桂北中—新元古代镁铁质—超镁铁质岩的岩石地球化学

周金城 王孝磊 等. 桂北中—新元古代镁铁质—超镁铁质岩的岩石地球化学[J]. 岩石学报, 2003, 19(1): 9-18.
引用本文: 周金城 王孝磊 等. 桂北中—新元古代镁铁质—超镁铁质岩的岩石地球化学[J]. 岩石学报, 2003, 19(1): 9-18.
ZHOU JinCheng,WANG XiaoLei,QIU JianSheng and GAO JianFeng Department of Earth Sciences and State Key Laboratory of Mineral Deposit Research,Nanjing University,Nanjing 210093,China. Lithogeochemistry of Meso-and Neoproterozoic mafic-ultramafic rocks from northern Guangxi.[J]. Acta Petrologica Sinica, 2003, 19(1): 9-18.
Citation: ZHOU JinCheng,WANG XiaoLei,QIU JianSheng and GAO JianFeng Department of Earth Sciences and State Key Laboratory of Mineral Deposit Research,Nanjing University,Nanjing 210093,China. Lithogeochemistry of Meso-and Neoproterozoic mafic-ultramafic rocks from northern Guangxi.[J]. Acta Petrologica Sinica, 2003, 19(1): 9-18.

桂北中—新元古代镁铁质—超镁铁质岩的岩石地球化学

  • 基金项目:

    国家自然科学基金(批准号49872030)资助项目成果之一

Lithogeochemistry of Meso-and Neoproterozoic mafic-ultramafic rocks from northern Guangxi.

  • 桂北中、新元古代镁铁质-超镁铁质岩主要属钙碱质岩系,镁铁质岩的Nb/Lapm=0.13-0.51,Th/Lapm=0.85-3.3,Ti/Ti^*=0.29-0.61,在原始地幔标准化曲线上出现明显的Nb,Ti负异常,中元古代镁铁质岩εNd(t)值低(=-1.99-5.13),新元古代镁铁质岩εNd(t)值相对较高(=-0.74-2.4),它们都具有岛弧火山岩系的地球化学特征,是会聚板块边缘岩浆作用的产物,不具有地幔柱来源的岩浆的特性,不能作为Rodinia超大陆裂解的标志。
  • 加载中
  • [1]

    [1]BGMRGP (Bureau of Geology and Mineral Resources of Guangxi Province). 1985. Regional Geology of Guangxi Autonomous Region. Beijing: Geological Publishing House (in Chinese with English abstract)

    [2]

    [2]Brandon AD, Hoopper PR, Goles GG et al. 1993. Evaluating crustal contamination in continental basalts: the isotopic composition of the Picture Gorge basalt of the Columbia River Basalt group. Contrib. Mineral. Petrol., 114(4): 452-464

    [3]

    [3]Cabanis B and Leocolle M. 1989. Le diagramme La/10-Y/15-Nb/8: un outfil pour la discrimination de series volcaniques et la mise en evidence des processus de m閘ange et/ou de contamination crustale. C. R. Acad. Sci. Ser. Ⅱ, 309, 2023-2029

    [4]

    [4]Condie KC. 1989. geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: Identification and significance. Lithos, 23:1-18

    [5]

    [5]Han Fa, Shen Jianzhong, Nie Fengjun et al. 1994. The geochronical studies of Sibao group in the southern margin of Jiangnan massif. ACTA GEOSCIENTLA SINICA, 1/2: 43-50 (in Chinese with English abstract)

    [6]

    [6]Gan XC, Li XH, Zhao FQ et al. 1996. Zircon U-Pb and Sm-Nd isochron ages of spilite from Danzhou Group, Guangxi Zhuang Autonomous region. Geochimica, 25(3): 270-276 (in Chinese with English abstract)

    [7]

    [7]Ge Wenchun, Li Xianhua, Li Zhengxian et al. 2000a. "Longsheng ophiolite"in north Guangxi revisited. Acta Petrologica Sinica, 16(1): 111-118 (in Chinese with English abstract)

    [8]

    [8]Ge Wenchun, Li Xianhua, Li Zhengxian et al. 2000b. Geological and geochemical evidence for the genesis of tremolitized mafic rocks from Baotan in northern Guangxi. Geochimica, 29(3): 253-257 (in Chinese with English abstract)

    [9]

    [9]Ge Wenchun, Li Xianhua, Liang Xirong et al. 2001. Geochemical and geological implications of mafic-ultramafic rocks with age of ~825 Ma in Yuanbaoshan -Baotan area of northern Guangxi. Geochimica, 30(2): 123-130 (in Chinese with English abstract)

    [10]

    [10]Guo Fuxiang. 1994. A few understanding about tectonic evolution of south China. Guangxi Geology, 7(1): 1-13

    [11]

    [11]Guo L Z, Yu J H, Shi Y S, et al. 1984. On the time and spatial distribution of the granitic rocks of southeastern China and their ralations to the tectonic framework and crustal evolution. In: Xu K and Tu G(eds.),Geology of granites and their metallogenetic relations. Nanjing : Jiangsu Science and Technology Press. 38-48

    [12]

    [12]Hollings P., Wyman D. 1999. Trace element and Sm-Nd systemstics of volcanic and intrusive rocks from the 3 Ga Lumby Lake Greenstone belt, Superior Province : evidence for Archean plume - arc interaction. Lithos, 46: 189-213

    [13]

    [13]Irvine T N and Baragar W R A. 1971. A guide to the chemical classification of the common volcanic rocks. Canad. J. Earth Sci., 8, 523-548

    [14]

    [14]Jenner G A, Dunning G R, Malpas J, et al. 1991. Bay of islands and little port complexes, revisited: age, geochemical and isotopic evidence confirm suprasubduction-zone origin. Can. J. Earth Sci. 28, 1635-1652

    [15]

    [15]Le Maitre R W, Bateman P, Dudek A, et al. 1989. A classification of igneous rocks and glossary of terms. Blackwell, Oxford

    [16]

    [16]Li X H, Li Z X, Zhou H et al. 2002. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian rift of south China : implications for the initial rifting of Rodinia. Precamb. Res., 113: 135-154

    [17]

    [17]Li Z X., Li X H, Kinny P D, Wang J. 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China?. Earth and Planetary Science Letters, 173: 171-181

    [18]

    [18]Mao J W, Du A D. 2001. Re-Os isotopic age of Cu-Ni sulphide ore in Baotan area of northern Guangxi and its geologic significance. Science in China (Series D), 31(12): 992-998

    [19]

    [19]Miyashiro, A. 1974. Volcanic rock series in island arcs and active continental margins. Am. J. Sci., 274: 321-355

    [20]

    [20]Muker C. 1998. Nb/Ta fractionation in a Cambrian arc/back system, New Zealand:source constraints and application of refined ICPMS techniques. Chem. Geol., 144: 23-45

    [21]

    [21]Pearce JA. 1982. Trace element characteristic of lavas from destructive plate boundariers. In: Thorpe R S (ed.). Andesites. New York: Wily, 528-548

    [22]

    [22]Saunders A, Tarney J. 1991. Black-arc basin. In Floyd PA(ed.). Oceanic basalts. Blackie, London. pp. 219-263

    [23]

    [23]Shimizu H, Sawatari H, Kawata Y et al. 1992. Ce and Nd isotope geochemistry on island arc volcanic rocks with negative Ce anomaly : existence of sources with concave REE patterns in the mantle beneath the Solomon and Bonin island arcs. Contri. Mineral. Petrol., 110(2/3): 242-252

    [24]

    [24]Sun SS, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Saunders AD & Norry MJ (eds), Magmatism in the ocean basin. Geological Society Special Publication, 42: 313-345

    [25]

    [25]Wallace P, Carmichal ISE. 1992. Alkaline and calc-alkaline lavas Los Volcanes, Jalisco, Mexico: geochemical diversity and its significance in volcanic arcs. Contri. Mineral. Petrol., 111(4): 423-439

    [26]

    [26]Wang Jian. 2000. Neoproterozoic rifting history of south China : significance to Rodinia breakup. Beijing: Geological Publishing House

    [27]

    [27]Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products. Chem. Geol., 20: 325-343

    [28]

    [28]Wyman DA. 1999. A 2.7 Ga depleted tholeiite suite: evidence of plume-arc interaction in the Abitibi Greenstone belt, Canada. Precam. Res., 97: 27-42

    [29]

    [29]Xia B. 1984. A study on geochemical characteristic and emplaced style of two different ophiolites of later Proterozoic Xuefeng stage in the Longsheng regions, Guangxi, southeast China. Journal of Nanjing University (Natural Science edition), (3): 554-566 (in Chinese with English abstract)

    [30]

    [30]Yang LZ. 1989. Discussion on the Proterozoic ophiolite in the Jiuwandashan area, northern Guangxi. Geology of Guangxi, 2(1): 91-93 (in Chinese with English abstract)

    [31]

    [31]Yang LZ. 1990. Middle Proterozoic komatiite in northern Guangxi. Regional Geology of China, (1): 14-22 (in Chinese with English abstract)

    [32]

    [32]Yang MG et al. 1988. Meso- and Neoproterozoic stratigraphic division, sedimentary formation and crust evolution of southern China. Jiangxi Geology. 2(2) (in Chinese with English abstract)

    [33]

    [33]Ye XS, Yan YX, He HZ. 1996. Dachang metallogenic factors of world class Tin deposite in Guangxi. Beijing : Metallurgical Industry Press (in Chinese with English abstract)

    [34]

    [34]Zhang GL, Liang JC, He ZP et al. 1997. Ophiolite of non-tectonic intrusion in Longsheng, Guangxi. Geotectonica et Metallogenia. 21(2): 137-144 (in Chinese with English abstract)

    [35]

    [35]Zhao JX, Mcculloch MT, Korsch RJ. 1994. Characterisation of a plume related ~800 Ma magmatic event and its implication for basin formation in central southern Australia. Earth and Planet. Sci. Lett.,121: 349-367

    [36]

    [36]Zhou MF,Zhao TP, Malpas J et al. 2000. Crustal-contaminated komatiitic basalts in southern China: products of a Proterozoic mantle plume beneath the Yangtze block. Precam. Res., 103: 175-189

    [37]

    [37]韩发,沈建忠,聂风军等. 1994. 江南古陆南缘四堡群同位素地质年代学研究. 地球学报,1/2:43-50

    [38]

    [38]甘晓春,李献华,赵风清等. 1996. 广西龙胜丹洲群细碧岩锆石U-Pb及Sm-Nd等时线年龄. 地球化学, 25(3):270-276

    [39]

    [39]葛文春,李献华,李正祥等. 2000a. 桂北"龙胜蛇绿岩"质疑. 岩石学报, 16 (1): 111-118

    [40]

    [40]葛文春,李献华,李正祥等. 2000b. 宝坛地区透闪石化镁铁质岩石成因的地质地球化学证据. 地球化学. 29(3):253-257

    [41]

    [41]葛文春,李献华,梁细荣等. 2001. 桂北元宝山宝坛地区约825 Ma 镁铁-超镁铁质岩的地球化学及其地质意义. 地球化学. 30(2):123-130

    [42]

    [42]郭福祥. 1994. 华南大地构造演化的几点认识. 广西地质,7(1):1-13

    [43]

    [43]郭令智,俞剑华,施央申等. 1984. 中国东南部花岗岩类的时空分布与大地构造格架形成和演化的关系. 见:徐克勤,涂光炽主编. 1984. 花岗岩地质和成矿关系. 南京: 江苏科学技术出版社. 38-48

    [44]

    [44]广西地质矿产局. 1985. 广西壮族自治区区域地质志. 北京:地质出版社

    [45]

    毛景文等. 2001. 广西宝坛地区铜、镍硫化物矿石的982 Ma Re-Os同位素年龄及其地质意义. 中国科学(D辑),31(12):992-998

    [46]

    [46]王剑. 2000. 华南新元古代裂谷盆地演化-兼论与Rodinia 解体的关系. 北京:地质出版社

    [47]

    [47]夏斌. 1984. 广西龙胜元古代二种不同成因蛇绿岩岩石地球化学及侵位方式研究. 南京大学学报(自然科学版),(3):554-566

    [48]

    [48]杨丽贞. 1989. 桂北九万大山地区元古代"蛇绿岩"之商榷. 广西地质,2(1): 91-93

    [49]

    [49]杨丽贞. 1990. 桂北中元古代的科马提岩. 中国区域地质. (1):14-22

    [50]

    [50]杨明桂等. 1988. 华南中晚元古代地层划分、沉积建造特征及其地壳构造演化. 江西地质,2(2)

    [51]

    [51]叶绪孙,严云秀,何海洲. 1996. 广西大厂超大型锡矿床成矿条件. 北京:冶金工业出版社

    [52]

    张桂林,梁金城,何振培等. 1997. 广西龙胜地区非构造侵位的蛇绿岩. 大地构造与成矿学,21(2):137-144

  • 加载中
计量
  • 文章访问数:  7786
  • PDF下载数:  8785
  • 施引文献:  0
出版历程
修回日期:  2002-04-26
刊出日期:  2003-02-28

目录