贵州普定纳雍枝铅锌矿矿床成因:S和原位Pb同位素证据

金中国, 周家喜, 黄智龙, 罗开, 高建国, 彭松, 王兵, 陈兴龙. 贵州普定纳雍枝铅锌矿矿床成因:S和原位Pb同位素证据[J]. 岩石学报, 2016, 32(11): 3441-3455.
引用本文: 金中国, 周家喜, 黄智龙, 罗开, 高建国, 彭松, 王兵, 陈兴龙. 贵州普定纳雍枝铅锌矿矿床成因:S和原位Pb同位素证据[J]. 岩石学报, 2016, 32(11): 3441-3455.
JIN ZhongGuo, ZHOU JiaXi, HUANG ZhiLong, LUO Kai, GAO JianGuo, PENG Song, WANG Bing, CHEN XingLong. Ore genesis of the Nayongzhi Pb-Zn deposit, Puding City, Guizhou Province, China: Evidences from S and in situ Pb isotopes[J]. Acta Petrologica Sinica, 2016, 32(11): 3441-3455.
Citation: JIN ZhongGuo, ZHOU JiaXi, HUANG ZhiLong, LUO Kai, GAO JianGuo, PENG Song, WANG Bing, CHEN XingLong. Ore genesis of the Nayongzhi Pb-Zn deposit, Puding City, Guizhou Province, China: Evidences from S and in situ Pb isotopes[J]. Acta Petrologica Sinica, 2016, 32(11): 3441-3455.

贵州普定纳雍枝铅锌矿矿床成因:S和原位Pb同位素证据

  • 基金项目:

    本文受国家重点基础研究发展规划项目(2014CB440905)、国家自然科学基金重点项目(41430315)和国家自然科学基金项目(41272111)联合资助.

详细信息

Ore genesis of the Nayongzhi Pb-Zn deposit, Puding City, Guizhou Province, China: Evidences from S and in situ Pb isotopes

More Information
  • 通过近五年(2011~2015)勘查实现找矿重大突破的贵州普定纳雍枝铅锌矿床,位于扬子陆块西南缘,五指山背斜南东翼北中部,是黔西北铅锌成矿区的重要组成部分。矿区内已发现20余个铅锌矿体,探获铅锌金属资源储量超135万吨,是川滇黔接壤铅锌矿集区贵州境内目前已发现和探明规模最大的铅锌矿床。主矿体多呈层状、似层状、透镜状和陡倾斜脉状产出,除了陡倾斜脉状矿体产于F7断层破碎带,其余(似)层状矿体均产于下寒武统清虚洞组和上震旦统灯影组白云岩中,与围岩产状一致,层控特征明显。其矿石类型主要有块状、角砾状、细脉状和浸染状等,矿石矿物以闪锌矿为主,其次为方铅矿和黄铁矿,脉石矿物以方解石、白云石为主,含少量石英,偶见重晶石。本次研究表明,该矿床硫化物δ34SCDT值介于15.94‰~25.49‰之间,均值为22.41‰(n=21),其中黄铁矿δ34SCDT值为22.06‰,闪锌矿δ34SCDT值为19.37‰~25.49‰,均值为23.17‰(n=17),方铅矿δ34SCDT值为15.94‰~19.70‰(n=3),均值为18.23‰。各类硫化物δ34S值部分重叠,总体上不具有δ34S黄铁矿 > δ34S闪锌矿 > δ34S方铅矿的特征,暗示硫同位素在硫化物矿物间的分馏未达到平衡。此外,矿石存有少量硫酸盐矿物(重晶石),暗示成矿流体的δ34S∑S值应高于硫化物的平均δ34S值(22.41‰),接近赋矿地层中海相硫酸盐岩的δ34S值(22‰~28‰)。因此,成矿流体中的还原硫最可能为海相硫酸盐岩热化学还原的产物,来源于赋矿地层中的蒸发岩。应用飞秒激光剥蚀多接收器等离子体质谱法首次获得了纳雍枝铅锌矿中方铅矿原位Pb同位素数据,结果显示Pb同位素组成非常集中(206Pb/204Pb=17.828~17.860,均值17.841,207Pb/204Pb=15.648~15.666,均值15.659,208Pb/204Pb=37.922~37.979,均值37.960,n=32),位于上地壳平均Pb演化曲线上,表明其成矿物质具壳源特征,可能来源于基底岩石。综合矿床地质、矿物学、S和原位Pb同位素数据,本文认为纳雍枝铅锌矿床S主要来源于其赋矿地层,Pb等金属元素主要来源于基底岩石,这两组流体的混合是导致其金属硫化物沉淀成矿的重要机制,成矿流体具后生、低温热液等特征,属于密西西比河谷型(MVT)矿床,很可能形成于燕山期,与右江盆地演化有关。
  • 加载中
  • [1]

    Bao ZA, Yuan WT, Yuan HL, Liu X, Chen KY and Zong CL. 2016. Non-matrix-matched determination of lead isotope ratios in ancient bronze artifacts by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry. International Journal of Mass Spectrometry, 402:12-19

    [2]

    Basuki NI, Taylor BE and Spooner ETC. 2008. Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi valley-type zinc-lead mineralization, Bongara area, northern Peru. Economic Geology, 103(4):783-799

    [3]

    Carr GR, Dean JA, Suppel DW and Heithersay PS. 1995. Precise lead isotope fingerprinting of hydrothermal activity associated with Ordovician to Carboniferous metallogenic events in the Lachlan fold belt of New South Wales. Economic Geology, 90(6):1467-1505

    [4]

    Chaussidon M, Albarède F and Sheppard SMF. 1989. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth and Planetary Science Letters, 92(2):144-156

    [5]

    Chen GY, Wang L, Fan YM and Zheng W. 2015. Ore-search prospect of the deep subsurface in the Wuzhishan Pb-Zn orefield, Guizhou Province. Geology and Exploration, 51(5):859-869 (in Chinese with English abstract)

    [6]

    Chen KY, Yuan HL, Bao ZA, Zong CL and Dai MN. 2014. Precise and accurate in situ determination of lead isotope ratios in NIST, USGS, MPI-DING and CGSG glass reference materials using femtosecond laser ablation MC-ICP-MS. Geostandards and Geoanalytical Research, 38(1):5-21

    [7]

    Chen XW. 2013. The application of induced polarization method in lead-zinc deposit exploitation of Nayongzhi area of Puding, Guizhou. Guizhou Geology, 30(1):22-27 (in Chinese with English abstract)

    [8]

    Cheng Y, Song YC, Hou ZQ, Xue CD, Huang SQ, Han CH and Zhuang LL. 2015. Fluid inclusitions and stable isotopes study of Maocaoping vein Cu deposit in Lanping basin, western Yunnan. Acta Petrologica Sinica, 31(11):3363-3379 (in Chinese with English abstract)

    [9]

    Claypool GE, Holser WT, Kaplan IR, Sakai H and Zak I. 1980. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28:199-260

    [10]

    Gao YB, Li K, Qian B, Li WY, Zheng MC and Zhang CG. 2016. Trace elements, S, Pb, He, Ar and C isotopes of sphalerite in the Mayuan Pb-Zn deposit, at the northern margin of the Yangtze plate, China. Acta Petrologica Sinica, 32(1):251-263 (in Chinese with English abstract)

    [11]

    Hu RZ and Zhou MF. 2012. Multiple Mesozoic mineralization events in South China:An introduction to the thematic issue. Mineralium Deposita, 47(6):579-588

    [12]

    Hu RZ, Mao JW, Hua RM and Fan WM. 2015. Intra-Continental Mineralization of South China Craton. Beijing:Science Press, 387-592 (in Chinese)

    [13]

    Huang L, Zhao Z, Liu JH and Lin QH. 2006. Metallogenic prospecting of Pb-Zn deposits in ore-concentrating zones of the Wuzhishan anticline, western Guizhou. Guizhou Geology, 23(3):203-205, 210 (in Chinese with English abstract)

    [14]

    Huang L and Zhang K. 2010. Analysis on the ore control factors, metallogenic regulation and prospecting direction of Shuidong-Wuzhushan lead-zinc deposit of Northwest Guizhou. Guizhou Geology, 27(3):202-207 (in Chinese with English abstract)

    [15]

    Huang ZL, Chen J, Han RS, Li WB, Liu CQ, Zhang ZL, Ma DY, Gao DR and Yang HL. 2004. Geochemistry and Ore-Formation of the Huize Giant Lead-Zinc Deposit, Yunnan Province, China:Discussion on the Relationship between the Emeishan Flood Basalts and Lead-Zinc Mineralization. Beijing:Geological Publishing House, 1-214 (in Chinese)

    [16]

    Jin CH, Li K, Huang L, Zhang Y and Shen ZW. 2015. Characteristics of sulfur and lead isotope composition and metallogenic material source of the Nayongzhi Pb-Zn deposit, northwestern Guizhou Province. Journal of Mineralogy and Petrology, 35(3):81-88 (in Chinese with English abstract)

    [17]

    Jin ZG. 2008. The Ore-Control Factors, Ore-Forming Regularity and Forecasting of Pb-Zn Deposit, in Northwestern Guizhou Province. Beijing:Engine Industry Press, 1-105 (in Chinese)

    [18]

    Jørgenson BB, Isaksen MF and Jannasch HW. 1992. Bacterial sulfate reduction above 100℃ in deep-sea hydrothermal vent sediments. Science, 258(5089):1756-1757

    [19]

    Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J and Walters SG. 2005. Sediment-hosted lead-zinc deposits:A global perspective. Economic Geology, 100:561-607

    [20]

    Leach DL, Bradley DC, Huston D, Pisarevsky SA, Taylor RD and Gardoll SJ. 2010. Sediment-hosted lead-zinc deposits in Earth history. Economic Geology, 105(3):593-625

    [21]

    Li B, Zhou JX, Huang ZL, Yan ZF, Bao GP and Sun HR. 2015. Geological, rare earth elemental and isotopic constraints on the origin of the Banbanqiao Zn-Pb deposit, Southwest China. Journal of Asian Earth Sciences, 111:100-112

    [22]

    Li WB, Huang ZL and Zhang G. 2006. Sources of the ore metals of the Huize ore field in Yunnan Province:Constraints from Pb, S, C, H, O and Sr isotope geochemistry. Acta Petrologica Sinica, 22(1):2567-2580 (in Chinese with English abstract)

    [23]

    Liu HC and Lin WD. 1999. Regularity Research of Ag. Zn. Pb Ore Deposits Northeast Yunnan Province. Kunming:Yunnan University Press, 1-468 (in Chinese)

    [24]

    Nie F, Dong GC, Mo XX, Zhao ZD, Wang P, Cui ZL, Fan WY and Liu SS. 2015. The characteristics of sulfur and lead isotopic compositions of the Xiyi Pb-Zn deposit in Baoshan Block, western Yunnan. Acta Petrologica Sinica, 31(5):1327-1334 (in Chinese with English abstract)

    [25]

    Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67(5):551-578

    [26]

    Ohmoto H and Goldhaber MB. 1997. Sulfur and carbon isotopes. In:Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 3rd Edition. New York:Wiley, 517-611

    [27]

    Peng S, Jin ZG, Lin GS, Zhu YQ and Wang B. 2016. Analysis of ore-controlling factors and metallogenic model of Wuzhishan lead-zinc deposit, Guihzou:A case study of Nayougzhi deposit. Mineral Exploration, 7(3):463-470 (in Chinese with English abstract)

    [28]

    Su WC, Hu RZ, Xia B, Xia Y and Liu YP. 2009. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China. Chemical Geology, 258(3-4):269-274

    [29]

    Tan H. 2007. Geological characteristics and analysis on prospecting for lead-zinc deposits, Wuzhishan area, Guizhou. Guizhou Geology, 24(4):253-257 (in Chinese with English abstract)

    [30]

    Tan H, Wang GR and Lan AP. 2012. Geologic features and metallogenic regularity of Dujiaqiao lead-zinc deposit of Zhijin, Guizhou. Guizhou Geology, 29(3):169-172, 239 (in Chinese with English abstract)

    [31]

    Wang F, Chen J and Luo DF. 2015. The Resources Potential and Prospecting Pattern Analysis of Pb-Zn Minerals in the Sichuan-Yunnan-Guizhou Contiguous Area. Beijing:Science Press, 1-329 (in Chinese)

    [32]

    Wu XB, Zhu YQ, Liao SH and Suo RQ. 2013. Geological characteristics and prospecting potential of Nayongzhi Pb-Zn deposit in Wuzhishan anticline. Mineral Resources and Geology, 27(1):26-31, 44 (in Chinese with English abstract)

    [33]

    Yang XF and Zhu YQ. 2014. Mineralization process of Nayongzhi Pb-Zn deposit in Wuzhishan of Guizhou. Mineral Resources and Geology, 28(4):417-421, 448 (in Chinese with English abstract)

    [34]

    Ye L, Cook NJ, Ciobanu CL, Liu YP, Zhang Q, Liu TG, Gao W, Yang YL and Danyushevskiy L. 2011. Trace and minor elements in sphalerite from base metal deposits in South China:A LA-ICPMS study. Ore Geology Review, 39(4):188-217

    [35]

    Yuan HL, Chen KY, Bao ZA, Zong CL, Dai MN, Fan C and Yin C. 2013. Determination of lead isotope compositions of geological samples using femtosecond laser ablation MC-ICPMS. Chinese Science Bulletin, 58(32):3914-3921

    [36]

    Yuan HL, Yin C, Liu X, Chen KY, Bao ZA, Zong CL, Dai MN, Lai SC, Wang R and Jiang SY. 2015. High precision in-situ Pb isotopic analysis of sulfide minerals by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry. Science China (Earth Sciences), 58(10):1713-1721

    [37]

    Zartman RE and Doe BR. 1981. Plumbotectonics-the model. Tectonophysics, 75(1-2):135-162

    [38]

    Zheng MH and Wang XC. 1991. Ore genesis of the Daliangzi Pb-Zn deposit in Sichuan, China. Economic Geology, 86(4):831-846

    [39]

    Zhou CX, Wei CS, Guo JY and Li CY. 2001. The source of metals in the Qilinchang Zn-Pb deposit, northeastern Yunnan, China:Pb-Sr isotope constraints. Economic Geology, 96(3):583-598

    [40]

    Zhou JX, Huang ZL, Zhou GF, Jin ZG, Li XB, Ding W and Gu J. 2010. Sources of the ore metals of the Tianqiao Pb-Zn deposit in northwestern Guizhou Province:Constraints from S, Pb isotope and REE geochemistry. Geological Review, 56(4):513-524 (in Chinese with English abstract)

    [41]

    Zhou JX, Huang ZL, Zhou GF, Li XB, Ding W and Bao GP. 2011. Trace elements and rare earth elements of sulfide minerals in the Tianqiao Pb-Zn ore deposit, Guizhou Province, China. Acta Geologica Sinica, 85(1):189-199

    [42]

    Zhou JX, Huang ZL, Zhou GF and Zeng QS. 2012. C, O isotope and REE geochemistry of the hydrothermal calcites from the Tianqiao Pb-Zn ore deposit in NW Guizhou Province, China. Geotectonica et Metallogenia, 36(1):93-101 (in Chinese with English abstract)

    [43]

    Zhou JX, Huang ZL, Zhou MF, Li XB and Jin ZG. 2013a. Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China. Ore Geology Reviews, 53:77-92

    [44]

    Zhou JX, Huang ZL and Bao GP. 2013b. Geological and sulfur-lead-strontium isotopic studies of the Shaojiwan Pb-Zn deposit, Southwest China:Implications for the origin of hydrothermal fluids. Journal of Geochemical Exploration, 128:51-61

    [45]

    Zhou JX, Huang ZL, Gao JG and Yan ZF. 2013c. Geological and C-O-S-Pb-Sr isotopic constraints on the origin of the Qingshan carbonate-hosted Pb-Zn deposit, Southwest China. International Geology Review, 55(7):904-916

    [46]

    Zhou JX, Huang ZL, Bao GP and Gao JG. 2013d. Sources and thermo-chemical sulfate reduction for reduced sulfur in the hydrothermal fluids, southeastern SYG Pb-Zn metallogenic province, SW China. Journal of Earth Sciences, 24(5):759-771

    [47]

    Zhou JX, Huang ZL and Yan ZF. 2013e. The origin of the Maozu carbonate-hosted Pb-Zn deposit, Southwest China:Constrained by C-O-S-Pb isotopic compositions and Sm-Nd isotopic age. Journal of Asian Earth Sciences, 73:39-47

    [48]

    Zhou JX, Huang ZL, Zhou MF, Zhu XK and Muchez P. 2014a. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, Southwest China. Ore Geology Reviews, 58:41-54

    [49]

    Zhou JX, Huang ZL, Lv ZC, Zhu XK, Gao JG and Mirnejad H. 2014b. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, Southwest China. Ore Geology Reviews, 63:209-225

    [50]

    Zhou JX, Bai JH, Huang ZL, Zhu D, Yan ZF and Lv ZC. 2015. Geology, isotope geochemistry and geochronology of the Jinshachang carbonate-hosted Pb-Zn deposit, Southwest China. Journal of Asian Earth Sciences, 98:272-284

    [51]

    Zou JB, Xiao K and Li K. 2009. Geologic characters and control factors of lead-zinc deposit in Wuzhishan, Guizhou. Guizhou Geology, 26(2):101-105, 121 (in Chinese with English abstract)

    [52]

    陈国勇, 王亮, 范玉梅, 郑伟. 2015. 贵州五指山铅锌矿田深部找矿远景分析. 地质与勘探, 51(5):859-869

    [53]

    陈贤武. 2013. 激发极化法在贵州普定县那雍枝地区铅锌矿勘查中的应用. 贵州地质, 30(1):22-27

    [54]

    程杨, 宋玉财, 侯增谦, 薛传东, 黄世强, 韩朝辉, 庄亮亮. 2015. 滇西兰坪盆地茅草坪脉状Cu矿床流体包裹体和稳定同位素地球化学研究. 岩石学报, 31(11):3363-3379

    [55]

    高永宝, 李侃, 钱兵, 李文渊, 郑敏昌, Zhang CG. 2016. 扬子北缘马元铅锌矿床闪锌矿微量元素及S-Pb-He-Ar-C同位素地球化学研究. 岩石学报, 32(1):251-263

    [56]

    胡瑞忠, 毛景文, 华仁民, 范蔚茗. 2015. 华南陆块陆内成矿作用. 北京:科学出版社, 387-592

    [57]

    黄林, 赵征, 刘金海, 林权华. 2006. 黔西北五指山背斜矿集区铅锌矿成矿远景浅析. 贵州地质, 23(3):203-205, 210

    [58]

    黄林, 张坤. 2010. 浅析黔西北水东-五指山地区铅锌矿控矿因素、成矿规律及找矿方向. 贵州地质, 27(3):202-207

    [59]

    黄智龙, 陈进, 韩润生, 李文博, 刘丛强, 张振亮, 马德云, 高德荣, 杨海林. 2004. 云南会泽超大型铅锌矿床地球化学及成因:兼论峨眉山玄武岩与铅锌成矿的关系. 北京:地质出版社, 1-214

    [60]

    金灿海, 李坤, 黄林, 张玙, 沈战武. 2015. 黔西北纳雍枝铅锌矿硫铅同位素组成特征及成矿物质来源. 矿物岩石, 35(3):81-88

    [61]

    李文博, 黄智龙, 张冠. 2006. 云南会泽铅锌矿田成矿物质来源:Pb、S、C、H、O、Sr同位素制约. 岩石学报, 22(10):2567-2580

    [62]

    金中国. 2008. 黔西北地区铅锌矿控矿因素、成矿规律与找矿预测. 北京:冶金工业出版社, 1-105

    [63]

    柳贺昌, 林文达. 1999. 滇东北铅锌银矿床规律研究. 昆明:云南大学出版社, 1-468

    [64]

    聂飞, 董国臣, 莫宣学, 赵志丹, 王鹏, 崔子良, 范文玉, 刘书生. 2015. 云南保山西邑铅锌矿床硫铅同位素地球化学特征研究. 岩石学报, 31(5):1327-1334

    [65]

    彭松, 金中国, 林贵生, 朱尤青, 王兵. 2016. 贵州五指山铅锌矿区控矿因素及成矿模式研究——以纳雍枝矿床为例. 矿产勘查, 7(3):463-470

    [66]

    谭华. 2007. 贵州五指山地区铅锌矿地质特征及找矿远景. 贵州地质, 24(4):253-257

    [67]

    谭华, 王国荣, 兰安平. 2012. 贵州省织金县杜家桥铅锌矿床地质特征及成矿规律浅析. 贵州地质, 29(3):169-172, 239

    [68]

    王峰, 陈进, 罗大锋. 2015. 川滇黔接壤区铅锌矿产资源潜力与找矿规律分析. 北京:科学出版社, 1-329

    [69]

    吴先彪, 朱尤青, 廖树衡, 锁瑞强. 2013. 五指山背斜纳雍枝铅锌矿地质特征及找矿前景分析. 矿产与地质, 27(1):26-31, 44

    [70]

    杨晓飞, 朱尤青. 2014. 贵州省五指山那雍枝铅锌矿成矿过程浅析. 矿产与地质, 28(4):417-421, 448

    [71]

    袁洪林, 陈开运, 包志安, 宗春蕾, 戴梦宁, 范超, 殷琮. 2013. 飞秒激光剥蚀多接收等离子体质谱准确分析地质样品中的铅同位素组成. 科学通报, 58(33):3440-3449

    [72]

    袁洪林, 殷琮, 刘旭, 陈开运, 包志安, 宗春蕾, 戴梦宁, 赖绍聪, 王蓉, 蒋少涌. 2015. 飞秒激光剥蚀多接收等离子体质谱分析硫化物中Pb同位素组成研究. 中国科学(地球科学), 45(9):1285-1293

    [73]

    周家喜, 黄智龙, 周国富, 金中国, 李晓彪, 丁伟, 谷静. 2010. 黔西北赫章天桥铅锌矿床成矿物质来源:S、Pb同位素和REE制约. 地质论评, 56(4):513-524

    [74]

    周家喜, 黄智龙, 周国富, 曾乔松. 2012. 黔西北天桥铅锌矿床热液方解石C、O同位素和REE地球化学. 大地构造与成矿学, 36(1):93-101

    [75]

    邹建波, 肖凯, 李坤. 2009. 贵州五指山地区铅锌矿矿床地质特征及其控矿因素. 贵州地质, 26(2):101-105, 121

  • 加载中
计量
  • 文章访问数:  9421
  • PDF下载数:  6110
  • 施引文献:  0
出版历程
收稿日期:  2016-05-15
修回日期:  2016-08-21
刊出日期:  2016-11-30

目录