内蒙古贝力克玄武岩地球化学特征及地质意义

陈生生, 樊祺诚, 赵勇伟, 史仁灯. 2013. 内蒙古贝力克玄武岩地球化学特征及地质意义. 岩石学报, 29(8): 2695-2708.
引用本文: 陈生生, 樊祺诚, 赵勇伟, 史仁灯. 2013. 内蒙古贝力克玄武岩地球化学特征及地质意义. 岩石学报, 29(8): 2695-2708.
CHEN ShengSheng, FAN QiCheng, ZHAO YongWei, SHI RenDeng. 2013. Geochemical characteristics of basalts in Beilike area and its geological significance, Inner Mongolia. Acta Petrologica Sinica, 29(8): 2695-2708.
Citation: CHEN ShengSheng, FAN QiCheng, ZHAO YongWei, SHI RenDeng. 2013. Geochemical characteristics of basalts in Beilike area and its geological significance, Inner Mongolia. Acta Petrologica Sinica, 29(8): 2695-2708.

内蒙古贝力克玄武岩地球化学特征及地质意义

  • 基金项目:

    本文受国家自然科学基金面上项目(41272088)和重大研究计划集成项目(91014007)联合资助.

详细信息
    作者简介:

    陈生生,男,1986年生,博士生,构造地质学专业,E-mail: shengshengqiuqiu@163.com

  • 中图分类号: P588.145

Geochemical characteristics of basalts in Beilike area and its geological significance, Inner Mongolia

  • 内蒙贝力克地区存在一片面积为400km2、以发育三级熔岩台地为特征的新生代玄武岩,台地时代分别为2.31~2.41Ma、1.56~1.61Ma、0.51~0.61Ma。岩性为具有过渡性质的拉斑玄武岩,分为石英拉斑玄武岩与橄榄拉斑玄武岩,它们都起源于具有交代性质的石榴石橄榄岩源区。地球化学特征显示这两种岩性之间没有演化关系,而是源区不同程度、深度部分熔融的结果;并且在上升过程中,都受到下地壳麻粒岩的混染作用,其中石英拉斑玄武岩混染程度最大。大地构造背景上,贝力克与赤峰同处在兴蒙造山带南缘,它们表现出与华北西部北缘(集宁、大同、汉诺坝、繁峙)相似的岩浆源区和岩石圈地幔热状态,但不同的富集岩石圈地幔类型,即兴蒙造山带南源呈现DMM-EMⅡ特点,而华北西部北缘具有DMM-EMⅠ混合趋势。这种差异可能与岩石圈地幔不同的时代及构造背景有关。在软流圈熔体与上覆岩石圈地幔相互反应的拉斑玄武岩成因模式基础上,认为华北岩石圈减薄现象不仅局限于克拉通内部,其处在克拉通西北部,乃至兴蒙造山带南缘也同样经历了岩石圈减薄过程,只是存在不同时间、程度的岩石圈减薄过程。

  • 加载中
  • 图 1 

    华北地区大地构造简图(a, 据Xu et al., 2004; Ho et al., 2008, 2010; Han et al., 1999)和贝力克新生代玄武岩分布图(b, 据陈生生等, 2011)

    Figure 1. 

    Geographical sketch map of the North China depicting the distribution of Cenozoic volcanic rocks (a, after Xu et al., 2004; Ho et al., 2008, 2010; Han et al., 1999) and distribution of Beilike Cenozoic basalts (b, after Chen et al., 2011)

    图 2 

    贝力克三级熔岩台地野外照片(a)和熔岩台地年龄与高程相关图(b)

    Figure 2. 

    Field picture of three levels of lava platforms in Beilike area (a) and relationship between elevation and age of basalts form Beilike area (b)

    图 3 

    火山岩TAS图解(a, 据Le Bas et al., 1986;Ir: 碱性与亚碱性玄武岩分界线据Irvine and Baragar, 1971)、AFM图(b, 据Irvine and Baragar, 1971)和标准矿物图(c)

    Figure 3. 

    Diagram of total alkalis vs. SiO2 (a, after Le Bas et al., 1986; Ir: the boundary line between alkaline series and the tholeiitic series after Irvine and Baragar, 1971), genetic classification of igneous rock (b, after Irvine and Baragar, 1971) and CIPW-norm diagram (c)

    图 4 

    微量元素原始地幔标准化曲线和球粒陨石标准化曲线(球粒陨石、原始地幔标准值和OIB据Sun and McDonough, 1989)

    Figure 4. 

    Primitive-mantle normalized incompatible element diagrams and chondrite-normalized REE patterns for Beilike basalts (OIB and normalization values after Sun and McDonough, 1989)

    图 5 

    玄武岩143Nd/144Nd-87Sr/86Sr图

    Figure 5. 

    Diagram of 143Nd/144Nd vs. 87Sr/86Sr for Beilike basalts

    图 6 

    玄武岩Nb/U-Ce/Pb图(a)和Nb-Zr/Nb图(b)

    Figure 6. 

    Diagrams of Nb/U vs. Ce/Pb (a) and Nb vs. Zr/Nb (b)

    图 7 

    玄武岩SiO2-(Tb/Yb)N图(a, 据Wang et al., 2002)和La/Yb-Dy/Yb图(b, 据Bogaard and Worner, 2003; Gilbert et al., 2006)

    Figure 7. 

    Diagrams of SiO2 vs. (Tb/Yb)N (a, after Wang and Piant, 2002) and La/Yb vs. Dy/Yb (b, after Bogaard and Worner, 2003; Gilbert et al., 2006)

    图 8 

    玄武岩(K/Ba)N-(K/Nb)N

    Figure 8. 

    Diagram of (K/Ba)N vs. (K/Nb)N

    图 9 

    Sm/Nd-Lu/Hf相关图(a)和Ba/Nb-Zr/Nb相关图(b, 据Jung and Masberg, 1998)

    Figure 9. 

    Diagram of Sm/Nd vs. Lu/Hf (a) and diagram of Ba/Nb vs. Zr/Nb (b, after Jung and Masberg, 1998)

    图 10 

    Yb-(La/Sm)N相关图(a)和Yb-(Sm/Yb)N相关图(b)(据Humphreys and Niu et al., 2009)

    Figure 10. 

    Diagram of Yb vs. (La/Sm)N (a) and Yb vs. (Sm/Yb)N (b) (after Humphreys and Niu et al., 2009)

    图 11 

    TiO2与Yb相关图

    Figure 11. 

    Diagram of TiO2 vs. Yb

    图 12 

    华北地区新生代拉斑玄武岩εNd特征

    Figure 12. 

    The charactertistics of εNd form Cenozoic tholeiite in North China

  •  

    Arndt NT and Christensen U. 1992. The role of lithospheric mantle in continental flood volcanism: Thermal and geochemical constraints. Geophys. Res., 97(B7): 10967-10981

     

    Barry TL, Saunders AD, Kempton PD, Windley BF, Pringle MS, Dorjnamjaa D and Saandar S. 2003. Petrogenesis of Cenozoic basalts from Mongolia: Evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources. Journal of Petrology, 44(1): 55-91

     

    Basu AR, Wang JW, Huang WK, Xie GH and Tatsumoto M. 1991. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implications for their origin from suboceanic type mantle reservoirs. Earth and Planetary Science Letters, 105(1-3): 149-169

     

    Bogaard PJF and Worner G. 2003. Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. Journal of Petrology, 44(3): 569-602

     

    Bureau of Geology and Mineral Resouces of Inner Mongolia Autonomous Region. 1991. Regional Geology of Inner Mongolia Autonomous Region. Beijing: Geological Publish House, 331-350 (in Chinese)

     

    Campbell IH. 1985. The difference between oceanic and continental tholeiites: A fluid dynamic explanation. Contributions to Mineralogy and Petrology, 91(1): 37-43

     

    Caroff M, Maury RC, Cotton J and Clément JP. 2000. Segregation structures in vapor differentiated basaltic flows. Bulletin of Volcanology, 62(3): 171-187

     

    Chen SS, Fan QC, Zhao YW and Sui JL. 2011. Geological characteristics and genesis of basalt platform in beilike, Inner Mongolia. Seismology and Geology, 33(2): 430-439 (in Chinese with English abstract)

     

    Chen SS, Fan QC, Zhao YW, Sui JL and Du XX. 2012. Mantle peridotite xenoliths and the nature of lithospheric mantle in Abaga, Inner Mongolia. Acta Petrologica Sinica, 28(4): 1108-1118 (in Chinese with English abstract)

     

    Chung SL, Jahn BM, Chen SJ, Lee T and Chen CH. 1995. Miocene basalts in northwestern Taiwan: Evidence for EM-type mantle sources in the continental lithosphere. Geochimica et Cosmochimica Acta, 59(3): 549-555

     

    DePaolo DJ and Daley EE. 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology, 169(1-2): 157-185

     

    Dostal J and Chatterjee AK. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology, 163(1-4): 207-218

     

    Dungan MA, Lindstrom MM, McMillan NJ, Moorbath S, Hoefs J and Haskin LA. 1986. Open system magmatic evolution of the Taos Plateau volcanic eld, northern New Mexico: 1. The petrology and geochemistry of the Servilleta Basalt. J. Geophys. Res., 91(B6): 5999-6028

     

    Ellam RM, Carlson RW and Shirey SB. 1992. Evidence from Re-Os isotopes for plume-lithosphere mixing in Karoo flood basalt genesis. Nature, 359(6397): 718-721

     

    Fan QC and Hooper PR. 1991. The Cenozoic basaltic rocks of eastern China: Petrology and chemical composition. Journal of Petrology, 32(4): 765-810

     

    Fan QC, Chen WJ, Hurford AJ and Hunziker JG. 1992a. The major and trace element chemistry of Quaterary basalt in Datong. In: Liu RX (ed.). The Age and Geochemistry of Cenozoic Volcanic Rock in China. Beijing: Seismological Press, 93-100 (in Chinese with English abstract)

     

    Fan QC, Liu RX and Ma BL. 1992b. Upper-mantle amphiboles from china and their genetic implications. Acta Mineralogica Sinica, 12(4): 352-358(in Chinese with English abstract)

     

    Fan WM, Zhang HF, Baker J, Mason PRD and Menzies MA. 2000. On and off the North China craton: Where is the Archaean keel? Journal of Petrology, 41(7): 933-950

     

    Fitton JG and Dunlop HM. 1985. The Cameroon line, West Africa, and its bearing on the origin of oceanic and continental alkali basalt. Earth and Planetary Science Letters, 72(1): 23-38

     

    Foley SF, Barth MG and Jenner GA. 2000. Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64(5): 933-938

     

    Frey FA, Garcia MO, Wise WS, Kennedy A, Gurriet P and Albarede F. 1991. The evolution of Mauna Kea volcano, Hawaii: Petrogenesis of tholeiitic and alkalic basalts. Journal of Geophysical Research, 96(B9): 14347-14375

     

    Gao S, Rudnick RL, Carlson RW, McDonough WF and Liu YS. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3-4): 307-322

     

    Gilbert H, Beck S and Zandt G. 2006. Lithospheric and upper mantle structure of central Chile and Argentina. Geophysical Journal International, 165(1): 383-398

     

    Gill. 1981. Orogenic Andesites and Plate Tectonics. New York: Springer-Verlag, 1-390

     

    Glazner AF, Fanner GL, Hughes WT, Wooden JL and Pickthorn W. 1991. Contamination of basaltic magma by mafic crust at Amboy and Pisgah craters, Mojave Desert, California. Journal of Geophysical Research, 96(13): 13673-13691

     

    Guo F, Fan WM, Miao LC and Zhao L. 2009. Early Paleozoic subduction of the Paleo-Asian Ocean: Geochemical evidence from the Dashizhai basalts, Inner Mongolia. Science in China (Series D), 52(7): 940-951

     

    Han BF, Wang SG and Kagami H. 1999. Trace element and Nd-Sr isotope constraints on origin of the Chifeng flood basalts, North China. Chemical Geology, 155(3): 187-199

     

    Hawkesworth CJ, Hergt JM, Ellam RM and McDermott F. 1991. Element fluxes associated with subduction related magmatism. Philosophical Transactions of the Royal Society of London, Series A. 335(1638): 393-405

     

    Ho KS, Chen JC, Lo CH and Zhao HL. 2003. 40Ar-39Ar dating and geochemical characters of late Cenozoic basaltic rocks form the Zhejiang-Fujian region, SE China: Eruption ages, magmatic migration and petrogenesis. Chemical Geology, 197(1-4): 287-318

     

    Ho KS, Liu Y, Chen JC and Yang HJ. 2008. Elemental and Sr-Nd-Pb isotopic compositions of Late Cenozoic Abaga basalts, Inner Mongolia: Implications for petrogenesis and mantle process. Geochem. J., 42(4): 339-357

     

    Ho KS, Liu Y, Chen JC, Yon CF and Yang HJ. 2010. Geochemical characteristics of Cenozoic Jining basalts of the Western North China Craton: Evidence for the role of the lower crust, lithosphere, and asthenosphere in petrogenesis. Terr. Atmos. Ocean. Sci., 22(1): 15-40

     

    Hoang N and Flower MFJ. 1998. Petrogenesis of Cenozoic basalts from Vietnam: Implication for origins of a diffuse igneous province. Journal of Petrology, 39(3): 369-395

     

    Hofman AW, Jochum KP, Seufert M and White WM. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth and Planetary Science Letters, 79(1-2): 33-45

     

    Hooper PR and Hawkesworth CJ. 1993. Isotopic and geochemical constraints on the origin and evolution of the Columbia River Basalt. Journal of Petrology, 34(6): 1203-1246

     

    Humphreys ER and Niu YL. 2009. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos, 112(1-2): 118-136

     

    Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5): 523-548

     

    Jing X, Wu TR and He YK. 2010. The geological environment of the xenolith-bearing Miocene basalt form Siziwang County, Inner Mongolia. Acta Scientiarum Naturalium Universitatis Pekinensis, (2): 215-223 (in Chinese with English abstract)

     

    Jung S and Masberg P. 1998. Major- and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg (central Germany): Constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources. Journal of Volcanology and Geothermal Research, 86(1-4): 151-177

     

    Jung S. 1999. The role of crustal contamination during the evolution of continental rift-related basalts: A case study from the Vogelsberg area (Central Germany). Geolines, 9: 48-58

     

    Kempton PD. 1987. Mineralogic and geochemical evidence for differing stiles of metasomatism in spinel lherzolite xenoliths: Enriched mantle source regions of basalts. In: Menzies MA and Hawkesworth CJ (eds.). Mantle Metasomatism. London: Academic Press, 45-89

     

    Kimura JI, Yoshida T and Iizumi S. 2002. Origin of low-K intermediate lavas at Nekoma volcano, NE Honshu arc, Japan: Geochemical constraints for lower-crustal melts. Journal of Petrology, 43(4): 631-661

     

    Kononova VA, Kurat G, Embey-Isztin A, Pervov VA, Koeberl C and Brandstatter F. 2002. Geochemistry of metasomatised spinel peridotite xenoliths from the Dariganga Plateau, south-eastern Mongolia. Mineralogy and Petrology, 75(1-2): 1-21

     

    Kushiro I. 2001. Partial melting experiments on peridotite and origin of mid-ocean ridge basalt. Annual Review of Earth and Planetary Sciences, 29(1): 71-107

     

    Langmuir CH, Klein EM and Plank T. 1992. In mantle flow and melt generation at mid-ocean ridges. Geophysical Monograph, 71: 183-280

     

    Lassiter JC and DePaolo DJ. 1997. Plume/lithosphere interaction in the generation if continental and oceanic flood basalts: Chemical and isotopic constraints. In: Mahoney JJ and Coffin MF (eds.). Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph, American Geophysical Union, 100: 335-355

     

    Le Bas MJ, Le Maitre RW, Streckeisen A and Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745-750

     

    Li XG. 2010. China Earthquake Tectonic Movement. Beijing: Seismological Press, 1-35 (in Chinese with English abstract)

     

    Liu CQ, Xie GH and Masuda A. 1995. Geochemistry of Cenozoic basalts from eastern China (Ⅰ) Major element, trace element compositions: Petrogenesis, characteristics of mantle source. Geochimica, 24(1): 1-19 (in Chinese with English abstract)

     

    Liu RX, Chen WJ, Sun JZ and Li DM. 1992. The K-Ar age and tectonic enverionment of Cenozoic volcanic rock in China. In: Liu RX (ed.). The Age and Geochemistry of Cenozoic Volcanic Rock in China. Beijing: Seismological Press, 320-329 (in Chinese)

     

    Liu YS and Gao S. 1999. Geochemistry of granulites in north china craton: Implications for the composition of Archean lower crust. Geology-Geochemistry, 27(3): 40-46 (in Chinese with English abstract)

     

    Luo XQ and Chen QT. 1990. Preliminary study on geochronology for Cenozoic basalts from Inner Mongolia. Acta Petrologica et Mineralogica, 9(1): 37-46 (in Chinese with English abstract)

     

    Ma JL and Xu YG. 2006. Old EMI-type enriched mantle under the middle North China craton as indicated by Sr and Nd isotopes of mantle xenoliths from Yangyuan, Hebei Province. Chinese Science Bulletin, 51(11): 1343-1349

     

    Mckenzie DP and Bickl EMJ. 1988. The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29(3): 625-679

     

    McKenzie DP and O’Nions RK. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology, 32(5): 1021-1091

     

    Menzies MA. 1992. The lower lithosphere as a major source for continent flood basalts: A re-appraisal. In: Storey BC, Alabaster T and Pankhurst RJ (eds.). Magmatism and Causes of Continental Break-Up. Geological Society, London, Special Publications, 68(1): 293-304

     

    Menzies MA, Fan WM and Zhang M. 1993. Paleozoic and Cenozoic lithoprobes and the loss of >120km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard HM, Alabaster T, Harris NB and Neary CR (eds.). Magmatic Processes and Plate Tectonics. Geol. Soc. Lond. Spec. Publ., 76(1): 71-78

     

    Okamura S, Arculus RJ and Martynov YA. 2005. Cenozoic magmatism of the north-eastern Eurasian margin: The role of lithosphere versus asthenosphere. Journal of Petrology, 46(2): 221-253

     

    Peng ZC, Zartman RE, Futa K and Chen DG. 1986. Pb-, Sr- and Nd-isotopic systematics and chemical characteristics of Cenozoic basalts, eastern China. Chemical Geology: Isotope Geoscience Section, 59: 3-33

     

    Peng ZX, Mahoney JJ, Hooper PR, Harris C and Beane J. 1994. A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan Traps. Geochimica et Cosmochimica Acta, 58(1): 267-288

     

    Qiu JX and Zeng GC. 1987. The main characteristics and petrological significance of low pressure clinopyroxenes in the Cenozoic basalts from eastern China. Acta Petrologica Sinica, 3(4): 1-9 (in Chinese with English abstract)

     

    Reddy DV, Nagabhushanam P, Sukhija BS and Reddy GR. 2010. Continuous radon monitoring in soil gas towards earthquake precursory studies in basaltic region. Radiation Measurements, 45(8): 935-942

     

    Rudnick RL, Barth M, Horn I and McDonough WF. 2000. Rutile-bearing refractory eclogites: Missing link between continents and depleted mantle. Science, 287(5451): 278-281

     

    Ruzhentsev SV and Pospelov II. 1992. The South Mongolian Variscan fold system. Geotectonics, 30(5): 383-395

     

    Shao JA, Zhang LQ, Mou BL and Han QJ. 2007. The Surge of the Great Xingan Range and Geochemical Background. Beijing: Geological Publishing House, 1-25(in Chinese)

     

    She HQ, Wang YW, Li QH, Feng CY and Li DX. 2006. The mafic granulite xenoliths and its implications to mineralization in Chaihulanzi gold deposit, Inner Mongolian, China. Acta Geologica Sinica, 80(6): 863-875 (in Chinese with English abstract)

     

    Song Y, Frey FA and Zhi X. 1990. Isotopic characteristics of Hannuoba basalts, eastern China: Implications for their petrogenesis and the composition of subcontinental mantle. Chemical Geology, 85(1-2): 35-62

     

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345

     

    Talusani RVR. 2010. Bimodal tholeiitic and mildly alkalic basalts from Bhir area, central Deccan Volcanic Province, India: Geochemistry and petrogenesis. Journal of Volcanology and Geothermal Research, 189(3-4): 278-290

     

    Tang YJ, Zhang HF and Ying JF. 2006. Asthenosphere-lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chemical Geology, 233(3-4): 309-327

     

    Tatsumi Y and Eggins S. 1995. Subduction Zone Magmatism. Boston: Blackwell Science, 211

     

    Tatsumoto M, Basu AR, Huang WK, Wang JW and Xie GH. 1992. Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of eastern China: Enriched components EMI and EMII in subcontinental lithosphere. Earth and Planetary Science Letters, 113(1-2): 107-128

     

    Wang K, Plank T, Walker JD and Smith EI. 2002. A mantle melting prole across the basin and range, SW USA. J. Geophys. Res., 107(B1): ECV5-1-ECV5-21

     

    Wedepohl KH. 2000. The composition and formation of Miocene tholeiites in the Central European Cenozoic plume volcanism (CECV). Contributions to Mineralogy and Petrology, 140(2): 180-189

     

    Wiechert U, Ionov DA and Wedephol KH. 1997. Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: A record of partial melting and cryptic metasomatism in the upper mantle. Contrib. Mineral. Petrol., 126(4): 345-364

     

    Wright TL, Mangan M and Swanson DA. 1989. Chemical data for flows and feeder dikes of the Yakima Basalt subgroup, Columbia River Basalt Group, Washington, Oregon and Idaho, and their bearing on a petrogenetic model. US Geological Survey, Bulletin, 1821: 1-71

     

    Xiao WJ, Windley BF, Yuan C, Sun M, Han CM, Lin SF, Chen HL, Yan QR, Liu DY, Qin KZ, Li JL and Sun S. 2009. Paleozoic multiple subduction-accretion processes of the Southern Altaids. American Journal of Science, 309(3): 221-270

     

    Xu WL, Yang DB, Pei FP, Wang F and Wang W. 2009. Mesozoic lithospheric mantle modified by delaminated lower continental crust in the North China Craton: Constraints from compositions of amphiboles from peridotite xenoliths. Journal of Jilin University (Earth Science Edition), 39(4): 606-617 (in Chinese with English abstract)

     

    Xu YG. 1999. Roles of thermo mechanic and chemical erosion in continental lithospheric thinning. Bulletin of Mineralogy Petrology and Geochemistry, 18(1): 1-5 (in Chinese with English abstract)

     

    Xu YG. 2001. Thermotectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing, and mechanism. Phys. Chem. Earth A., 26(9): 747-757

     

    Xu YG, Chung SL, Ma JM and Shi LB. 2004. Contrasting Cenozoic lithospheric evolution and architecture in western and eastern Sino-Korean Craton: Constraints from geochemistry of basalts and mantle xenoliths. Journal of Geology, 112(5): 593-605

     

    Xu YG, Ma JL, Frey FA, Feigenson MD and Liu JF. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chemical Geology, 224(4): 247-271

     

    Ying JF, Zhang HF, Sun M, Tang YJ, Zhou XH and Liu XM. 2007. Petrology and geochemistry of Zijinshan alkaline intrusive complex in Shanxi Province, western North China Craton: Implication for magma mixing of different sources in an extensional regime. Lithos, 98(1-4): 45-66

     

    Zhang C, Han BF, Tong Y and Li GC. 2004. General characteristics and origin of Cenozoic basalt from Abagaqi region, Inner Mongolia. Journal of Jilin University (Earth Science Edition), 31(4): 21-26 (in Chinese with English abstract)

     

    Zhang C, Liu SW, Han BF and Li GC. 2006. Characteristies of ultramafic xenoliths form Cenozoic basalts in Abagaqi area, Inner Mongolia. Acta Petrologica Sinica, 22(11): 2801-2807 (in Chinese with English abstract)

     

    Zhang HF, Sun M, Zhou XH, Zhou MF, Fan WM and Zheng JP. 2003. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochimica et Cosmochimica Acta, 67(22): 4373-4387

     

    Zhang JJ, Zheng YF and Zhao ZF. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110(1-4): 305-326

     

    Zhang WH, Han BF, Du W and Liu ZQ. 2005. Characteristics of mantle source for Jining Cenozoic basalts from southern Inner Mongolia: Evidence form element and Sr-Nd-Pb isotopic geochemistry. Acta Petrologica Sinica, 21(6): 1569-1582 (in Chinese with English abstract)

     

    Zhang WH and Han BF. 2006. K-Ar chronology and geochemistry of Jining Cenozoic basalts, Inner Mongolia, and geodynamic implications. Acta Petrologica Sinica, 22(6): 1597-1607 (in Chinese with English abstract)

     

    Zheng JP, O'Reilly SY, Giffin WL, Lu FX, Zhang M and Pearson NJ. 2001. Relict refractory mantle beneath the eastern North China Block: Signification for lithospheric evolution. Lithos, 57(1): 43-66

     

    Zhi X, Song Y, Frey FA, Feng JL and Zhai MZ. 1990. Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt. Chemical Geology, 88(1-2): 1-33

     

    Zhou XH and Armstrong RL. 1982. Cenozoic volcanic rocks of eastern China: Secular and geographic trends in chemistry and strontium isotopic composition. Earth and Planetary Science Letters, 59(3): 301-329

     

    Zindler A and Hart SR. 1986. Chemical geodynamics. Ann. Rev. Earth and Planetary Science Letters, 14: 493-571

     

    Zou H, Zindler A, Xu XS and Qi Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chemical Geology, 171(1-2): 33-47

     

    陈生生, 樊祺诚, 赵勇伟, 隋建立. 2011. 内蒙古贝力克玄武岩台地火山地质及成因探讨. 地震地质, 33(2): 430-439

     

    陈生生, 樊祺诚, 赵勇伟, 隋建立, 杜星星. 2012. 内蒙古阿巴嘎地幔岩捕掳体与岩石圈地幔性质探讨. 岩石学报, 28(4): 1108-1118

     

    樊祺诚, 陈文寄, Hurford AJ, Hunziker JG. 1992a. 大同玄武岩主要元素和微量元素化学. 见: 刘若新主编. 中国新生代玄武岩年代学与地球化学. 北京: 地震出版社, 93-100

     

    樊祺诚, 刘若新, 马宝林. 1992b. 中国上地幔角闪石及其成因意义. 矿物学报, 12(4): 352-358

     

    郭锋, 范蔚茗, 李超文, 苗来成, 赵亮. 2009. 早古生代古亚洲洋俯冲作用: 来自内蒙古大石寨玄武岩的年代学与地球化学证据. 中国科学(D辑), 39(5): 569-579

     

    荆旭, 吴泰然, 贺元凯. 2010. 内蒙古四子王旗中新世含包体玄武岩的深部地质环境分析. 北京大学学报(自然科学版), (2): 215-223

     

    李祥根. 2010. 中国地震构造运动. 北京: 地震出版社, 1-35

     

    刘丛强, 解广轰, 增田彰正. 1995. 中国东部新生代玄武岩的地球化学—(Ⅰ)主元素和微量元素组成: 岩石成因及源区特征. 地球化学, 24(1): 1-19

     

    刘若新, 陈文寄, 孙建中, 李大明. 1992. 中国新生代火山岩的K-Ar年代与构造环境. 见: 刘若新主编. 中国新生代火山岩年代学与地球化学. 北京: 地震出版社, 320-329

     

    刘勇胜, 高山. 1999. 华北克拉通麻粒岩的地球化学特征及其对太古宙下地壳组成的指示意义. 地质地球化学, 27(3): 40-46

     

    罗修泉, 陈启桐. 1990. 内蒙古新生代玄武岩年代学初步研究. 岩石矿物学杂志, 9(1): 37-46

     

    马金龙, 徐义刚. 2006. 河北阳原幔源包体的Sr-Nd同位素特征指示华北克拉通中部存在EMI型古老富集地幔. 科学通报, 51(10): 1190-1196

     

    内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志. 北京: 地质出版社, 331-350

     

    邱家骧, 曾广策. 1987. 中国东部新生代玄武岩中低压单斜辉石的矿物化学及岩石学意义. 岩石学报, 3(4): 1-9

     

    邵济安, 张履桥, 牟保磊, 韩庆军. 2007. 大兴安岭的隆起与地球动力学背景. 北京: 地质出版社, 1-251

     

    佘宏全, 王义文, 李庆环, 张德全, 丰成友, 李大新. 2006. 内蒙古赤峰柴胡栏子金矿基性麻粒岩包体特征及其成矿动力学意义. 地质学报, 80(6): 863-875

     

    徐义刚. 1999. 岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄. 矿物岩石地球化学通报, 18(1): 1-5

     

    张臣, 韩宝福, 童英, 李德春. 2004. 内蒙古阿巴嘎地区新生代玄武岩基本特征及成因. 吉林大学学报(地球科学版), 31(4): 21-26

     

    张臣, 刘树文, 韩宝福, 李德春. 2006. 内蒙古阿巴嘎旗新生代玄武岩中超镁铁岩包体的特征. 岩石学报, 22(11): 2801-2807

     

    张文慧, 韩宝福, 杜蔚, 刘志强. 2005. 内蒙古集宁新生代玄武岩的地幔源区特征: 元素及Sr-Nd-Pb同位素地球化学证据. 岩石学报, 21(6): 1569-1582

     

    张文慧, 韩宝福. 2006. 内蒙古集宁新生代玄武岩的K-Ar年代学和地球化学及其深部动力学意义. 岩石学报, 22(6): 1597-1607

  • 加载中

(12)

计量
  • 文章访问数:  6322
  • PDF下载数:  6743
  • 施引文献:  0
出版历程
收稿日期:  2012-08-10
修回日期:  2012-10-09
刊出日期:  2013-08-01

目录