Science Letters, 183(1-2): 231-244

     

    Arai S. 1997. Origin of podiform chromitites. Journal of Asian Earth Sciences, 15(2-3): 303-310

     

    Arai S and Matsukage K. 1998. Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: A comparison between abyssal and alpine-type podiform chromitite. Lithos, 43(1): 1-14

     

    Bai WJ, Zhou MF and Robinson PT. 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet. Canadian Journal of Earth Sciences, 30(8): 1650-1659

     

    Bao PS, Wang XB, Peng GY and Chen FY. 1999. Chromite Deposit in China. Beijing: Science Press, 108-135 (in Chinese)

     

    Bao PS. 2009. Further discussion on the genesis of the podiform chromite deposits in the ophiolites-questioning about the rock/melt interaction metallogeny. Geological Bulletin of China, 28(12): 1741-1761(in Chinese with English abstract)

     

    Barnes SJ, Boyd R, Korneliussen A et al. 1988. The use of mantle normalization and metal ratios in discriminating between the effects of partial melting, crystal fractionation and sulphide segregation on platinum-group elements, gold, nickel and copper: Examples from Norway. In: Prichard HM, Potts PJ, Bowles JFW and Cribb SJ (eds.). Geo-Platinum Symposium Volume. London: Elsevier, 113-143

     

    Barth MG, Mason PRD, Davies GR et al. 2003. Geochemistry of the othris ophiolite, Greece: Evidence for refertilization? Journal of Petrology, 44(10): 1759-1785

     

    Batanova VG, Suhr G and Sobolev AV. 1998. Origin of geochemical heterogeneity in the mantle peridotites from the Bay of Islands ophiolite, Newfoundland, Canada: Ion probe study of clinopyroxenes. Geochimica et Cosmochimica Acta, 62(5): 853-866

     

    Bonatti E and Michael PJ. 1989. Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth and Planetary Science Letters, 91(3-4): 297-311

     

    Borisov A, Palme H and Spettel B. 1994. Solubility of palladium in silicate melts: Implications for core formation in the Earth. Geochimica et Cosmochimca Acta, 58(2): 705-716

     

    Bowen NL and Anderson O. 1914. The binary system MgO-SiO2. American Journal of Science, 37: 487-500

     

    Chou CL, Shaw DM and Crocket JH. 1983. Siderophile trace elements in the Earth’s oceanic crust and upper mantle. Journal of Geophysical Research, 88(S2): A507-A518

     

    Coltorti M, Beccaluva L, Bonadiman C, Faccin B, Ntaflos T and Siena F. 2004. Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica. Lithos, 75(1-2): 115-139

     

    Coltorti M, Bonadiman C, Faccini B, Grégoire M, O’Reilly SY and Powel W. 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 99(1-2): 68-84

     

    Diamond Research Group of Institute of Geology, Chinese Academy of Geological Sciences. 1981. The discovery of alpine-type diamond bearing ultrabasic intrusions in Xizang (Tibet). Geological Review, 27(5): 455-457 (in Chinese with English abstract)

     

    Dick HJB and Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1): 54-76

     

    Dick HJB and Natland JH. 1996. Late-stage melt evolution and transport in the shallow mantle beneath the East Pacific Rise. Proceedings of the Ocean Drilling Program, Scientific Results, 147: 103-134

     

    Dijkstra AH, Barth MG, Drury MR, Mason PRD and Vissers RLM. 2003. Diffuse porous melt flow and melt-rock reaction in the mantle lithosphere at a slow-spreading ridge: A structural petrology and LA-ICP-MS study of the Othris Peridotite Massif (Greece). Geochemistry, Geophysics, Geosystems, 4(8), doi: 10.1029/2001GC000278

     

    Dobrzhinetskaya LF, Wirth R, Yang JS, Hutcheon ID, Weber PK and Green HW. 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite. Proceedings of the National Academy of Sciences of the United States of America, 106(46): 19233-19238

     

    Economou M. 1983. Platinum group melts in chromite ores from the Vourinos Ophiolite Complex, Greece. Ofioliti, 8: 339-356

     

    Edwards SJ. 1990. Harburgites and refractory melts in the Lewis hills massif, Bay of Island ophiolite complex: The base-metals and precious-metals story. Can. Mineral., 28: 537-552

     

    Frey FA, Suen CJ and Stockman HW. 1985. The Ronda high temperature peridotite: Geochemistry and petrogenesis. Geochimica et Cosmochimica Acta, 49(11): 2469-2491

     

    Gaetani GA and Grove TL. 1998. The influence of water on melting of mantle peridotite. Contributions to Mineralogy and Petrology, 131(4): 323-346

     

    Garrido CJ and Bodinier JL. 1999. Diversity of mafic rocks in the Ronda peridotite: Evidence for pervasive melt-rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. Journal of Petrology, 40(5): 729-754

     

    Gervilla F, Proenza JA, Frei R et al. 2005. Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contributions to Mineralogy and Petrology, 150(6): 589-607

     

    Ghiorso MS, Hirschmann MM, Reiners PW and Kress III VC. 2002. The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3GPa. Geochemistry, Geophysics, Geosystems, 3(5): doi: 10.1029/2001GC000217

     

    Gill JB. 1981. Orogenic Andesites and Plate Tectonics. Berlin: Springer-Verlag, 1-390

     

    González-Jiménez JM, Gervilla F, Kerestedjian T and Proenza JA. 2010. Alteration of platinum-group and base-metal mineral assemblages in ophiolite chromitites from the Dobromirtsi massif, Rhodope Mountains (Bulgaria). Resources Geology, 60(4): 315-334

     

    Green DH. 1973. Experimental melting studies on a model upper mantle composition at high pressure under water-saturated and water-undersaturated conditions. Earth and Planetary Science Letters, 19(1): 37-53

     

    Green DH. 1976. Experimental testing of "equilibrium" partial melting of peridotite under water-saturated, high-pressure conditions. The Canadian Mineralogist, 14(3): 255-268

     

    Green TH and Ringwood AE. 1968. Genesis of the calc-alkaline igneous rock suite. Contributions to Mineralogy and Petrology, 18(2): 105-162

     

    Green TH and Falloon TJ. 1998. Pyrolite: A Ringwood concept and its current expression. In: The Earth’s Mantle: Composition, Structure, and Evolution. Melbourne: Cambridge University Press, 311-380

     

    Guo GL, Xu XZ and Li JY. 2011. The character and genesis of anorthite as inclusions in spinel of Mantle peridotites from the Purang ophiolite (southwestern Tibetan Plateau). Acta Petrologica Sinica, 27(11): 3197-3206(in Chinese with English abstract)

     

    Hamlyn PR, Keays PR, Cameron WE et al. 1985. Precious metals in magnesian low-Ti lavas: Implications for metallogenesis and sulfur saturation in primary magmas. Geochimica et Cosmochimica Acta, 49(8): 1797-1811

     

    Hart SR and Zindler A. 1986. In search of a bulk-Earth composition. Chemical Geology, 57(3-4): 247-267

     

    Hartmann G and Wedepohl KH. 1993. The composition of peridotite tectonites from the Ivrea complex, northern Italy: Residues from melt extraction. Geochimica et Cosmochimica Acta, 57(8): 1761-1782

     

    Hirose K and Kawamoto T. 1995. Hydrous partial melting of lherzolite at 1GPa: The effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters, 133(3-4): 463-473

     

    Huang GC, Mo XX, Xu DM, Lei YJ and Li LJ. 2006. Origination and evolution of Daba-Xiugugabu ophiolite belt in the Southwestern Tibet. Geology and Mineral Resources of South China, (3): 1-9 (in Chinese with English abstract)

     

    Ionov DA, Griffin LW and O’Reilly SY. 1997. Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chemical Geology, 141(3-4): 153-184

     

    Irvine TN. 1967. Chromian spinel as a petrogenetic indicator. Part 2. Petrologic applications. Canadian Journal of Earth Sciences, 4(1): 71-103

     

    Ishimaru S and Arai S. 2008. Nickel enrichment in mantle olivine beneath a volcanic front. Contributions to Mineralogy and Petrology, 156(1): 119-131

     

    Jagoutz E, Palme H, Baddenhausen H, Blum H, Cendales M, Dreibus G, Spettel B, Lorenz V and Wanke H. 1979. The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. In: Lunar Planetary Science Conference Proceedings. New York: Pergamon Press, 10: 2031-2051

     

    Jaques AL and Green DH. 1980. Anhydrous melting of peridotite at 0~15kb pressure and the genesis of tholeiitic basalts. Contributions to Mineralogy and Petrology, 73(3): 287-310

     

    Kelemen PB. 1990. Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. Journal of Petrology, 31(1): 51-98

     

    Kelemen PB, Dick HJB and Quick JE. 1992. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 358(6388): 635-641

     

    Kelemen PB, Hart SR and Bernstein S. 1998. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth and Planetary Science Letters, 164(1-2): 387-406

     

    Kostopoulos DK. 1991. Melting of the shallow upper mantle: A new perspective. Journal of Petrology, 32(4): 671-699

     

    Kushiro I, Syono Y and Akimoto S. 1968. Melting of a peridotite nodule at high pressures and high water pressures. Journal of Geophysical Research, 73(18): 6023-6029

     

    Kushiro I. 1969. The system forsterite-diopside-silica with and without water at high pressures. American Journal of Science, 267: 269-294

     

    Kushiro I. 1974. Melting of hydrous upper mantle and possible generation of andesite magma: An approach from synthetic systems. Earth and Planetary Science Letters, 22(4): 294-299

     

    Leblanc M. 1980. Chromite growth, dissolution and deformation from a morphological view point: SEM investigations. Mineralium Deposita, 15(2): 201-210

     

    Leblanc M and Violette JF. 1983. Distribution of aluminum-rich and chromium-rich chromite pods in ophiolite peridotites. Economic Geology, 78(2): 293-301

     

    Leblanc M and Nicolas A. 1992. Ophiolitic chromitites. International Geological Review, 34(7): 653-686

     

    Leblanc M. 1995. Chromitite and ultramafic rock compositional zoning through a paleotransform fault, Poum, New Caledonia. Economic Geology, 90(7): 2028-2039

     

    Lei YJ, Huang GC, Xu DM and Li LJ. 2006. Prospect for the Jiangyema podiform chromite deposit and its gological characteristics in Pulan County, Tibet. Geology and Mineral Resources of South China, (3): 55-60 (in Chinese with English abstract)

     

    Li JF, Xia B, Liu LW, Xu LF, He GS, Wang H, Zhang YQ and Yang ZQ. 2008. SHRIMP U-Pb zircon dating of diabase in the La’nga Co ophiolite, Burang, Tibet, China, and its geological significance. Geological Bulletin of China, 27(10): 1739-1743 (in Chinese with English abstract)

     

    Li JL, Tao KJ, Yu LJ and Xiao WJ. 2007. Preliminary study on the olivine in the Laangcuo sheared peridotite, western Tibet. Acta Petrologica Sinica, 23(5): 977-985 (in Chinese with English abstract)

     

    Liu CZ, Wu FY, Wide SA, Yu LJ and Li JL. 2010. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos, 114(3-4): 413-422

     

    Liu CZ, Wu FY, Chu ZY, Ji WQ, Yu LJ and Li JL. 2012. Preservation of ancient Os isotope signatures in the Yungbwa ophiolite (southwestern Tibet) after subduction modification. Journal of Asian Earth Sciences, 53: 38-50

     

    Liu Z, Li Y, Xiong FH, Wu D and Liu F. 2011. Petrology and geochronology of mor gabbro in the purang ophiolite of western Tibet, China. Acta Petrologica Sinica, 27(1??攺瀠漳猲椶琹?愳渲搷??敩湮攠獃楨獩?楥湳??桷楩湴慨???敧楬橩楳湨朠??即捴楲敡湣捴攩?偢牲放獌獵?????〧??椬渠??桴楨湥敲獲攠??戠牒?坣慺湥杫?塉????慦潭?偮卮?慁湗搠?剮潤渠杍????ㄠ?????刹愱爮攠?敥慯牣瑨桥?敩汳整浲敹渠瑯獦?杰敥潲捩桤敯浴楩獴瑥牳礠?潮晤?瑭桡敦?浣愠湩瑧汮敥?灵敳爠楲摯潣瑫楳琠敦?楯湭?瑴桨敥?潃灥桮楴潲污楬琠敄?獮畡楲瑩散猠?潰晨??桬楩湴慥???捬瑴愬?偙敵瑧牯潳汬潡杶楩捡愮?千楯湮楴捲慩?????卮畳瀠灴汯????????????楡湮??桐楥湴敲獯敬?睧楹琬栠??渶木氲椩猺栠′愰戱猭琲爱愶挼瑢??才牡?坣敨楥?婩儠??堠楇慡????婯栠慃湊本?奇兯??坲慤渠杍?删??奯慥湮杺?娠兊?愬渠摇?坲敶楩?????㈠ちの???卬?剮??倭?穯楲牥据潯渠?搮愠琲椰渰朶?漠晐?摴楲慯执慥獮敥?楩湳?瑯桦攠?塩楧畨杬畹朠慤扥異?潥灴桥楤漠汰楥瑲敩?楯湴?呴楥扳攠瑡?慤渠摧?楢瑢獲?杩散漠汲潯杣楫捳愠汦?楯浭瀠汴楨捥愠瑍楡潹湡獲???敡潲瑡散捯瑡漠湯楰捨慩?敬瑩??散琠慢汥汬潴朠攨湅楡慳???の????????????楲湩??桴楩湯敮獳攠?睯椠瑍桩??湲条汬楯獧桹?慡扮獤琠牐慥捴瑲??扯牧?堬椠愱‵???ㄩ?????吭样攳?朼敢潲挾桍散浄楥獲瑭物祤?慉湒摃?漠牁楩杴楣湨?潳景?琠桊敃??慄慡湶杩捳甠潁?漬瀠案楡潲汲楩瑳敯?椠湔?吠楡扮敤琠??塯楶穥愠湍朮??攰漰氲漮朠祔???????????????楮湥??桁椠湌敡獴敥??扵牲?塳楳慩潣?塩??慲湡搭?坣慥湡杮????????????湡?楣渠瑷物潴摨畩据琠楴潨湥?瑙潡?瑬桵敮?漭灔桳楡潮汧楰瑯攠?潵晴??桥椠湺慯???挠瑳慯??敨潥獡捳楴敥湲瑮椠捔慩?卥楴渮椠捃慨????????づ?楬湯??栬椠渱攸猷攨″眭椴琩栺??渶朷氭椲猷样?慢扲猾瑍牣慄捯瑮??执牨?塗畆??????畵慮渠杓??????电愮渠杔??儠???数楯?奩??慯湮搠??椠??????ひぴ???呃桨敥?潩牣楡杬椠湇?潯晬?浧慹測琠氱攲‰瀨攳爭椴搩漺琠椲琲攳猭′椵渳?瑢桲放??慅扬慤?塦楦甠杂甠条慮扤甠?潴灵桭楰潦汬椠瑅敆?戠攱氹琹??匠坔?呥椠扣敨瑲???整潥氠潤来祰?慳湩摴??楯湦攠牴慨汥?剔敲獯潯畤牯捳攠獃?潭晰?卥潸甬琠档??桲極湳愺????????づ?????楴湨??桲楯湬敥猠敯?眠楡琠桦??湩杤氠楰獨桡?慥戠獡瑣牣慯捭瑰??批物?塧甠?塨婲??奩慴湥朠??卲???桩敯湮?匠奍???慲湡杬?兵卭???慰楯?坩??愬渠搲??愴??娠?‰祝?????啢湲甾獍略慬汣?浥慲渠瑆氬攠?浲極湭攠牗愬氠?杩牭潯畮瀠?映爼潥浭 ̄捥桴爠潡浬椮琼椯瑥敭 ̄漠爱改戹漷搮礠??牴????楮湥??畳漠扯畦猠慴?潥瀠桯楰潨汩楯瑬敩?潩晣?奧慩牡汮畴渠杣?婲慯湭杩扴潥?獤略瑰畯牳敩?穳漠湯敦??呥業扰敩瑲???漬甠牋湡慺污?潨晳??慮爺琠桁?即捴極敤湹挠敯???は??????????ふ??戠物?塣畬?塳婩??女愠湩杮??卨???畩潴????慯湵摲??楬??奦???ぴ?????楹琬栠漳永漨朱椰挩愺氠?爴攱猹攭愱爴挵核?潢湲 ̄瑍桥敬?偨略牲愠湆本?浍慥湩瑳汥敬?灔攬爠楐摵潨瑬椠瑊攠?楮湤?睋敯獬瑬敥牲渠?央愠爲氰田渲朮?婐慥湴杲扯畧?獮略瑳畩牳攠?穮潤渠敧?楯湴?呣楴扯敮瑩???捥瑴慴?偮敧琠牯潦氠潵杬楴捲慡?卡楦湩楣挠慲???????????ㄠ????????楁湬??栺椠湃敯獮敳?睲楡瑩桮??渠杦汲楯獭栠?慥扯獣瑨牥慭捩瑳??批爮?奌慩湴杨??夬???愨渱朩?娠儶?愭渱搱′?椼畢?匾???????????渠敡睮?漠捎瑩慣桯敬摡牳愠汁?瀠猱改男搵漮洠潔牥灸桴?潲晥?氠楡穮慤爠摦楡瑢敲?慣湳搠?楦琠獵?潰牥楲札業湡???捥琠慰??楩湤敯牴慩汴潥杳椠捡慳?卩楬湬極捳慴????????㈠?????楩湴??栠楦湲敯獭攠?睡楳瑡桬??渮朠汊楯獵桲?慡扬猠瑯牦愠捐瑥??扯牬?奧慹測朠??匨???愠椴‵圴????愼湢杲 ̄免卩??奥慲渠?????剮潮湩朠???慆湲摡??栠敗測?卓奣???ぴづ????漠敍獥楬瑣敨?摲椠獆挬漠癍敥物敳摥?映牔漠浡?瑤栠敚?灮潥摴楴晩漠牁洮?挲栰爰漳洮椠瑇楥瑯散?楥湭?瑳桴敲??畡潮扤甠獴桥慣?潯灮桯業潡汧業瑡整??吠楡扦敦瑩???慹爠瑯桦?却捨楥攠湙捵敮??????????????????椠湔??桥楴渮攠獌敩?睨楯瑳栬??渶木氳椭猴栩?愠戱猵琵爭愱挷琲??扲爾?奯慬湮条??卐???潤戠牔穡桰楰湯敮瑮獩步慲礠慐?????愵椮?坃???敺浯?散琠?慥汣???敩浣???て?????椺愠浅潦湦摥??慳渠摯?挠潡攠獣楯瑮整?扮敥慮牴楡湬朠?捯桬牬潩浳楩瑯楮琮攠獓?晩牥潮浣?琬栠攱??用漴戲田猱愩?漠瀴栱椹漭水椲琶攼??吾楍批敳瑥???敏漠污潮杤礠??????と???????????戮爠?奥慬湴杩??匠???慡椠?坹????慳渠杭?兮却?慥渺搠?刮漠湐杨?????づぬ???啯汮瑳爠慯桦椠杮桡?灵牲敡獬猠異牥敲?浤楯湴敩牴慥氠獡?愠湨摩?湨攠睰?浥楳湳敵牲慥汳猠?普牤漠浴?瑭桰敥??畴潵扲略獳愠?潩灴桨椠潣汯楮瑴楲捯?捬桥牤漠浡楣瑴楩瑶敩獴?楥湳?呯楦戠敷瑡????爠散癡楲敢睯???捩瑯慸?杤敥漬猠捡楮敤渠瑨楹捤慲?獧楥湮椮挠慊?????????㈠???????楧湹??栱椶渨攱猩攺?眵椲琰栭‵?游朼汢楲猾桍?慳扥獮琠牂慏挠瑡??戠牋?女慨湩杲??卉??報椹漷渷朮??????畳潩??????椠當?????楩慯湮杳??????桥數湩?却奩???楰?婡??慳渠摷?婴桨愠湤来??坥???てㄠ???呴桩敮??潯湦朠扰潥?畩汤瑯牴慩浴慥映楩据?浴慨獥猠極晰????浭慡湮瑴汬敥?瀠敁牭楥摲潩瑣楡瑮攠?楩湮?瑲桡敬?睧敩獳瑴攬爠渶′瀨愹爭琱‰漩昺?琸栴攳?夸愶爵氼畢湲朾?婡慫湡杭扵潲?猠畍琮甠爱改?稵漮渠敒??呩楤扥敮瑣??睴楩瑭桥?敡确捤攠汣汲敹湳瑴?灬牬潩獺灡整捩瑯獮?晨潩牳?慯?浹愠橯潦爠?捩档牫潥浬楩瑦敥?摯敵灳漠獯楬瑩???捥琠慰?健敮瑯牣潲汹潳杴楳挠慦?卯業渠楴捨慥????????????ぴ????????椠湶??档楡湮敯獥敳?眠楣瑥桮??湡杬氠楊獡桰?慮戺猠瑁牰慰捬瑩??扴物?婮栠慯湦朠?儠?慲湯摷?婨栠潡畮??兤???ふび???传灭桯楤潥汬椠瑩敮猠?潨晥??桹楳湴慥???敧椭橆楥渭李??匠捊楯敵湲据敡?倠牯敦猠獖?????????楹渠??桤椠湇敥獯整?睥楲瑭桡??湒来汳楥獡桲?慨戬猠琶父愨挱琭??戺爠?娱栭漱田‰???愾湎摡??慭極?坡?????????味桨敩?潯爠楉朮椠渱?漷昴?琠桃敯?灰潯摳楩晴潩牯浮?捯桦爠潴浨楥琠敧?摳攠灰潨獡楳瑥猠???楍湧攼牳慵汢 ̄?攼瀯潳獵楢琾獓?????????土???资???楏渼??桢椾渲攼猯敳?睢椾琭案??湵杢氾椲猼栯?慵扢猾瑏爠慡捴琠??扫牢?婲栮漠留????慂湯摯?删潃扡楲湮獥潧湩?倠呉?????????楩杮桧??牮?愠渷搳?栠椲朵栵??氵?瀼潢摲椾晎潩牣浨?捬桬牳漠浉楁琠楡瑮敤猠??睧敷獯瑯敤爠湁??栠椱渹愷??删敐汲慯瑤極潣湴獩桯楮瀠?瑦漠?灩慬物瑣楡愭汳?浴敵汲瑡楴湥杤?慴湨摯?浥敩汩瑴?牣漠捭歡?牭敡慳挠瑩楮漠湩?楬湡?瑤栠敡?畣灳瀮攠牅?浲慴湨琠污敮???湬瑡敮汥???敹漠汓??剥敮癣??????????????????戲爴?娭栲漴甶?????剩潣扨楯湬獬潳渠?偁吠???愠汒灩慧獷???愠湁摅??椱?娷??ㄠ?????側漠摯楦映潷牡浴?捲栠牯潮洠楯瑬楩瑶敩獮?椠湳?瑡桢敩??畴潹戠畩獮愠?潨灯桬楥潩汩楴瑥敳??獮潤甠瑴桨敥爠湰?呯楤扵散瑴????浯灦氠楳捩慬瑩楣潡渭獳?晴潵牲?浴敥汤琠?牡潧捭歡?椠湩瑮攠牴慨捥琠楩潳湬?慮湤搭?捲档爠潥浮楶瑩敲?獮敭来牮整朮愠瑔楨潥渠?楯湵?瑮桡敬?畯灦瀠敇牥?浬慯湧瑹氬攠???漳甩爺渠愲永‵漭昳‰倰攠琼牢潲氾潎杩祣??????????????扥牡?娠桊漬甠?????卵畸渠?????数慲秨猠?刬删?慡湮摧??敂爬爠楃捡桯?剙均?????????漠湡瑮牤漠汘獩?潯渠?灃氮愠琱椹游由洮?杔牨潥甠灘?敧污敺浥攠湯瑰慨汩?摬楩獴瑥爠椨扔畩瑢楥潴温猺?潁映?灥潣摵楬晩潡牲洠?捣桥牡潮浩楣琠楬瑩整獨????捥慲獥攮?獎瑡畴摵祲?漬映′根椴木栵??爰?愺渠搴?栴椭朴栱??汢?挾桎物潣浯楬瑡楳琠敁猠?普牤漠浐??桮楺湨敯獦敥?漠牁漮朠攱渹椸挳?戠敃汵瑭獵???敩潶捥栠楯浲椠捲慥?敩瑤??潬猠浯潲捩桧楩浮椠捦慯??捴瑨慥?????????????????扩牮?婯桰潨畩?????剳漺戠楓湴獲潵湣?偵呲???慥汶灩慤獥?????摊睯慵牲摮獡?匠??愠湐摥?兲楯????水????′利???愸游搭′倰???杢敲漾捎桩散浯楬捡慳氠?挮漠渱猹琸爹愮椠湓瑴獲?潣湴?瑲桥敳?景潦爠浏慰瑨楩潯湬?潴晥?摡畮湤椠瑄敹獮?業湩?瑳栠敯??畏潣扥畡獮慩?漠灌桩楴潨汯楳瑰敨??獥漮甠瑄桯敥牤湲?呣楨扴攺琠???潷略牲渠慁汣?潤晥?偩散琠牐潵汢潬杩祳????????″???????>Nicolas A and Al Azri H. 1991. Chromite-rich and chromite-poor ophiolites: The Oman case. In: Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Petrology and Structural Geology, 5: 261-274

     

    Niida K and Green DH. 1999. Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contributions to Mineralogy and Petrology, 135(1): 18-40

     

    Niu YL, Langmuir CH and Kinzler RJ. 1997. The origin of abyssal peridotites: A new perspective. Earth and Planetary Science Letters, 152(1-4): 251-265

     

    Niu YL. 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. Journal of Petrology, 45(12): 2423-2458

     

    Ozawa K. 1994. Melting and melt segregation in the mantle wedge above a subduction zone: Evidence from the chromite-bearing peridotites of the Miyamori Ophiolite Complex, northeastern Japan. Journal of Petrology, 35(3): 647-678

     

    Pagé P, Bédard JH, Schroetter JM and Tremblay A. 2008. Mantle petrology and mineralogy of the Thetford mines ophiolite complex. Lithos, 100(1-4): 255-292

     

    Palme H and O’Neill HSC. 2004. Cosmochemical estimates of mantle composition. In: Holland HD and Turrekian KK (eds.). Treatise on Geochemistry. Elsevier, 2: 1-38

     

    Parkinson IJ and Pearce JA. 1998. Peridotites from the Izu-Bonin-Mariana Fore-arc (ODP Leg 125), evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39(9): 1577-1618

     

    Parlak O and Delaloye M. 1999. Precise 40Ar/39Ar ages from the metamorphic sole of the Mersin ophiolite (southern Turkey). Tectonophysics, 301(1): 145-158

     

    Pawley AR and Holloway JR. 1993. Water sources for subduction zone volcanism: New experimental constraints. Science, 260(5108): 664-667

     

    Pearce JA, Lippard SJ and Roberts S. 1984. Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar BP and Howells MF (eds.). Marginal Basin Geology. Geological Society of London Special Publication. London: Blackwell Scientific Publications, 16(1): 77-94

     

    Pearce JA, Barker PF, Edwards SJ, Parkinson IJ and Leat PT. 2000. Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contributions to Mineralogy and Petrology, 139(1): 36-53

     

    Piccardo GB and Vissers RLM. 2007. The pre-oceanic evolution of the Erro-Tobbio peridotite (Voltri Massif, Ligurian Alps, Italy). Journal of Geodynamics, 43(4-5): 417-449

     

    Piccardo GB, Zanetti A and Müntener O. 2007. Melt/peridotite interaction in the Southern Lanzo peridotite: Field, textural and geochemical evidence. Lithos, 94(1-4): 181-209

     

    Proenza J, Gervilla F, Melgarejo J and Bodinier JL. 1999. Al- and Cr-rich chromitites from the Mayarí-Baracoa Ophiolitic Belt, (eastern Cuba): Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology, 94(4): 547-566

     

    Qiu RZ, Deng JF, Zhou S, Li TD, Xiao QH, Guo TY, Cai ZY, Li GL, Huang GC and Meng XJ. 2005. Ophiolite types in western Qinghai-Tibetan Plateau: Evidences from petrology and geochemistry. Earth Science Frontiers, 12(2): 277-291 (in Chinese with English abstract)

     

    Rammlmair D, Raschka H and Steiner L. 1987. Systematics of chromitite occurrences in Central Palawan, Philippines. Mineralium Deposita, 22(3): 190-197

     

    Roberts SR. 1988. Ophiolitic chromitite formation: A marginal basin phenomenon? Economic Geology, 83(5): 1034-1036

     

    Robinson PT, Bai WJ, Malpas J et al. 2004. Ultra-high pressure minerals in the Luobusa ophiolite, Tibet, and their tectonic implications. In: Aspects of the Tectonic Evolution of China. Geological Society, London, Special Publications, 226(1): 247-271

     

    Rollinson H. 2005. Chromite in the mantle section of the Oman ophiolite: A New genetic model. Island Arc, 14(4): 542-550

     

    Sclar CB. 1970. High pressure studies in the system MgO-SiO2-H2O. Physics of the Earth and Planetary Interiors, 3: 330-333

     

    Seyler M, Lorand JP, Dick HJB and Drouin M. 2007. Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15°20'N: ODP Hole 1274. Contributions to Mineralogy and Petrology, 153(3): 303-319

     

    Shi RD, Alard O, Zhi XC, O’Reilly SY, Pearson NJ, Griffin WL, Zhang M and Chen XM. 2007. Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru-Os-Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth and Planetary Science Letters, 261(1-2): 33-48

     

    Sisson TW and Bronto S. 1998. Evidence for pressure-release melting beneath magmatic arcs from basalt at Galunggung, Indonesia. Nature, 391(6670): 883-886

     

    Snow JE and Dick HJB. 1995. Pervasive magnesium loss by marine weathering of peridotite. Geochimica et Cosmochimica Acta, 59(20): 4219-4235

     

    Spear FS. 1981. An experimental study of hornblende stability and compositional variability in amphibolite. American Journal of Science, 281(6): 697-734

     

    Takahashi E. 1986. Origin of basaltic magmas: Implications from peridotite melting experiments and an olivine fractionation model. Bulletin of the Volcanological Society of Japan, 30: S17-S40 (in Japanese)

     

    Talkington RW and Watkinson DH. 1986. Whole rock platinum-group element trends in chromite-rich rocks in ophiolitic and stratiform igneous complexes. In: Gallagher MJ (ed.). Metallogeny of Basic and Ultrabasic Rocks.Institution of Mining and Metallurgy, 427-440

     

    Tatsumi Y and Eggins S. 1995. Subduction Zone Magmatism. Oxford: Blackwell Science, 1-95

     

    Thayer TP. 1960. Some critical differences between alpine-type and stratiform peridotite-gabbro complexes. Int. Geol. Congr. 21st, Norden, 13: 247-259

     

    Thayer TP. 1964. Principal features and origin of podiform chromite deposits, and some observations on the Gulemen-Soridag district, Turkey. Economic Geology, 59(8): 1497-1524

     

    Thayer TP. 1970. Chromite segregation as petrogenetic indicators. Geological Society of South Africa Special Publication, 1: 380-390

     

    Trumbull RB, Yang JS, Robinson PT, Pierro SD, Vennemann T and Wiedenbeck M. 2009. The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle: New discoveries from ophiolites. Lithos, 113(3-4): 612-620

     

    Ulmer P and Trommsdorff V. 1995. Serpentine stability to mantle depths and subduction-related magmatism. Science, 268(5212): 858-861

     

    Wang HS, Bai WJ, Wang ZX et al. 1983. Chromite

  • 加载中

(20)

计量
  • 文章访问数:  18382
  • PDF下载数:  57573
  • 施引文献:  0
出版历程
收稿日期:  2013-01-12
修回日期:  2013-05-10
刊出日期:  2013-06-01

目录