东天山一个多相带高铷氟花岗岩的地球化学及成岩作用

顾连兴 苟晓琴 张遵忠 吴昌志 廖静娟 杨浩 尹琳 闵茂中. 东天山一个多相带高铷氟花岗岩的地球化学及成岩作用[J]. 岩石学报, 2003, 19(4): 585-600.
引用本文: 顾连兴 苟晓琴 张遵忠 吴昌志 廖静娟 杨浩 尹琳 闵茂中. 东天山一个多相带高铷氟花岗岩的地球化学及成岩作用[J]. 岩石学报, 2003, 19(4): 585-600.
GU LianXing,GOU XiaoQin,Zhang ZunZhong,WU ChangZhi,UAO Jingjuan,YANG Hao,YIN Lin and MIN MaoZhong State Key Laboratory for Endogenic Mineral Deposit Research,Department of Earth Sciences,Nanjing University,Nanjing 210093,China. Geochemistry and petrogenesis of a multi-zoned high Rb and F granite in eastern Tianshan[J]. Acta Petrologica Sinica, 2003, 19(4): 585-600.
Citation: GU LianXing,GOU XiaoQin,Zhang ZunZhong,WU ChangZhi,UAO Jingjuan,YANG Hao,YIN Lin and MIN MaoZhong State Key Laboratory for Endogenic Mineral Deposit Research,Department of Earth Sciences,Nanjing University,Nanjing 210093,China. Geochemistry and petrogenesis of a multi-zoned high Rb and F granite in eastern Tianshan[J]. Acta Petrologica Sinica, 2003, 19(4): 585-600.

东天山一个多相带高铷氟花岗岩的地球化学及成岩作用

  • 基金项目:

    本文是国家重点基础研究发展规划项目(编号:2001CB409802)成果.

Geochemistry and petrogenesis of a multi-zoned high Rb and F granite in eastern Tianshan

  • 东天山星星峡白石头泉含黄玉花岗岩岩体在露头上显示很好的岩性分带,从下至上依次为:淡色花岗岩(a带),含天河石花岗岩(b带),天河石花岗岩(c带),含黄玉天河石花岗岩(d带)以及黄玉钠长花岗岩(e带)。在岩体中存在众多的天河石伟晶岩脉和透镜体,在岩体围岩中还可见到黄玉钠长石脉。岩体的结晶和固结是由下往上进行的。石英和黄玉是最早从熔体中晶出的矿物相,而天河石是由富含流体的残余熔体填隙结晶或与先存矿物反应而成。从a带到e带总的趋势是:(1)随着石英斑晶粒径渐大和晶形渐好,岩石结构从等粒状变为似斑状;(2)天河石和黄玉富集于最上部的三个带;(3)随着Li和(Al Ti)含量的增加,白色云母成份从a,b,c带的铁叶云母演化到d带的铁锂云母;(4)F、H2O、AJ2O3和Na2O含量增加,而SiO,FeO、KO含量和Fe^2 /Fe^3 比值降低,且在标准矿物Qz-Ab-Or图解上,成分投影向Ab顶角移动;(5)Co、M、Cr、W、Nb、Zr、U、Th、Y、含量和K/Rb、Zr/Hf比值降低,而F、Li、Rb、Ga、V、Sn含量和Rb/Cs、Ga/Al、LaCN/LuCN比值加大;(6)δ^18O从9.25‰-9.75‰下降到7.32‰;(7)石英熔体包裹体均-法温度从860℃-810℃下降到680℃-660℃。上述岩性和地球化学分带是由于岩浆中较高的F和H:O含量,促进了分离结晶和流体搬运的结果。
  • 加载中
  • [1]

    [1]Bailey JC.1977. Fluorine in granitic rocks and melts: A review. Chem. Geol., 19: 1-42

    [2]

    [2]Best MG. 1982. Igneous and Metamorphic Petrology. W. H. Freeman and Company, New York, 1-630

    [3]

    [3]Boynton MV. 1984. Cosmochemistry of the rare earth elements meteorite studies. In: Henderson P (ed.). Rare Earth Element Geochemistry, Elsevier Science Publishers, Amsterdam, 63-114

    [4]

    [4]Breiter K, Fryda J, Seltmann R & Thomas R. 1997. Mineralogical evidence for two magmatic stages in the evolution of an extremely fractionated P rich rare metal granite: the Podlesi Stock, Krusne Hory, Czech Republic. J. Prtrol., 38: 1723-1739

    [5]

    [5]Burnham CW. 1997. Magmas and hydrothermal fluids. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposites, John Wiley & Sons, third edition, New York, 63-124

    [6]

    [6]Burnham CW, Ohmoto H. 1980. Late stage processes of felsic magmatism. In: Ishihara S & Takenouchi S(eds.). Granitic Magmatism and Related Mineralization, Min. Geol. Spec. Issue 8, 1-11

    [7]

    [7]Burt M, Sheridan MF, Bikun JV & Christiansen EH. 1982. Topaz rhyolites distribution, origin and significance for exploration. Econ. Geol., 77: 1818-1836

    [8]

    [8]Chen YL. 1999. Geochemistry of Granites from the Eastern Tianshan Mountains and the Northern Qinling Belt. Beijing: Geological Publishing House, 1-141 (in Chinese with English abstract)

    [9]

    [9]Christiansen EH, Bikun JV, Sheridan MF & Burt DM. 1984. Geochemical evolution of topaz rhyolites from the Thomas Range and Spor Mountain, Utah. Am. Mineral., 69: 223-236

    [10]

    [10]Clarke DE. 1981. The mineralogy of peraluminous granites: a review. Can. Mineral., 19: 3-17

    [11]

    [11]Congdon RD & Nash WP. 1988. High fluorine rhyolite: An eruptive pegmatite magma at the Honeycomb Hills, Utah. Geology, 16: 1018-1021

    [12]

    [12]Cullers RL & Graf JL. 1984. Rare earth elements in igneous rocks of the continental crust: intermediate to silicic rocks ore petrogenesis. In: Henderson P (ed.). Rare Earth Element geochemistry, Elsevier, Amsterdam, 275-316

    [13]

    [13]Dingwell DB, Scarfe CM & Cronin DJ. 1985. The effect of fluorine on viscosities in the system Na2O Al2O3 SiO2: implications for phonolites, trachytes and rhyolites. Am. Mineral., 70: 80-87

    [14]

    [14]Doukhan JC & Cordier P. 1994. Hydrolytic weakening of quartz. In Composition, Structure and Properties of Mineral Matter (A.S. Marfunin, ed.), Springer Verlag, 383-389

    [15]

    [15]Gu LX, Ren ZW, Wu CZ, Zhao M, Qiu J. 2002. Hydrocarbon reservoirs in a trachyte porphyry intrusion in the eastern depression of the Liaohe Basin, NE China. AAPG Bulletin, 86(10): 1812-1832

    [16]

    [16]Gu LX,.Yang H, Gou XQ, Guo JC. 1994. Geology and Genesis of the Baishitouquan High Rubidium and Fluorine Granites in the Xingxingshia District of Hami County, Xinjiang. Acta Petrologica Sinica, 10: 41-53 (in Chinese with English abstract)

    [17]

    [17]Gu LX, Yang H, Tao XC & Yan ZF. 1990. Rb Sr geochronology and the tectonic evolution of the east section of the Middle Tianshan Mountains. Journal of Guilin College of Geology, 10: 49-55 (in Chinese with English abstract)

    [18]

    [18]Gu LX, Ruan HC, Yin L. 1997. Grain coarsening of hematite in the Gushan iron deposit, Anhui Province, China. Chinese Journal of Geochemistry, 16(1): 148-153

    [19]

    [19]Gu LX, Hu SX, Yu CS, Wu CZ, Yan ZF. 2001. Initiation and evolution of the Bogda subduction torn type rift. Acta Petrologica Sinica, 17(4): 585-597 (in Chinese with English abstract)

    [20]

    [20]Guidotti, CV, Sassi, FP. 1998. Petrogenetic significance of Na K white mica mineralogy: recent advances for metamorphic rocks. Eur. J. Mineral., 10: 815-858

    [21]

    [21]Hanson GN. 1978. The application of trace elements to petrogenesis of igneous rocks of granitic compositions. Earth Planet. Sci. Lett., 7: 93-98

    [22]

    [22]Henderson CM B, Martin JS. 1989. Compositional relations in Li Micas from S. W. England and France: an ion and electron microprobe studies. Mineral. Mag., 53: 427-449

    [23]

    [23]Hu AQ, Wang ZG. & Tu GC. 1997. Geological Evolution, Petrogenesis and Metallogeny of North Xinjiang. Beijing: Science Press, 1-146 (in Chinese with English abstract)

    [24]

    [24]Hu AQ, Zhang ZG, Zhang JB, Yang SZ. 1986. Discussion on the thermal history of the Tianshan geosyncline based upon K Ar datings for East Tianshan. Scientifica Sinica B4: 345-363 (in Chinese)

    [25]

    [25]Hu SX, Guo JC, Gu LX. 1990. Geology of the Caledonian orogenic belt and its importance to the framework of East Tianshan (E85°-95°). In Geoscience of Xinjiang (Editorial Committee of Geoscience of Xinjiang, Nation Project 305, ed.), Beijing: Geological Publishing House, 1, 32-45 (in Chinese with English abstract)

    [26]

    [26]Hu SX, Shun MZ, Yan F, Xu JF, Cao XY, Ye Y. 1984. An important metallogenetic model for W, Sn and rare granophile element ore deposits related to metasomatically altered granites. In: Xu Keqin & Tu Guangchi (eds.) Geology of Granites and Their Matellogenetic Relations, Proceedings of the International Symposium Held at Nanjing University, Nanjing, China. October 26-30, 1982, Beijing: Science Press, 519-537

    [27]

    [27]Keppler H & Wyllie J P. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite H2O HCl and haplogranite H2O HF. Contrib. Mineral. Petrol., 109: 139-150

    [28]

    [28]Kleeman JD. 1985. Origin of disseminated wolframite bearing quartz topza rock at Trrington, New South Wales, Austrlia. In: Halls C M, Bristow C & Bromley AV (eds.). High Heat Production (HHP) Granites, Hydrothermal Circulation and Ore Genesis , Inst. Min. Metall., London, 197-210

    [29]

    [29]Kogarko. 1974. Role of volatiles. In: Sφrensen H (ed.) The alkaline rocks , Wiley, London, 474-484

    [30]

    [30]Kovalenko VI. 1977. The reactions between granite and aqueous hydrofluoric acid in relation to the origin of fluorine bearing granites. Geokhimiya, (4): 503-515

    [31]

    [31]Kovalenko VI, Kovalenko N I. 1976. Ongonites (Topaz Bearing Quartz Keratophyre) Subvolcanic Analogue of Rare Metal Li F Granites. Science Press, Moscow, 1-124(in Russia)

    [32]

    [32]Kovalenko VI, Kovalenko N I. 1984. Problems of the origin, ore bearing and evolution of rare metal granitoids. Physics of the Earth and Planetary Interior, 35: 51-62

    [33]

    [33]Kovalenko VI, Antipin VS, Kovalenko NI. 1980. Distribution ratios of lithium, rubidium and cesium in ongonites. Internat. Geology Rev., 22: 718-730

    [34]

    [34]Laurent Charvet S, Charvet J, Shu LS, Ma RS, Lu H F. 2002. Paleozoic late dollisional strike slip deformation in Tianshan and Altay, Eastern Xinjiang, NW China. Terra Nova, 14(4): 249-256

    [35]

    [35]Li FC, Zhu JC, Qi L, Rao B, Pan GX. 2002. Experimental study on evolution of REE in magmatic fluid phase in the F rich granite system. Geological Journal of China Universities, 8(1): 9-15 (in Chinese with English abstract)

    [36]

    [36]Li JCM. 1962. Possibility of subgrain rotation during crystallization. J. App. Phys., 33: 2958-2965

    [37]

    [37]Lin DS. 1985, REE patterns of granite in Limu orefield. Mineral Resources and Geology, (4): 109-116 (in Chinese with English abstract)

    [38]

    [38]Liu CS, Ling HP, Xiong XL, Shen WZ, Wang DZ. 1999. An F rich, Sn bearing volcanic intrusive complex in Yanbei, South China. Econ. Geol., 94:325-342

    [39]

    [39]Manning DAC. 1981. The effect of fluorine on liquidus phase relationships in the system Qz Ab Or with excess water at 1 kbar. Contrib. Mineral. Petrol., 76: 257-262

    [40]

    [40]Manning DIC, Hill PI. 1990. The petrogenetic and metallogenetic significance of topaz granite from the S.W. England orefield. In H.J. Stein & J.L. Hannah, (eds.) Ore bearing granite systems, Geol. Soc. Am. Spec. Pap. 246: 51-69

    [41]

    [41]Pearce J. 1996. Sources and settings of granitic rocks. Episodes, 19(4): 120-125

    [42]

    [42]Pichavant M, Herrera JV, Boulmier S, Briqueu L. 1987. The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas. In Mysen BO (ed.). Magmatic Processes: Physicochemical Principles, The Geochemical Society Special Publication no. 1: 359-373

    [43]

    [43]Pichavant M, Manning D. 1984. Petrogenesis of tourmaline granites and topaz granites: the contribution of experimental data. Physics of the Earth and Planetary Interior, 35: 31-50

    [44]

    [44]Pitcher WS. 1993. The nature and origin of granites. Blackie Academic & Professional, London, 1-321

    [45]

    [45]Poutianen M, Scherbakova TF. 1998. Fluid and melt inclusion evidence for the origin of idiomorphic quartz crystals in topaz bearing granite from the Salmi batholith, Karelia, Russia. Lithos, 44: 141-151

    [46]

    [46]Pupin JP. 1980. Zircon and granite petrology. Mineral. Petrol., 73: 207-220

    [47]

    [47]Raimbault L & Burnol L. 1998. The Richemont rhyolite dyke, Massif Central, France: a subvolcanic equivalent of rare metal granites. Can. Mineral., 36: 265-282

    [48]

    [48]Raimbault L, Cuney M, Azencott C, Duthou JL, Joron JL. 1995. Geochemical evidence for a multistage magmatic genesis of Ta Sn Li Minerals in the granite at Beauvoir, French Massif Central. Econ. Geol., 90: 548-576

    [49]

    [49]Reyf FG, Seltmann R & Zaraisky GP. 2000. The role of magmatic processes in the formation of banded Li, F enriched granites from the Orlovka tantalum deposit, Transbaikalia, Russia: Midrothermometric evidence. Canad. Mineral., 38: 915-936

    [50]

    [50]Shmulovich KI, Landwehr D, Simon K, Heinrich W. 1999. Stable isotope fractionation between liquid and vapour in water salt systems up to 600℃ H2O. Chem. Geol., 157: 343-354

    [51]

    [51]Shu LS, Charvet J, Guo LZ, Lu HF, Laurent Charvet S. 1999. A large scale Palaeozoic destral ductile strike slip zone: the Aqqikkudug Weiya zone along the Northern Margin of the Central Tianshan belt, Xinjiang, NW China. Acta Geologica Sinica, 73(2): 148-162

    [52]

    [52]Stone M, Exley CS, George MC. 1988. Compositions of trioctahedral micas in the Cornubian batholith. Mineral. Mag., 52, 175-192

    [53]

    [53]Taylor BE. 1988. Degassing of rhyolitic magmas: hydrogen isotope evidence and implications for magmatic hydrothermal ore deposits. In Recent Advances in the Geology of Granite Related Mineral Deposits (R. P. Taulor & D. F. Strong, eds.). Can. Inst. Min. Metall. Spec. l39: 33-49

    [54]

    [54]Taylor HP. 1978. Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth and Planetary Science Letters, 38: 177-210

    [55]

    [55]Taylor RP. 1992. Petrological and geochemical characteristics of the Pleasant Ridge Zinnwaldite topaz granite, southern New Brunswick, and comparisons with other topaz bearing felsic rocks. Can. Mineral., 30: 895-921

    [56]

    [56]Ulrich T, Gilnther D, Helnich CA. 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 399: 676-679

    [57]

    [57]Veksler IV, Thomas R. 2002. An experimental study of B , P and F rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib. Mineral. Petrol., 143: 673 683

    [58]

    [58]Wang LK, Lu GL, Rao B. 1994. Liquid immiscibility and experimental study on rare element bearing granite. Mineralogy, Petrology and Geochemistry Letters, 13: 84-86 (in Chinese with English abstract)

    [59]

    [59]Webster JD, Holloway JR. 1990. Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas. Geological Society of America Special Paper, 246:21-34

    [60]

    [60]Xiong X, Zhao ZH, Zhu JC, Rao B. 1999. Phase relations in albitite granite H 2O HF system and their petrogenetic applications. Geochemical Journal, 33: 199-214

  • 加载中
计量
  • 文章访问数:  6726
  • PDF下载数:  6214
  • 施引文献:  0
出版历程
修回日期:  2002-11-25
刊出日期:  2003-11-30

目录