古盐湖卤水温度对钾盐沉积的控制作用探讨

赵艳军, 刘成林, 张华, LI ZhaoQi, 丁婷, 汪明泉. 古盐湖卤水温度对钾盐沉积的控制作用探讨[J]. 岩石学报, 2015, 31(9): 2751-2756.
引用本文: 赵艳军, 刘成林, 张华, LI ZhaoQi, 丁婷, 汪明泉. 古盐湖卤水温度对钾盐沉积的控制作用探讨[J]. 岩石学报, 2015, 31(9): 2751-2756.
ZHAO YanJun, LIU ChengLin, ZHANG Hua, LI ZhaoQi, DING Ting, WANG MingQuan. The controls of paleotemperature on potassium salt precipitation in ancient salt lakes[J]. Acta Petrologica Sinica, 2015, 31(9): 2751-2756.
Citation: ZHAO YanJun, LIU ChengLin, ZHANG Hua, LI ZhaoQi, DING Ting, WANG MingQuan. The controls of paleotemperature on potassium salt precipitation in ancient salt lakes[J]. Acta Petrologica Sinica, 2015, 31(9): 2751-2756.

古盐湖卤水温度对钾盐沉积的控制作用探讨

  • 基金项目:

    本文受国家重点基础研究计划"973"项目(2011CB403007)和国家自然科学基金项目(41302059)联合资助.

详细信息

The controls of paleotemperature on potassium salt precipitation in ancient salt lakes

More Information
  • 古盐湖卤水的温度对钾盐沉积的控制作用的定量研究是钾盐成矿机理分析的重点和难点。本文分析和测试陕北盐盆奥陶系马家沟组、四川盆地三叠系嘉陵江组、云南兰坪-思茅盆地白垩系及老挝沙空那空盆地白垩系等八个含盐系的石盐岩中的流体包裹体,并利用均一温度计算了古盐湖的蒸发速率。若以老挝白垩纪时盐湖的蒸发速率为标准值100,陕北奥陶纪、四川三叠纪、云南白垩纪的蒸发速率标准值分别为54、68和90,而目前在老挝和云南白垩系都找到了一定规模的钾盐矿,因此高温(气温及水温)是盐湖成钾的有利条件,在卤水演化成钾的过程中可以起到重要的"催化"作用。
  • 加载中
  • [1]

    Benison KC and Goldstein RH. 1999. Permian paleoclimate data from fluid inclusions in halite. Chemical Geology, 154(1-4):113-132

    [2]

    Charusiri P, Imsamut S, Zhuang ZH, Ampaiwan T and Xu XX. 2006. Paleomagnetism of the earliest Cretaceous to early Late Cretaceous sandstones, Khorat Group, Northeast Thailand:Implications for tectonic plate movement of the Indochina block. Gondwana Research, 9(3):310-325

    [3]

    Chen WX and Yuan HR. 2010. Regional ore-forming geological conditions of the Ordovician northern Shaanxi salt basin. Acta Geologica Sinica, 84(11):1565-1575 (in Chinese with English abstract)

    [4]

    Chen X, Ruan YP and Boucot AJ. 2001. The Climate Changes of Paleozoic in China. Beijing:Science Press (in Chinese)

    [5]

    Chen YH. 1983. Sequence of salt separation and regularity of some trace elements distribution during isothermal evaporation (25℃) of the Huanghai sea water. Acta Geologica Sinica, (4):379-390 (in Chinese with English abstract)

    [6]

    Han WT, Cai KQ and Gu SQ. 1982. The study on formation condition for polyhalite in K+, Na+, Mg2+, Ca2+, Cl-、SO42-, H2O hexa-component system. Geology of Chemical Minerals, (1):36-52 (in Chinese with English abstract)

    [7]

    Huang JS and Li ZM. 2001. Geological features, exploration method and development prospects of the Ordovician salt fields in the northern Shaanxi Province. Geology of Shaanxi, 19(1):44-50 (in Chinese with English abstract)

    [8]

    Jiang M, Ma KY, Li P et al. 1987. A study on paleomagnetism and physical properties of Triassic potassium-bearing strata in eastern Sichuan basin. Geophysical & Geochemical Exploration, 11(4):266-274 (in Chinese with English abstract)

    [9]

    Li SP, Ma HZ, Shan FS, Gao DL, Wang MX, Tang XL and Cheng HD. 2009. Salt tectonic characteristic and genetic mechanism of Thongmang region in Vientiane basin, Laos. Journal of Salt Lake Research, 17(2):5-12 (in Chinese with English abstract)

    [10]

    Linacre ET. 1977. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agricultural Meteorology, 18(6):409-424

    [11]

    Liu Q, Chen YH and Li YC. 1987. The Generation of Terrigenous-chemical Salt Deposits in China. Beijing:Beijing Science and Technology Press (in Chinese)

    [12]

    Liu Q, Du ZY and Chen YH. 1997. The Perspective of Potash Exploration in the Layers of Carboniferous System in Tarim Basin and Ordovician System in the North of Shaanxi Province. Beijing:Atomic Energy Press, 24-229 (in Chinese)

    [13]

    Lowenstein TK. 1988. Origin of depositional cycles in a Permian " saline giant":The Salado (McNutt zone) evaporites of New Mexico and Texas. Geological Society of America Bulletin, 100(4):592-608

    [14]

    Lowenstein TK, Li JR and Brown CB. 1998. Paleotemperatures from fluid inclusions in halite:Method verification and a 100000 year paleotemperature record, Death Valley, CA. Chemical Geology, 150(3-4):223-245

    [15]

    Meng FW, Ni P, Ge CD, Wang TG, Wang GG, Liu JQ and Zhao C. 2011. Homogenization temperature of fluid inclusions in laboratory grown halite and its implication for paleotemperature reconstruction. Acta Petrologica Sinica, 27(5):1543-1547 (in Chinese with English abstract)

    [16]

    Meng FW, Ni P, Yuan XL, Zhou CM, Yang CH and Li YP. 2013. Choosing the best ancient analogue for projected future temperatures:A case using data from fluid inclusions of Middle-Late Eocene halites. Journal of Asian Earth Sciences, 67-68:46-50

    [17]

    Qian ZQ, Qu YH and Liu Q. 1994. Potash Deposits. Beijing:Geological Publishing House (in Chinese)

    [18]

    Ren JS. 1994. The continental tectonics of China. Acta Geoscientia Sinica, (3-4):5-13 (in Chinese with English abstract)

    [19]

    Roberts SM and Spencer RJ. 1995. Paleotemperatures preserved in fluid inclusions in halite. Geochimica et Cosmochimica Acta, 59(19):3929-3942

    [20]

    Roedder E. 1984. The fluids in salt. American Mineralogist, 69(5-6):413-439

    [21]

    Sato K, Liu YY, Wang YB et al. 2007. Paleomagnetic study of Cretaceous rocks from Pu'er, western Yunnan, China:Evidence of internal deformation of the Indochina block. Earth and Planetary Science Letters, 258(1-2):1-15

    [22]

    Song HB and Li YW. 1994. Indoor evaporation experiment on water of South China Sea. Acta Geoscientia Sinica, (1-2):157-167 (in Chinese with English abstract)

    [23]

    Wang TF. 2003. The Outline of Tectonics in China. Beijing:Geological Publishing House, 104-110 (in Chinese)

    [24]

    Zambito JJ and Benison KC. 2013. Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite. Geology, 41(5):587-590

    [25]

    Zhai MG and Bian AG. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neoarchean and its breakup during Late Paleoproterozoic and Mesoproterozoic. Science in China (Series D), 30(Suppl.):129-137 (in Chinese)

    [26]

    Zhai MG. 2013. The main old lands in China and assembly of Chinese unified continent. Science China (Earth Sciences), 56(11):1829-1852

    [27]

    Zhang YS, Zheng MP, Bao HS, Guo Q, Yu CQ, Xing EY, Su K, Fan F and Gong WQ. 2013. Tectonic differentiation of O2m56 deposition stage in salt basin, northern Shaanxi, and its control over the formation of potassium sags. Acta Geologica Sinica, 87(1):101-109 (in Chinese with English abstract)

    [28]

    Zhao YJ, Zhang H, Liu CL, Liu BK, Ma LC and Wang LC. 2014. Late Eocene to Early Oligocene quantitative paleotemperature record:Evidence from continental halite fluid inclusions. Scientific Reports, 4:Article number:5776, doi:10.1038/srep05776

    [29]

    Zheng MP, Yuan HR, Zhang YS, Liu XF, Chen WX and Li JS. 2010. Regional distribution and prospects of potash in China. Acta Geologica Sinica, 84(11):1523-1553 (in Chinese with English abstract)

    [30]

    Zhu HF and Liu CZ. 1985. Prospective of main sale-bearing formations in China. Journal of Mineralogy and Petrology, 5(3):51-59 (in Chinese with English abstract)

    [31]

    陈文西, 袁鹤然. 2010. 陕北奥陶纪盐盆的区域成矿地质条件分析. 地质学报, 84(11):1565-1575

    [32]

    陈旭, 阮亦萍, Boucot AJ. 2001. 中国古生代气候演变. 北京:科学出版社

    [33]

    陈郁华. 1983. 黄海水25℃恒温蒸发时的析盐序列及某些微量元素的分布规律. 地质学报, (4):379-390

    [34]

    韩蔚田, 蔡克勤, 谷树起. 1982. K+、Na+、Mg2+、Ca2+/Cl-、SO42--H2O六元体系中杂卤石形成条件的研究. 化工矿产地质, (1):36-52

    [35]

    黄建松, 李智民. 2001. 陕北奥陶纪盐田地质特征勘查方法及开发前景. 陕西地质, 19(1):44-50

    [36]

    姜枚, 马开义, 李普等. 1987. 四川盆地东部三叠纪含钾岩层古地磁及物性研究. 物探与化探, 11(4):266-274

    [37]

    李善平, 马海州, 山发寿, 高东林, 王明祥, 唐启亮, 程怀德. 2009. 老挝万象盆地通芒地区盐构造特征及成因机制. 盐湖研究, 17(2):5-12

    [38]

    刘群, 陈郁华, 李银彩等. 1987. 中国中、新生代陆源碎屑-化学岩型盐类沉积. 北京:科学技术出版社

    [39]

    刘群, 杜之岳, 陈郁华. 1997. 陕北奥陶系和塔里木石炭系钾盐找矿远景. 北京:原子能出版社, 24-229

    [40]

    孟凡巍, 倪培, 葛晨东, 王天刚, 王国光, 刘吉强, 赵超. 2011. 实验室合成石盐包裹体的均一温度以及古气候意义. 岩石学报, 27(5):1543-1547

    [41]

    钱自强, 曲一华, 刘群. 1994.钾盐矿床. 北京:地质出版社

    [42]

    任纪舜. 1994. 中国大陆的组成, 结构, 演化和动力学. 地球学报, (3-4):5-13

    [43]

    宋鹤彬, 李亚文. 1994. 中国南海海水蒸发实验过程中地球化学行径. 地球学报, (1-2):157-167

    [44]

    万天丰. 2003. 中国大地构造学纲要. 北京:地质出版社, 104-110

    [45]

    翟明国, 卞爱国. 2000. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D辑), 30(增刊):129-137

    [46]

    翟明国. 2013. 中国主要古陆与联合大陆的形成——综述与展望. 中国科学(地球科学), 43(10):1583-1606

    [47]

    张永生, 郑绵平, 包洪平, 郭庆, 于常青, 邢恩袁, 苏奎, 樊馥, 龚文强. 2013. 陕北盐盆马家沟组五段六亚段沉积期构造分异对成钾凹陷的控制. 地质学报, 87(1):101-109

    [48]

    郑绵平, 袁鹤然, 张永生, 刘喜方, 陈文西, 李金锁. 2010. 中国钾盐区域分布与找钾远景. 地质学报, 84(11):1523-1553

    [49]

    朱洪发, 刘翠章. 1985. 从世界大型钾盐矿床形成的控制条件评述我国几个重要含盐系找钾前景. 矿物岩石, 5(3):51-59

  • 加载中
计量
  • 文章访问数:  5146
  • PDF下载数:  3668
  • 施引文献:  0
出版历程
收稿日期:  2014-07-15
修回日期:  2015-04-14
刊出日期:  2015-09-30

目录