广西苍梧社垌石英脉型钨钼多金属矿床流体演化及来源示踪

张志强, 陈懋弘, 莫建明, 肖柳阳, 黄智忠, 罗军, 区朝辉. 广西苍梧社垌石英脉型钨钼多金属矿床流体演化及来源示踪[J]. 岩石学报, 2014, 30(1): 281-291.
引用本文: 张志强, 陈懋弘, 莫建明, 肖柳阳, 黄智忠, 罗军, 区朝辉. 广西苍梧社垌石英脉型钨钼多金属矿床流体演化及来源示踪[J]. 岩石学报, 2014, 30(1): 281-291.
ZHANG ZhiQiang, CHEN MaoHong, MO JianMing, XIAO LiuYang, HUANG ZhiZhong, LUO Jun, OU ChaoHui. Evolution and source tracing of the Shedong quartz vein type scheelite-molybdenite polymetallic deposit in Cangwu County, Guangxi[J]. Acta Petrologica Sinica, 2014, 30(1): 281-291.
Citation: ZHANG ZhiQiang, CHEN MaoHong, MO JianMing, XIAO LiuYang, HUANG ZhiZhong, LUO Jun, OU ChaoHui. Evolution and source tracing of the Shedong quartz vein type scheelite-molybdenite polymetallic deposit in Cangwu County, Guangxi[J]. Acta Petrologica Sinica, 2014, 30(1): 281-291.

广西苍梧社垌石英脉型钨钼多金属矿床流体演化及来源示踪

  • 基金项目:

    本文受“中央级公益性科研院所基本科研业务费专项资金”(K1015);“国家重点基础研究发展计划(973计划)”(2012CB416704)和“中国地质调查局地质调查工作项目”(1212011120831)联合资助.

详细信息

Evolution and source tracing of the Shedong quartz vein type scheelite-molybdenite polymetallic deposit in Cangwu County, Guangxi

More Information
  • 广西苍梧社垌矿床是大瑶山隆起南侧新发现的一个大型斑岩-矽卡岩-石英脉型钨钼多金属矿床。本文重点对其中的石英脉型矿床进行了研究,依据脉体穿插关系及矿物共生组合将成矿过程划分为I石英-黄铁矿阶段、Ⅱ石英-白钨矿-辉钼矿阶段、Ⅲ石英-多金属硫化物阶段以及IV石英-方解石-萤石阶段,其中Ⅱ和Ⅲ阶段为主成矿阶段。从早到晚,均一温度逐渐下降(第一阶段550℃→370℃,第二阶段370℃→330℃,第三阶段330℃→210℃,第四阶段190℃→150℃),流体密度逐渐上升(0.61g/cm3→0.72g/cm3→0.82g/cm3→0.94g/cm3),盐度先升后降(第一阶段5.86%~8.55% NaCleqv,第二阶段4.49%~43% NaCleqv,第三阶段0.53%~46.37% NaCleqv,第四阶段0%~12.85% NaCleqv)。激光拉曼成分分析显示,社垌石英脉型矿床的成矿流体属于H2O-NaCl体系,但是该体系的流体成分在成矿前后发生了较大的变化,反映第I阶段以氧化环境为主,(Ⅱ、Ⅲ、)IV阶段则为还原环境。氢氧同位素研究显示成矿流体来自于岩浆水,后期大气降水的加入导致矿质发生沉淀。此外金属硫化物的δ34S组成(-3.8‰~+1.7‰)平均为-0.46‰,接近于零值,也表明为岩浆来源。引起矿质沉淀的主要原因是流体混合导致的温度下降等环境条件的改变。总体而言,社垌石英脉型钨钼多金属矿床的成矿流体主要来自岩浆热液,为中高温、中低盐度、低密度的NaCl-H2O流体体系,钨钼等多金属成矿与区内加里东期岩浆作用密切相关。
  • 加载中
  • [1]

    Atkinson B. 2002. A model for the PTZ properties of H2O-NaCl. Ph. D. Dissertation. Blacksburg, VA: Virginia Polytechnic Institute, 1-133

    [2]

    Becker SP, Fall A and Bodnar RJ. 2008. Synthetic fluid inclusions. XVⅡ. 1 PVTX properties of high salinity H2O-NaCl solutions (>30 wt.% NaCl): Application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits. Economic Geology, 103: 539-554

    [3]

    Berry AJ, Harris AC and Kamenetsky VS. 2009. The speciation of copper in natural fluid inclusions at temperatures up to 700℃. Chemical Geology, 259(1-2): 2-7

    [4]

    Bodnar RJ. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683-684

    [5]

    Bodnar RJ and Vityk MO. 1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo B and Frezzotti ML (eds.). Fluid Inclusions in Minerals: Methods and Applications. Short Course IMA, 117-130

    [6]

    Bureau of Geology and Mineral Resources of Guangxi Zhuang Autonomous Region (BGMRG). 1985. Regional Geology of Guangxi Zhuang Autonomous Region. Beijing: Geological Publishing House, 1-96 (in Chinese with English abstract)

    [7]

    Chen MH, Mo CS, Huang ZZ, Li B and Huang HW. 2011. Zircon LA-ICP-MS U-Pb ages of granitoid rocks and molybdenite Re-Os age of Shedong W-Mo deposit in Cangwu County, Guangxi and its Geological Significance. Mineral Deposits, 30(6): 963-978 (in Chinese with English abstract)

    [8]

    Chen MH, Huang ZZ, Li B and Huang HW. 2012a. Geochemistry of granitoid rocks of Shedong W-Mo deposit district in Cangwu County, Guangxi and its relation to mineralization. Acta Petrologica Sinica, 28(1): 199-212 (in Chinese with English abstract)

    [9]

    Chen MH, Guo YQ, Liang B and Huang HW. 2012b. Emplaced and metallogenetic ages of Wujie tungsten and molybdenum occurrence and geochemical characteristics of granodiorite in Cangwu. Journal of Guilin University of Technology, 32(1): 1-13 (in Chinese with English abstract)

    [10]

    Clayton RN, O'Neil JR and Mayeda TK. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research, 77(17): 3057-3067

    [11]

    Driesner T. 2007. The system H2O-NaCl. Part Ⅱ: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000℃, 1 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71(20): 4902-4919

    [12]

    Driesner T and Heinrich CA. 2007. The system H2O-NaCl. Part Ⅰ: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000℃, 0 to 5000 bar, and 0 to 1 XNaCl. Geochimica et Cosmochimica Acta, 71(20): 4880-4901

    [13]

    Hu RZ, Bi XW, Su WC, Peng JT and Li CY. 2004. The relationship between uranium metallogenesis and crustal extension during the Cretaceous-Tertiary in South China. Earth Science Frontiers, 11(1):155-160 (in Chinese with English abstract)

    [14]

    Hua RM, Chen PR, Zhang WL et al. 2005. Three major metallogenic events in Mesozoic in South China. Mineral Deposits, 24(2): 99-107 (in Chinese with English abstract)

    [15]

    Huang HM, He ZJ and Cui B. 2003. Metallogenic series of granite in Dayaoshan of Guangxi. Geology and Prospecting, 39(4): 12-16 (in Chinese with English abstract)

    [16]

    Li XF, Feng ZH, Li RS, Tang ZH, Qu WJ and Li JC. 2009. Silurian Mo mineralization at Baishiding molybdenum deposit in northern Guangxi: Constraints from zircon SHRIMP U-Pb and molybdenite Re-Os ages. Mineral Deposits, 28(4): 403-412 (in Chinese with English abstract)

    [17]

    Mao JW, Hua RM and Li XB. 1999. A preliminary study of large-scale metallogenesis and large clusters of mineral deposits. Mineral Deposits, 18(4): 291-299 (in Chinese with English abstract)

    [18]

    Mao JW, Xie GQ, Guo CL and Chen YC. 2007. Large-scale tungsten-tin mineralization in the Nanling region South China: Metallogenic ages and corresponding geodynamic processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract)

    [19]

    Mao JW, Chen MH, Yuan SD and Guo CL. 2011. Geological characteristics of the Qinhang (or Shihang) metallogenic belt in South China and spatial-temporal distribution regularity of mineral deposits. Acta Geologica Sinica, 85(5): 636-658 (in Chinese with English abstract)

    [20]

    Mao JW, Cheng YB, Chen MH and Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294

    [21]

    Mountain BW and Seward TM. 2003. Hydrosulfide/sulfide complexes of copper (I): Experimental confirmation of the stoichiometry and stability of Cu (HS)2- to elevated temperatures. Geochimica et Cosmochimica Acta, 67(16): 3005-3014

    [22]

    Nagaseki H and Hayashi KI. 2008. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system. Geology, 36(1): 27-30

    [23]

    Reed MH and Palandri J. 2006. Sulfide mineral precipitation from hydrothermal fluids. Reviews in Mineralogy and Geochemistry, 64(1): 609-631

    [24]

    Shu LS. 2012. An analysis of principal features of tectonic evolution in South China block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English abstract)

    [25]

    Taylor HP. 1997. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits, 3rd Edition. New York: Wiley Interscience, 299-302

    [26]

    Wang D, Lu HZ and Bi XW. 2011. Comparison of characteristics of ore forming fluids between quartz-vein tungsten deposits and porphyry copper deposits associated with granitic rocks. Earth Science Frontiers, 18(5):121-131 (in Chinese with English abstract)

    [27]

    Wang XD, Ni P, Zhang BS and Wang TG. 2010. Fluid inclusion studies of the Pangushan quartz-vein type tungsten deposit in southern Jiangxi Province. Acta Petrologica et Mineralogica, 29(5): 539-550(in Chinese with English abstract)

    [28]

    Wang XY, Liu MC, Zhou GF, Huang XQ and Wang RH. 2013. A correlation study of Au-polymetallic mineralization and granite-porphyry magmatism in the Xinping mining area of the Dayaoshan metallogenic belt, eastern Guangxi Province. Geoscience, 27(3): 585-592(in Chinese with English abstract)

    [29]

    Wang YJ, Zhang FF, Fan WM, Zhang GW, Chen SY, Cawood PA and Zhang AM. 2010. Tectonic setting of the South China Block in the Early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology. Tectonics, 29(6), doi: 10.1029/2010TC002750

    [30]

    Wang YL, Wang DH, Zhang CQ, Qu WJ and Hu YC. 2010. Molybdenite Re-Os isochron age of Debao Cu-Sn deposite in Guangxi and relation to Caledonian mineralization. Mineral Deposits, 29(5): 881-889 (in Chinese with English abstract)

    [31]

    Wang YL, Wang DH, Zhang CQ, Hou KJ and Wang CH. 2011. LA-ICP-MS Zircon U-Pb dating of the Qinjia granite in Guangxi Province and its geologic significance. Acta Geologica Sinica, 85(4): 475-481(in Chinese with English abstract)

    [32]

    Wei JY and Wang GY. 1988. Isotope Geochemistry. Beijing: Geological Publishing House, 1-166 (in Chinese)

    [33]

    Yang MG and Mei YW. 1997. Characteristics of geology and metallization in the Qingzhou-Hangzhou paleoplate juncture. Geology and Mineral Resources of South China, (3): 52-59(in Chinese with English abstract)

    [34]

    Yang MG, Huang SB, Lou FS, Tang WX and Mao SB. 2009. Lithospheric structure and large-scale metallogenic process in Southeast China continental area. Geology in China, 36(3): 528-543 (in Chinese with English abstract)

    [35]

    Yuan SD, Hou KJ and Liu M. 2010a. Timng of mineralization and geodynamic framework of iron-oxide-apatite deposits in Ningwu Cretaceous basin in the Middle-Lower Reaches of the Yangtze River, China: Constraints from Ar-Ar dating on phlogopites. Acta Petrologica Sinica, 26(3): 797-808 (in Chinese with English abstract)

    [36]

    Yuan SD, Li HM, Hao S, Geng JZ and Zhang DL. 2010b. In situ LA-MC-ICP U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province. Mineral Deposits, 29(Suppl.1): 543-544 (in Chinese)

    [37]

    Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242

    [38]

    Yuan SD, Zhang DL, Shuang Y, Du AD and Qu WJ. 2012a. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications. Acta Petrologica Sinica, 28(1): 27-38 (in Chinese with English abstract)

    [39]

    Yuan SD, Liu XF, Wang XD, Wu SH, Yuan YB, Li XK and Wang TZ. 2012b. Geological characteristics and 40Ar-39Ar geochronology of the Hongqiling tin deposit in southern Hunan Province. Acta Petrologica Sinica, 28(12): 3787-3797 (in Chinese with English abstract)

    [40]

    Zhang LG. 1985. The Application of the Stable Isotope to Geology-the Hydrothermal Mineralization of Metal Activation and Its Prospecting. Xi'an: Shaanxi Science and Technology Press, 1-169 (in Chinese)

    [41]

    陈懋弘, 莫次生, 黄智忠, 李斌, 黄宏伟. 2011. 广西苍梧县社垌钨钼矿床花岗岩类锆石LA-ICP-MS和辉钼矿Re-Os年龄及其地质意义. 矿床地质, 30(6): 963-978

    [42]

    陈懋弘, 黄智忠, 李斌, 黄宏伟. 2012a. 广西苍梧社垌钨钼矿床花岗岩类岩石的地球化学特征及其与成矿关系. 岩石学报, 28(1): 199-212

    [43]

    陈懋弘, 郭云起, 梁宾, 黄宏伟. 2012b. 广西苍梧县武界钨钼矿点成岩成矿年龄及岩体地球化学特征. 桂林理工大学学报, 32(1): 1-13

    [44]

    广西壮族自治区地质矿产局. 1985. 广西壮族自治区区域地质志. 北京: 地质出版社, 1-96

    [45]

    胡瑞忠, 毕献武, 苏文超, 彭建堂, 李朝阳. 2004. 华南白垩-第三纪地壳拉张与铀成矿的关系. 地学前缘, 11(1): 153-160

    [46]

    华仁民, 陈培荣, 张文兰等.2005.论华南地区中生代3次大规模成矿作用.矿床地质, 24(2): 99-107

    [47]

    黄惠民, 志军, 崔彬. 2003. 广西大瑶山地区花岗岩成矿系列. 地质与勘探, 39(4): 12-16

    [48]

    李晓峰, 冯佐海, 李容森, 唐专红, 屈文俊, 李军朝. 2009. 华南志留纪钼的矿化: 白石顶钼矿锆石SHRIMP U-Pb年龄和辉钼矿Re-Os年龄证据. 矿床地质, 28(4): 403-412

    [49]

    毛景文, 华仁民, 李晓波. 1999. 浅议大规模成矿作用与大型矿集区. 矿床地质, 18(4): 291-299

    [50]

    毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338

    [51]

    毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律. 地质学报, 85(5): 636-658

    [52]

    舒良树. 2012. 华南构造演化的基本特征.地质通报, 31(7): 1035-1053

    [53]

    王蝶, 卢焕章, 毕献武. 2011. 与花岗质岩浆系统有关的石英脉型钨矿和斑岩型铜矿成矿流体特征比较. 地学前缘, 18(5): 121-131

    [54]

    王旭东, 倪培, 张伯声, 王天刚. 2010. 江西盘古山石英脉型钨矿床流体包裹体研究. 岩石矿物学杂志, 29(5): 539-550

    [55]

    王新宇, 刘明朝, 周国发, 黄锡强, 王瑞湖. 2013. 桂东大瑶山成矿带新坪矿区花岗斑岩与金多金属成矿作用关系. 现代地质, 27(3): 585-592

    [56]

    王永磊, 王登红, 张长青, 屈文俊, 胡艳春. 2010. 广西德保铜锡矿床辉钼矿Re-Os同位素定年及对加里东期成矿的探讨. 矿床地质, 29(5): 881-889

    [57]

    王永磊, 王登红, 张长青, 侯可军, 王成辉. 2011. 广西钦甲花岗岩体单颗粒锆石LA-ICP-MS U-Pb定年及其地质意义. 地质学报, 85(4): 475-481

    [58]

    魏菊英, 王关玉. 1988. 同位素地球化学. 北京: 地质出版社: 1-166

    [59]

    杨明桂, 梅勇文. 1997. 钦杭古板块结合带与成矿带的主要特征. 华南地质与矿产, (3): 52-59

    [60]

    杨明桂, 黄水保, 楼法生, 唐维新, 毛素斌. 2009. 中国东南陆区岩石圈结构与大规模成矿作用. 中国地质, 36(3): 528-543

    [61]

    袁顺达, 侯可军, 刘敏. 2010a. 安徽宁芜地区铁氧化物-磷灰石矿床中金云母Ar-Ar定年及其地球动力学意义. 岩石学报, 23(3): 797-808

    [62]

    袁顺达, 李惠民, 郝爽, 耿建珍, 张东亮. 2010b. 湘南芙蓉超大型锡矿锡石原位LA-MC-ICP-MS U-Pb测年及其意义. 矿床地质, 29(S1): 543-544

    [63]

    袁顺达, 张东亮, 双燕, 杜安道, 屈文俊. 2012a. 湘南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义. 岩石学报, 28(1): 27-38

    [64]

    袁顺达, 刘晓菲, 王旭东, 吴胜华, 原垭斌, 李学凯, 王铁柱. 2012b. 湘南红旗岭锡多金属矿床地质特征及Ar-Ar同位素年代学研究. 岩石学报, 28(12): 3787-3797

    [65]

    张理刚. 1985. 稳定同位素在地质科学中的应用-金属活化热液成矿作用及找矿. 西安: 陕西科学技术出版社, 1-169

  • 加载中
计量
  • 文章访问数:  5019
  • PDF下载数:  6806
  • 施引文献:  0
出版历程
收稿日期:  2013-08-09
修回日期:  2013-11-28
刊出日期:  2014-01-31

目录