朝鲜狼林地块东南缘太古宙岩石及其对古元古代构造热事件的响应

赵磊, 张艳斌, 杨正赫, 韩龙渊, 金正男. 朝鲜狼林地块东南缘太古宙岩石及其对古元古代构造热事件的响应[J]. 岩石学报, 2016, 32(10): 2948-2964.
引用本文: 赵磊, 张艳斌, 杨正赫, 韩龙渊, 金正男. 朝鲜狼林地块东南缘太古宙岩石及其对古元古代构造热事件的响应[J]. 岩石学报, 2016, 32(10): 2948-2964.
ZHAO Lei, ZHANG YanBin, YANG JongHyok, HAN RyongYon, KIM JongNam. Archean rocks at the southeastern margin of the Rangnim massif, northern Korean Peninsula, and their response to Paleoproterozoic tectonothermal event.[J]. Acta Petrologica Sinica, 2016, 32(10): 2948-2964.
Citation: ZHAO Lei, ZHANG YanBin, YANG JongHyok, HAN RyongYon, KIM JongNam. Archean rocks at the southeastern margin of the Rangnim massif, northern Korean Peninsula, and their response to Paleoproterozoic tectonothermal event.[J]. Acta Petrologica Sinica, 2016, 32(10): 2948-2964.

朝鲜狼林地块东南缘太古宙岩石及其对古元古代构造热事件的响应

  • 基金项目:

    本文受国家自然科学基金项目(41530208、41502182)和重大国际合作项目(41210003)联合资助.

Archean rocks at the southeastern margin of the Rangnim massif, northern Korean Peninsula, and their response to Paleoproterozoic tectonothermal event.

  • 朝鲜狼林地体是中朝克拉通的重要组成部分,其早前寒武纪基底岩系的岩石组成、形成和变质作用时代,直接影响到人们对古元古代辽吉活动带乃至整个华北克拉通地质演化历史的理解和认识。本文选取位于狼林地块东南缘,狼林群变质杂岩中的3个花岗片麻岩样品进行锆石U-Pb定年分析。锆石的LA-ICPMS和SIMS定年结果显示,3个片麻岩原岩的岩浆结晶时代为2521~2567Ma,并且它们都经历了古元古代1.87~1.89Ga的构造热事件改造,表现为原始岩浆锆石不同程度的铅丢失以及变质锆石的形成。基于这一认识,并结合其他学者的最新研究结果可知,太古宙片麻岩存在于狼林地块平南盆地的南缘和东缘地区,由此推测狼林地块太古宙基底岩系的规模可能远大于目前所识别的这几个地区。这些太古宙片麻岩普遍遭受了古元古代强烈变质作用(深熔作用)改造,并且变质作用的时代可以与华北克拉通三条古元古代活动带的变质-深熔作用时代相对比,表明狼林地块可能至少在古元古代之前,就已经与华北克拉通组成了统一的大陆。
  • 加载中
  • [1]

    Andersen T. 2002. Correction of common lead in U-Pb analysis that do not report 204Pb. Chemical Geology, 192(1-2):59-79

    [2]

    Bai J. 1993. The Precambrian Geology and Pb-Zn Mineralization in the Northern Margin of North China Platform. Beijing:Geological Publishing House (in Chinese)

    [3]

    Chang EZ. 1996. Collisional orogene between north and south China and its eastern extension in the Korean Peninsula. Journal of Southeast Asian Earth Sciences, 13(3-5):267-277

    [4]

    Chen YX, Zheng YF, Chen RX, Zhang SB, Li QL, Dai MN and Chen L. 2011. Metamorphic growth and recrystallization of zircons in extremely 18O-depleted rocks during eclogite-facies metamorphism:Evidence from U-Pb ages, trace elements, and O-Hf isotopes. Geochimica et Cosmochimica Acta, 75(17):4877-4898

    [5]

    Cheong CS, Jeong GY, Kim H, Choi MS, Lee SH and Cho M. 2003. Early Permian peak metamorphism recorded in U-Pb system of black slates from the Ogcheon metamorphic belt, South Korea, and its tectonic implication. Chemical Geology, 193(1-2):81-92

    [6]

    Choi S, Oh CW and Luehr H. 2006. Tectonic relation between northeastern China and the Korean Peninsula revealed by interpretation of GRACE satellite gravity data. Gondwana Research, 9(1-2):62-67

    [7]

    Chough SK, Kwon ST, Ree JH and Choi DK. 2000. Tectonic and sedimentary evolution of the Korean peninsula:A review and new view. Earth-Science Reviews, 52(1-3):175-235

    [8]

    Corfu F, Hanchar JM, Hoskin PWO and Kinny P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1):469-500

    [9]

    Cui PL, Sun JG, Sha DM, Wang XJ, Zhang P, Gu AL and Wang ZY. 2013. Oldest zircon xenocryst (4.17Ga) from the North China Craton. International Geology Review, 55(15):1902-1908

    [10]

    Diwu CR, Sun Y, Wilde SA, Wang HL, Dong ZC, Zhang H and Wang Q. 2013. New evidence for~4.45Ga terrestrial crust from zircon xenocrysts in Ordovician ignimbrite in the North Qinling Orogenic Belt, China. Gondwana Research, 23(4):1484-1490

    [11]

    Elhlou S, Belousova E, Griffin W, Pearson NJ and O'Reilly SY. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta, 70(18):A158

    [12]

    Faure M, Lin W, Monié P and Bruguier O. 2004. Palaeoproterozoic arc magmatism and collision in Liaodong Peninsula (north-east China). Terra Nova, 16(2):75-80

    [13]

    Geisler T, Pidgeon RT, Kurtz R, Van Bronswijk W and Schleicher H. 2003. Experimental hydrothermal alteration of partially metamict zircon. American Mineralogist, 88(10):1496-1513

    [14]

    Guo JH, Zhai MG, Peng P, Jiao SJ, Zhao L and Wang HZ. 2015. Paleoproterozoic granulites in the North China craton and their geological implications. In:Zhai MG (ed.). Precambrian Geology of China. Berlin, Heidelberg:Springer, 137-169

    [15]

    Harley SL and Kelly NM. 2007. Zircon tiny but timely. Elements, 3(1):13-18

    [16]

    Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4):423-439

    [17]

    Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1):27-62

    [18]

    Jahn BM, Auvray B, Cornichet J, Bai YL, Shen QH and Liu DY. 1987. 3.5Ga old amphibolites from eastern Hebei Province, China:Field occurrence, petrography, Sm-Nd isochron age and REE geochemistry. Precambrian Research, 34(3-4):311-346

    [19]

    Kim SR and Jon GP. 1996. Archean strata in North Korea. In:Institute of Geology, State Academy of Sciences and DPR of Korea (eds.). Geology of Korea. Pyongyang:Foreign Language Books Publishing House, 15-30

    [20]

    Kim SW, Williams IS, Kwon S and Oh CW. 2008. SHRIMP zircon geochronology, and geochemical characteristics of metaplutonic rocks from the south-western Gyeonggi Block, Korea:Implications for Paleoproterozoic to Mesozoic tectonic links between the Korean Peninsula and eastern China. Precambrian Research, 162(3-4):475-497

    [21]

    Kusky TM. 2011. Geophysical and geological tests of tectonic models of the North China Craton. Gondwana Research, 20(1):26-35

    [22]

    Kwon YW, Oh CW and Kim HS. 2003. Granulite-facies metamorphism in the Punggi area, northeastern Yeongnam Massif, Korea and its tectonic implications for East Asia. Precambrian Research, 122(1-4):253-273

    [23]

    Lee BC, Oh CW, Yengkhom KS and Yi K. 2014. Paleoproterozoic magmatic and metamorphic events in the Hongcheon area, southern margin of the Northern Gyeonggi Massif in the Korean Peninsula, and their links to the Paleoproterozoic orogeny in the North China Craton. Precambrian Research, 248:17-38

    [24]

    Lee SG, Shin SC, Jin MS, Ogasawara M and Yang MK. 2005. Two Paleoproterozoic strongly peraluminous granitic plutons (Nonggeori and Naedeokri granites) at the northeastern part of Yeongnam Massif, Korea:Geochemical and isotopic constraints in East Asian crustal formation history. Precambrian Research, 139(1-2):101-120

    [25]

    Li QL, Li XH, Liu Y, Tang GQ, Yang JH and Zhu WG. 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. Journal of Analytical Atomic Spectrometry, 25(7):1107-1113

    [26]

    Li SZ, Zhao GC, Sun M, Han ZZ, Zhao GT and Hao DF. 2006. Are the South and North Liaohe groups of North China Craton different exotic terranes? Nd isotope constraints. Gondwana Research, 9(1-2):198-208

    [27]

    Li XH, Liu Y, Li QL, Guo CH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry, Geophysics, Geosystems, 10(4):Q04010, doi:10.1029/2009GC002400

    [28]

    Liu DY, Nutman AP, Compston W, Wu JS and Shen QH. 1992. Remnants of ≥ 3800Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20(4):339-342

    [29]

    Liu DY, Wan YS, Wu JS, Wilde SA, Dong CY, Zhou HY and Yin XY. 2007. Archean crustal evolution and the oldest rocks in the North China craton. Geological Bulletin of China, 26(9):1131-1138 (in Chinese with English abstract)

    [30]

    Lu XP, Wu FY, Lin, JQ, Sun DY, Zhang YB and Guo CL. 2004. Geochronological successions of the Early Precambrian granitic magmatism in southern Liaodong Peninsula and its constraints on tectonic evolution of the North China Craton. Chinese Journal of Geology, 39(1):123-138 (in Chinese with English abstract)

    [31]

    Ludwig KR. 2003. User's Manual for Isoplot/Ex, Version 3.00:A Geochronological Toolkit for Microsoft Excel, No.4. Berkeley:Berkeley Geochronology Center, Special Publication

    [32]

    Lyang TJ, Liu YJ, Yang JH, Kim H, Han RY and Kim JN. 2009. Precambrian crustal evolution in Rangrim Massif, Korean Peninsula. Global Geology, 12(2):57-63

    [33]

    Min K and Cho M. 1998. Metamorphic evolution of the northwestern Ogcheon metamorphic belt, South Korea. Lithos, 43(1):31-51

    [34]

    Niu YL, Liu Y, Xue QQ, Shao FL, Chen S, Duan M, Guo PY, Gong HM, Hu Y, Hu ZX, Kong JJ, Li JY, Liu JJ, Sun P, Sun WL, Ye L, Xiao YY and Zhang Y. 2015. Exotic origin of the Chinese continental shelf:New insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Science Bulletin, 60(18):1598-1616

    [35]

    Paek RJ and Jon GP. 1996. Lower Proterozoic era in North Korea. In:Institute of Geology, State Academy of Sciences and DPR of Korea (eds.). Geology of Korea. Pyongyang:Foreign Languages Books Publishing House, 31-51

    [36]

    Peng P, Zhai MG, Guo JH, Zhang HF and Zhang YB. 2008. Petrogenesis of Triassic post-collisional syenite plutons in the Sino-Korean craton:An example from North Korea. Geological Magazine, 145(5):637-647

    [37]

    Peng P, Zhai MG, Li QL, Wu FY, Hou QL, Li Z, Li TS and Zhang YB. 2011. Neoproterozoic (~900Ma) Sariwon sills in North Korea:Geochronology, geochemistry and implications for the evolution of the south-eastern margin of the North China Craton. Gondwana Research, 20(1):243-254

    [38]

    Peng P, Wang XP, Windley BF, Guo JH, Zhai MG and Li Y. 2014. Spatial distribution of ca.1950~1800Ma metamorphic events in the North China Craton:Implications for tectonic subdivision of the craton. Lithos, 202-203:250-266

    [39]

    Ree JH, Cho M, Kwon ST and Nakamura E. 1996. Possible eastward extension of Chinese collision belt in South Korea:The Imjingang belt. Geology, 24(12):1071-1074

    [40]

    Ri UR. 1996a. Magmatism, section 1:Archean-Early Lower Proterozoic. In:Institute of Geology, State Academy of Sciences and DPR of Korea (eds.). Geology of Korea. Pyongyang:Foreign Languages Books Publishing House, 226-235

    [41]

    Ri UR. 1996b. Magmatism, section 2:Late Lower Proterozoic. In:Institute of Geology, State Academy of Sciences and DPR of Korea (eds.). Geology of Korea. Pyongyang:Foreign Languages Books Publishing House, 236-256

    [42]

    Rubatto D, Gebauer D and Compagnoni R. 1999. Dating of eclogite-facies zircons:The age of Alpine metamorphism in the Sesia-Lanzo Zone (Western Alps). Earth and Planetary Science Letters, 167(3-4):141-158

    [43]

    Rubatto D. 2002. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1-2):123-138

    [44]

    Santosh M, Liu DY, Shi YR and Liu SJ. 2013. Paleoproterozoic accretionary orogenesis in the North China Craton:A SHRIMP zircon study. Precambrian Research, 227:29-54

    [45]

    Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plešovice zircon:A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2):1-35

    [46]

    Song B, Nutman AP, Liu DY and Wu JS. 1996. 3800 to 2500Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78(1-3):79-94

    [47]

    Stacey JS and Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2):207-221

    [48]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1):313-345

    [49]

    Vavra G. 1990. On the kinematics of zircon growth and its petrogenetic significance:A cathodoluminescence study. Contributions to Mineralogy and Petrology, 106(1):90-99

    [50]

    Wan YS, Liu DY, Song B, Wu JS, Yang CH, Zhang ZQ and Geng YS. 2005. Geochemical and Nd isotopic compositions of 3.8Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. Journal of Asian Earth Sciences, 24(5):563-575

    [51]

    Wan YS, Liu DY, Nutman A, Zhou HY, Dong CY, Yin XY and Ma MZ. 2012. Multiple 3.8~3.1Ga tectono-magmatic events in a newly discovered area of ancient rocks (the Shengousi Complex):Anshan, North China Craton. Journal of Asian Earth Sciences, 54-55:18-30

    [52]

    Wan YS, Zhang YH, Williams IS, Liu DY, Dong CY, Fan RL, Shi YR and Ma MZ. 2013. Extreme zircon O isotopic compositions from 3.8 to 2.5Ga magmatic rocks from the Anshan area, North China Craton. Chemical Geology, 352:108-124

    [53]

    Wang HL, Chen L, Sun Y, Liu XM, Xu XY, Chen JL, Zhang H and Diwu CR. 2007.~4.1Ga xenocrystal zircon from Ordovician volcanic rocks in western part of North Qinling Orogenic Belt. Chinese Science Bulletin, 52(21):3002-3010

    [54]

    Wang YF, Li XH, Jin W and Zhang JH. 2015. Eoarchean ultra-depleted mantle domains inferred from ca. 3.81Ga Anshan trondhjemitic gneisses, North China Craton. Precambrian Research, 263:88-107

    [55]

    Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC and Spiegel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research, 19(1):1-23

    [56]

    Wu FY, Yang JH, Liu XM, Li TS, Xie LW and Yang YH. 2005. Hf isotopes of the 3.8Ga zircons in eastern Hebei Province, China:Implications for early crustal evolution of the North China Craton. Chinese Science Bulletin, 50(21):2473-2480

    [57]

    Wu FY, Han RH, Yang JH, Wilde SA, Zhai MG and Park SC. 2007a. Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chemical Geology, 238(3-4):232-248

    [58]

    Wu FY, Yang JH, Wilde SA, Liu XM, Guo JH and Zhai MG. 2007b. Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Research, 159(3-4):155-177

    [59]

    Wu FY, Zhang YB, Yang JH, Xie LW and Yang YH. 2008. Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton. Precambrian Research, 167(3-4):339-362

    [60]

    Wu FY, Li QL, Yang JH, Kim JN and Han RH. 2016. Crustal growth and evolution of the Rangnim Massif, northern Korean Peninsula. Acta Petrologica Sinica, 32(10):2933-2947 (in Chinese with English abstract)

    [61]

    Wu YB, Zheng YF, Zhao ZF, Gong B, Liu XM and Wu FY. 2006. U-Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen. Geochimica et Cosmochimica Acta, 70(14):3743-3761

    [62]

    Xie LW, Zhang YB, Zhang HH, Sun JF and Wu FY. 2008. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chinese Science Bulletin, 53(10):1565-1573

    [63]

    Yin A and Nie SY. 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 12(4):801-813

    [64]

    Zhai MG, Ni ZY, Oh CW, Guo JH and Choi SG. 2005. SHRIMP zircon age of a Proterozoic rapakivi granite batholith in the Gyeonggi massif (South Korea) and its geological implications. Geological Magazine, 142(1):23-30

    [65]

    Zhai MG, Guo JH, Li Z, Chen DZ, Peng P, Li TS, Hou QL and Fan QC. 2007a. Linking the Sulu UHP belt to the Korean Peninsula:Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research, 12(4):388-403

    [66]

    Zhai MG, Guo JH, Peng P and Hu B. 2007b. U-Pb zircon age dating of a rapakivi granite batholith in Rangnim massif, North Korea. Geological Magazine, 144(3):547-552

    [67]

    Zhai MG and Santosh M. 2013. Metallogeny of the North China Craton:Link with secular changes in the evolving Earth. Gondwana Research, 24(1):275-297

    [68]

    Zhai MG, Wan YS and Peng P. 2014. Secular changes of mineralization linked with Precambrian major geological events in the North China Craton. Precambrian Research, 255:511-513

    [69]

    Zhai MG. 2015. Precambrian Geology of China. Berlin, Heidelberg:Springer

    [70]

    Zhai MG and Zhou YY. 2015. General Precambrian geology in China. In:Zhai MG (ed.). Precambrian Geology of China. Berlin, Heidelberg:Springer, 3-56

    [71]

    Zhang QS. 1988. Early Crust and Mineral Deposits of Liaodong Peninsula, China. Beijing:Geological Publishing House (in Chinese)

    [72]

    Zhao GC, Cao L, Wilde SA, Sun M, Choe WJ and Li SZ. 2006. Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters, 251(3-4):365-379

    [73]

    Zhao GC, Cawood PA, Li SZ, Wilde SA, Sun M, Zhang J, He YH and Yin CQ. 2012. Amalgamation of the North China Craton:Key issues and discussion. Precambrian Research, 222-223:55-76

    [74]

    Zhao GC and Zhai MG. 2013. Lithotectonic elements of Precambrian basement in the North China Craton:Review and tectonic implications. Gondwana Research, 23(4):1207-1240

    [75]

    Zhao GC. 2014. Precambrian Evolution of the North China Craton. Amsterdam:Elsevier

    [76]

    Zhao L, Li TS, Peng P, Guo JH, Wang W, Wang HZ, Santosh M and Zhai MG. 2015. Anatomy of zircon growth in high pressure granulites:SIMS U-Pb geochronology and Lu-Hf isotopes from the Jiaobei Terrane, eastern North China Craton. Gondwana Research, 28(4):1373-1390

    [77]

    Zhao L, Zhu XY and Zhai MG. 2016. Major advances in the study of the precambrian geology and metallogenesis of the North China Craton:A review. Acta Geologica Sinica, 90(4):1122-1155

    [78]

    Zhao L, Zhang YB, Wu FY, Li QL, Yang JH, Kim JN and Choi WJ. 2016. Paleoproterozoic high temperature metamorphism and anatexis in the northwestern Korean Peninsula:Constraints from petrology and zircon U-Pb geochronology. Acta Petrologica Sinica, 32(10):3045-3069 (in Chinese with English abstract)

    [79]

    Zheng JP, Griffin WL, O'Reilly SY, Lu FX, Wang CY, Zhang M, Wang FZ and Li HM. 2004. 3.6Ga lower crust in central China:New evidence on the assembly of the North China craton. Geology, 32(3):229-232

    [80]

    Zheng YF, Wu YB, Zhao ZF, Zhang SB, Xu P and Wu FY. 2005. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite. Earth and Planetary Science Letters, 240(2):378-400

    [81]

    白瑾. 1993. 华北陆台北缘前寒武纪地质及铅锌成矿作用. 北京:地质出版社

    [82]

    刘敦一, 万渝生, 伍家善, Wilde SA, 董春艳, 周红英, 殷小艳. 2007. 华北克拉通太古宙地壳演化和最古老的岩石. 地质通报, 26(9):1131-1138

    [83]

    路孝平, 吴福元, 林景仟, 孙德有, 张艳斌, 郭春丽. 2004. 辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架. 地质科学, 39(1):123-138

    [84]

    吴福元, 杨进辉, 柳小明, 李铁胜, 谢烈文, 杨岳衡. 2005. 冀东3.8Ga锆石Hf同位素特征与华北克拉通早期地壳时代. 科学通报, 50(18):1996-2003

    [85]

    吴福元, 李秋立,杨正赫, 金正男, 韩龙渊. 2016. 朝鲜北部狼林地块构造归属与地壳形成时代. 岩石学报, 32(10):2933-2947

    [86]

    谢烈文, 张艳斌, 张辉煌, 孙金凤, 吴福元. 2008. 锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定. 科学通报, 53(2):220-228

    [87]

    张秋生. 1988. 辽东半岛早期地壳与矿床. 北京:地质出版社

    [88]

    赵磊, 张艳斌,吴福元, 李秋立,杨正赫, 金正男, 崔元正. 2016. 朝鲜半岛西北部古元古代高温变质-深熔作用:宏观和微观岩石学以及锆石U-Pb年代学制约. 岩石学报, 32(10):3045-3069

  • 加载中
计量
  • 文章访问数:  6014
  • PDF下载数:  5039
  • 施引文献:  0
出版历程
收稿日期:  2016-05-01
修回日期:  2016-08-01
刊出日期:  2016-10-31

目录