中国大陆科学钻探主孔100~2000m岩石热导率及其各向异性:对研究俯冲带热结构的启示

欧新功 金振民 王璐 徐海军 金淑燕. 中国大陆科学钻探主孔100~2000m岩石热导率及其各向异性:对研究俯冲带热结构的启示[J]. 岩石学报, 2004, 20(1): 109-118.
引用本文: 欧新功 金振民 王璐 徐海军 金淑燕. 中国大陆科学钻探主孔100~2000m岩石热导率及其各向异性:对研究俯冲带热结构的启示[J]. 岩石学报, 2004, 20(1): 109-118.
OU XinGong,JIN Zhenlin,Wang Lu,XU HaiJun and JIN ShuYan Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China Faculty of Earth Sciences,China University of Geosciences,Wuhan 430074,China. Thermal conductivity and its anisotropy of rocks from the depth of 100 -2000m mainhole of Chinese Continental Scientific Drilling: revelations to the study on thermal structure of subduction zone[J]. Acta Petrologica Sinica, 2004, 20(1): 109-118.
Citation: OU XinGong,JIN Zhenlin,Wang Lu,XU HaiJun and JIN ShuYan Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China Faculty of Earth Sciences,China University of Geosciences,Wuhan 430074,China. Thermal conductivity and its anisotropy of rocks from the depth of 100 -2000m mainhole of Chinese Continental Scientific Drilling: revelations to the study on thermal structure of subduction zone[J]. Acta Petrologica Sinica, 2004, 20(1): 109-118.

中国大陆科学钻探主孔100~2000m岩石热导率及其各向异性:对研究俯冲带热结构的启示

  • 基金项目:

    国家重点基础研究发展规划项目(2003CB716500),国家重大科学工程项目“中国大陆科学钻探工程”,中国博士后科学基金(2003034457),王宽诚科学基金(20030930131025)的联合资助成果

Thermal conductivity and its anisotropy of rocks from the depth of 100 -2000m mainhole of Chinese Continental Scientific Drilling: revelations to the study on thermal structure of subduction zone

  • 系统研究了中国大陆科学钻探工程主孔100~2000米岩石的热导率和生热率特征。初步研究了岩石热导率随矿物组成的变化关系、岩石热导率的各向异性及其影响因素。主孔2000米的岩心热导率介于1.873~4.062Wm^-1K^-1之间,平均热导率2.967Wm^-1K^-1。整体上热导率出现的频率主峰分布在2.8~3.0Wm^-1K^-1。榴辉岩热导率随着其退变质程度的增加而降低,新鲜榴辉岩热导率集中分布于3.6~3.7Wm^-1K^-1,角闪石化榴辉岩的热导率分布在3.1~3.2Wm^-1K^-1,强退变的榴辉岩热导率分布于2.4~2.5Wm^-1K^-1。片麻岩热导率主要分布于2.8~3.0Wm^-1K^-1。从垂向上看,主孔100~735米主要由榴辉岩组成,热导率整体比较大,平均3.265Wm^-1K^-1;1200~1600米主要以花岗质片麻岩为主,热导率比其它层位偏低,平均2.755Wm^-1K^-1。通过对面理发育的样品进行测试,东海地区各类岩石的热导率具有较明显的各向异性。榴辉岩和片麻岩热导率的各向异性平均值分别为4、66%和22.99%,超基性岩的热导率平均值为3.322Wm^-1K^-1,各向异性16.08%。岩石热导率在垂直于面理的方向上具有最小值,在平行于面理的方向上具有最大值。上述资料对超高压地体热结构特征的研究提供了重要数据基础。
  • 加载中
  • [1]

    [1]Berckheemer A. Rauen A, Winter H, Kern H. 1997. Petrophysical properties of the 9-km deep crustal section at KTB. J. Geophys.Res., 102(B8): 18337-18362

    [2]

    [2]Buntebarth G. 1991. Thermal properties of KTB Oberpfalz VB core samples at elevated temperature and pressure. Sci. Drilling, 2:73 -80

    [3]

    [3]Burkhardt H, Honarmand H, Pribnow D. 1995. Test measurements with a new thermal conductivity borehole tool. Tectonophysics, 244(1-3): 161 - 165

    [4]

    [4]Clauser C, Huenges E. 1995. Thermal conductivity of rocks and minerals. In: Ahrens T J ( ed. ). Rock physics and phase relations:A handbook of physical constants, Washington DC, AGU Publisher,3:105 - 126

    [5]

    [5]Diment W H, Pratt H R. 1988. Therral conductivity of some rockforming minerals: a Tabulation. U. S. G. S. open file report 88 -690, U. S. Geol. Survey, Denver Co., 15

    [6]

    [6]Emmeimman R, Lauterjung L. 1997. The German continental deep drilling program KTB: Overview and major results. J. Geophys.Res., 102(B8): 18179-18201

    [7]

    [7]Huenges E, Erizinger J, Kuck J. 1997. The permeable crust:Geohydraulic properties down to 9101 m depth. J. Geophys. Res. ,102(B8): 18255 - 18266

    [8]

    [8]Jin Z M, Green H W, Borch R S, Jin S Y. 1993. Nautle-derived xenoliths and token of a modern back-arc geotherm beneath Eastern China. Sicence in China (B), 23 (4): 410 -416 (in Chinese)

    [9]

    [9]Lee T-C. 1989. Thermal conductivity measured with a line source between two dissimilar media equals their mean conductivity. J. Geophys.Res. , 94(B9): 12,443 - 12,447

    [10]

    [10]Ou XG, Jin ZM, Jin SY & Xu HJ. 2003. Thermal Conductivity of Donghai UHP Eclogite and its Significance for Studying Continental Scientific Drilling. Earth Science: Journal of China University of Geosciences, 28 ( 2 ): 129 - 136 ( In Chinese with English abstract)

    [11]

    [11]Pollack H N, Chapman D S. 1977. On the regional variation of heatflow, geotherms, and lithospheric thickness. Tectonophysics, 38:279 - 296

    [12]

    [12]Pribnow D, Williams C F, Burkhardt H. 1993. Well log-derived estimates of thermal conductivity in crystalline rocks penetrated by the 4-km deep KTB Vorbohrung. Geophys. Res. Lett. , 20(12): 1155- 1158

    [13]

    [13]Rauen A, Winter H. 1995. Petrophysical properties. In: Emmermann R et al. ( ed. ). KTB Report 95-2, Hannover, D24 - D28

    [14]

    [14]Sass J H, Lachenbruch A H, Moses T H. 1992. Heat flow from a scientific research well at Cajon Pass, California. J. Geophys.Res. , 97(B4): 5017 -5030

    [15]

    [15]Sass J H, Lachenbruch A H, Moses T H. 1992. Heat flow from a scientific research well at Cajon Pass, California. J. Geophys.Res. , 97(B4): 5017 -5030

    [16]

    [16]Seipold U, Raab S. 2000. A Method to Measure Thermal Conductivity and Thermal Diffusivity under Pore and Confining Pressure. Phys.Chem. Earth. , 25 (2): 183 -187

    [17]

    [17]Seipold U. 1998. Temperature dependence of thermal transport properties of crystalline rocks - a general law. Tectonophysics, 291 ( 1-4 ):161 -171

    [18]

    [18]Shen XJ, Zhang WY, Lu XW et al. 1987. Geotherm-Ⅱ model thermal conductivity meter of steady-stage divided bar type - a precise rock thermal conductivity measuring device. Acta Petrologica Sinica, 3(1) :86 -95 (in Chinese with English abstract)

    [19]

    [19]Silliman S E, Neuzil C E. 1990. Borehole determination of formation thermal conductivity using a thermal pulse from injected fluid. J.Geophys. Res. , 95 (B6): 8697 - 8704

    [20]

    [20]Song MS, Xie HS, Xu YS. 1996. Research progress on thermal structure of subduction zone. Geology-Geochemistry, 2:18 - 22 ( in Chinese)

    [21]

    [21]Wang J Y. 1997. Significances of deep geothem in study on lithosphere and concerning some problems. Zhang B X, eded: Modem Methods of Lithosphere study. Beijing: Nuclear Energy Publishing House,113 - 126 ( in Chinese)

    [22]

    [22]Wang J, Hu S, Yang W et al. 2001. Geothermal measurements in the pilot-boreholes of the China continental scientific drilling. Chinese Sci. Bull. , 46(20) :1745 - 1748

    [23]

    [23]Wang JY, Hu SB, Cheng BH et al. 2001. Prediction of deep temperature in the target area of Chinese Continental Scientific Drilling. Chinese J. Geophys., 44(6): 774 -782 (in Chinese with English abstract)

    [24]

    [24]Wang L S, Li C, Shi Y S, Wang Y H. 1995. Distributions of geotemperature and terrestrial heat flow density in lower Yangtze area. Chinese J. Geophys. , 38 (4): 469 - 476 ( in Chinese with English abstract)

    [25]

    [25]Wang L S, Li C, Yang C, 1996. The lithosphere thermal structure beneath Tarim basin, Western China. Chinese J. Geophys. , 39(6): 794 -803 (in Chinese with English abstract)

    [26]

    [26]Wang Y, Yang T. 1999. Relationship between the Tan Lu Fault and Dabie Orogenic Belt in Eastern China. Continental Dynamics, 4(1): 53 -61

    [27]

    [27]Williams C F, Anderson R N, Broglia C et al. 1988. In situ investigations of thermal conductivity, heat production, and hydrothermal circulation in the Cajon Pass scientific drillhole,California. Geophys. Res. Lett., 15(9):985-988

    [28]

    [28]Xiong LP, Hu SB, Wang JA. 1994. Analysis on the thermal conductivity of rocks from SE China. Acta Petrologica Sinica, 10 (3) :323 -329(in Chinese with English abstract)

    [29]

    [29]Xu Zhiqin, Yang Wencai, Zhang Zeming. 1998. Scientific significance and site-selection of the first Chinese Continental Scientific Deep Drillhole. Continental Dynamics, 3: 1 -3

    [30]

    [30]Xu ZQ. 1995. Key problems of Geosciences awaiting solution in the intercontinental scientific drilling of China, Acta Geoscientia Sinica,1:101 -106( in Chinese with English abstract)

    [31]

    [31]Zhang R Y, Liu J G. 1998. Ultrahigh-pressure metamorphism of the Sulu terrane, eastern China: A prospective view. Continental Dynamics,3 (1-2): 32-53

    [32]

    [32]Zhang Z M, You Z D, Han Y J, Song L K. 1995. Petrology metamorphic process and genesis of the Dabie-Sulu eclogite belt, east-central China. Acta Geologica Sinica. 69 (4): 306 - 325

    [33]

    [33]Zhao YX, Yang SZ, Zhang WR et al. 1995. An experimental study of rock thermal conductivity under different temperature and pressure.Progress in Geophysics, 10 (1): 104 - 113 (in Chinese with English abstract)

    [34]

    [34]Zoth G, Hanel R. 1988. Appendix. In: Hanel R et al. (ed.),Handbook of Terrestrial heat flow density determination. Kluwer,Dordrecht, 449 -466

    [35]

    [35]刘福来,张泽明,许志琴.2003.苏鲁地体超高压矿物的三维空间分布,地质学报,77(1):69-84

    [36]

    [36]欧新功,金振民,金淑燕等.2003.江苏东海超高压榴辉岩的热导率及对大陆科学钻探研究的意义.地球科学--中国地质大学学报,28(2):129-136

    [37]

    [37]沈显杰,张文仁,陆秀文等.1987.地热-Ⅱ型稳定分棒式热导仪--岩石热导率精密测量装置.岩石学报,3(1):86-95

    [38]

    [38]宋茂双,谢鸿森,徐有生.1996.俯冲带的热结构研究进展.地质地球化学,(2):18-22

    [39]

    [39]汪集旸.1997.深部地热在岩石圈研究中的意义及应注意的几个问题.见:张炳熹主编,岩石圈研究的现代方法.北京:原子能出版社,113-126

    [40]

    [40]汪集旸,胡圣标,程本合等.2001.中国大陆科学钻探靶区深部温度预测.地球物理学报,44(6):774-782

    [41]

    [41]汪集旸,胡圣标,杨文采等.2001.中国大陆科学钻探先导孔地热测量.科学通报,46(10):847-850

    [42]

    [42]王良书,李成,施央申,汪屹华.1995.下扬子区地温场和大地热流密度分布.地球物理学报,38(4):469-479

    [43]

    王良书,李成,杨春.1996.塔里木盆地岩石热结构特征.地球物理学报,39(6):794-803

    [44]

    [44]熊亮萍,胡圣标,汪缉安.1994.中国东南地区岩石热导率值的分析.岩石学报,10(3):323-329

    [45]

    许志琴.1995.中国大陆科学钻探面临解决的关键地球科学问题.地球学报,1:101-106

    [46]

    [46]赵永信,杨淑贞,张文仁等.1995.岩石热导率的温压实验及分析.地球物理学进展,10(1):104-113

  • 加载中
计量
  • 文章访问数:  6871
  • PDF下载数:  18680
  • 施引文献:  0
出版历程
修回日期:  2003-08-15
刊出日期:  2004-01-31

目录