赣北大湖塘矿集区超大型钨矿地质特征及成因探讨

蒋少涌, 彭宁俊, 黄兰椿, 徐耀明, 占岗乐, 但小华. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨[J]. 岩石学报, 2015, 31(3): 639-655.
引用本文: 蒋少涌, 彭宁俊, 黄兰椿, 徐耀明, 占岗乐, 但小华. 赣北大湖塘矿集区超大型钨矿地质特征及成因探讨[J]. 岩石学报, 2015, 31(3): 639-655.
JIANG ShaoYong, PENG NingJun, HUANG LanChun, XU YaoMing, ZHAN GangLe, DAN XiaoHua. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province[J]. Acta Petrologica Sinica, 2015, 31(3): 639-655.
Citation: JIANG ShaoYong, PENG NingJun, HUANG LanChun, XU YaoMing, ZHAN GangLe, DAN XiaoHua. Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province[J]. Acta Petrologica Sinica, 2015, 31(3): 639-655.

赣北大湖塘矿集区超大型钨矿地质特征及成因探讨

  • 基金项目:

    本文受国家自然科学基金项目(41473042)和973项目(2012CB416706)联合资助.

Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province

  • 江西北部大湖塘地区发现世界级超大型钨矿床,使赣北成为继赣南之后我国又一重要的钨成矿省。大湖塘矿集区包括北区、南区和大雾塘矿区,正在开采的矿床有北区的石门寺矿床(己探明WO3金属量为74.255×104t)和南区的狮尾洞矿床(己探明WO3金属量31.09×104t),正在找矿勘查的矿区有北区的大岭上、大雾塘矿区平苗、东陡崖、一矿带等。矿化类型有细脉浸染型、石英大脉型、蚀变花岗岩型、云英岩型及隐爆角砾岩型钨(铜、钼)矿等多种类型, 黑钨矿与白钨矿矿体共存、钨铜共生是该矿区成矿的显著特征。区内出露的沉积地层为新元古代双桥山群浅变质岩,岩浆岩为晋宁期的黑云母花岗闪长岩和燕山期多种岩性的花岗岩。燕山期主要有两期,早期为斑状花岗岩, 成岩年龄约144Ma,如狮尾洞矿床的似斑状白云母(二云母)花岗岩、石门寺矿床的斑状黑云母花岗岩等, 晚期为狮尾洞和大岭上矿床产出的中细粒花岗岩或花岗斑岩, 成岩年龄约135~130Ma。这些岩浆的源区很可能来源于双桥山群的泥质变质沉积岩。富钨铜等成矿元素的双桥山群泥质变质岩部分熔融可初步形成含矿花岗岩浆,岩浆在高度结晶分异过程中则可使得钨铜等金属进一步富集在岩浆热液中,通过两期岩浆与成矿作用,最终形成超大型的大湖塘钨矿床。
  • 加载中
  • [1]

    Blevin PL and Chappell BW. 1992. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Transactions of the Royal Society of Edinburgh: Earth Sciences, 83: 305-316

    [2]

    Blevin PL and Chappell BW. 1995. Chemistry, origin, and evolution of mineralized granites in the Lachlan Fold Belt, Australia: The metallogeny of I- and S-type granites. Economic Geology, 90: 1604-1619

    [3]

    Bureau of Geology and Mineral Resources Jiangxi Province. 1984. Regional Geology of Jiangxi Province. Beijing: Geological Publishing House, 1-921 (in Chinese)

    [4]

    Chen ZH, Xing GF and Guo KY. 2009. Petrogenesis of keratophyes in the Pingshui Group, Zhejiang: Constraints from zircon U-Pb ages and Hf isotopes. Chinese Science Bulletin, 54(9): 1570-1578

    [5]

    Feng CY, Zhang DQ, Xiang XK, Li DX, Qu HY, Liu JN and Xiao Y. 2012. Re-Os isotopic dating of molybdenite from the Dahutang tungsten deposit in northwestern Jiangxi Province and its geological implication. Acta Petrologica Sinica, 28(12): 3858-3868 (in Chinese with English abstract)

    [6]

    Fogliata AS, Báez MA, Hagemann SG, Santos JO and Sardi F. 2012. Post-orogenic, Carboniferous granite-hosted Sn-W mineralization in the Sierras Pampeanas Orogen, Northwestern Argentina. Ore Geology Reviews, 45: 16-32

    [7]

    Gao LZ, Yang MG, Ding XZ, Liu YX, Liu X, Ling LH and Zhang CH. 2008. SHRIMP U-Pb zircon dating of tuff in the Shuangqiaoshan and Heshangzhen groups in South China: Constraints on the evolution of the Jiangnan Neoproterozoic orogenic belt. Geological Bulletin of China, 27(10): 1744-1751 (in Chinese with English abstract)

    [8]

    Gao LZ, Huang ZZ, Ding XZ, Liu YX, Pang JF and Zhang CH. 2012. Zircon SHRIMP U-Pb dating of Xiushui and Majianqiao formations in northwestern Jiangxi Province. Geological Bulletin of China, 31(7): 1086-1093 (in Chinese with English abstract)

    [9]

    Gaspar LM and Inverno CM. 2000. Mineralogy and metasomatic evolution of distal strata-bound scheelite skarns in the Riba de Alva mine, northeastern Portugal. Economic Geology, 95: 1259-1275

    [10]

    Huang LC and Jiang SY. 2012. Zircon U-Pb geochronology, geochemistry and petrogenesis of the porphyric-like muscovite granite in the Dahutang tungsten deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 3887-3900 (in Chinese with English abstract)

    [11]

    Huang LC and Jiang SY. 2013. Geochronology, geochemistry and petrogenesis of the tungsten-bearing porphyritic granite in the Dahutang tungsten deposit, Jiangxi Province. Acta Petrologica Sinica, 28(12): 4323-4335 (in Chinese with English abstract)

    [12]

    Huang LC and Jiang SY. 2014. Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: Geochronology, petrogenesis and their relationship with W-mineralization. Lithos, 202-203: 207-226

    [13]

    Jiang SY, Slack JF and Palmer MR. 2000. Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia. Geology, 28:751-754

    [14]

    Keppler H and Wyllie PJ. 1991. Partitioning of Cu, Sn, Mo, W, U and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, 109: 139-150

    [15]

    Li CH, Xing GF, Jiang YH, Dong YG, Yu XM, Chen ZH, Jiang Y and Chen R. 2010. LA-ICP-MS U-Pb dating of zircons from sulfide-bearing quartz veins in the Pingshui copper deposit, Zhejiang Province, and its geological implications. Geology in China, 37(2): 477-487 (in Chinese with English abstract)

    [16]

    Lin L, Zhan GL and Yu XP. 2006a. The metallogenic prognosis of Dahutang tungsten ore field in Jiangxi. Resources Survey & Environment, 27(1): 25-28 (in Chinese)

    [17]

    Lin L, Yu ZZ, Luo XH and Ding SH. 2006b. The metallogenic prognosis of Dahutang tungsten ore field in Jiangxi. Journal of East China Institute of Technology, 3(Suppl.): 139-142 (in Chinese with English abstract)

    [18]

    Linnen RL. 2005. The effect of water on accessory phase solubility in subaluminous and peralkaline granitic melts. Lithos, 80(1): 267-280

    [19]

    Liu NQ, Huang JF, Qin RJ, Zhang BY and Yu ZD. 2014. Yanashanian tectonic-magmatic hydrothermal metallogenic system and metallogenic mechanism of Dahutang area in Jiangxi. Contributions to Geology and Mineral Resources Research, 29(3): 311-320 (in Chinese with English abstract)

    [20]

    Mao ZH, Cheng YB, Liu JJ, Yuan SD, Wu SH, Xiang XK and Luo XH. 2013. Geology and molybdenite Re-Os age of the Dahutang granite-related veinlets-disseminated tungsten ore field in the Jiangxin Province, China. Ore Geology Reviews, 53: 422-433

    [21]

    Mao ZH, Liu JJ, Mao JW, Deng J, Zhang F, Meng XY, Xiong BK, Xiang XK and Luo XH. 2014. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, Middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Research, doi: org/10.1016/j.gr. 2014.07.005

    [22]

    Maulana A, Watanabe K, Imai A and Yonezu K. 2013. Origin of magnetite- and ilmenite-series granitic rocks in Sulawesi, Indonesia: Magma genesis and regional metallogenic constraint. Procedia Earth and Planetary Science, 6: 50-57

    [23]

    Peng JT, Hu RZ and Burnard PG. 2003. Samarium-neodymium isotope systematics of hydrothermal calcites from the Xikuangshan antimony deposit (Hunan, China): The potential of calcite as a geochronometer. Chemical Geology, 200(1-2): 129-136

    [24]

    Qin Y, Wang DH, Li YH, Wang KY, Wu LB and Mei YP. 2010. Rock-forming and ore-forming ages of the Baizhangyan tungsten-molybdenum ore deposit in Qingyang, Anhui Province and their geological significance. Earth Science Frontiers, 17(2): 170-177 (in Chinese with English abstract)

    [25]

    Robb L. 2005. Introduction to Ore-Forming Processes. Oxford, UK: Blackwell Publishing Company, 1-386

    [26]

    Ruan K, Wang XN, Wu Y, Yang CP, Guan WC and Pan JY. 2013. Relationship between the structure and granite-tungsten mineralization of Dahutang ore field. China Tungsten Industry, 28(5):1-5 (in Chinese with English abstract)

    [27]

    Shabeer KP, Okudaira T, Satish-Kumar M, Binu-Lal SS and Hayasaka Y. 2003. Ca-W metasomatism in high-grade matepelites: An example from scheelite mineralization in Kerala Khondalite Belt, southern India. Mineralogical Magazine, 67(3): 465-483

    [28]

    Song GX, Qin KZ, Li GM, Li XH, Li JX, Liu TB and Chang ZS. 2012. Zircon SIMS U-Pb and molybdenite Re-Os ages of Baizhangyan W-Mo deposit in the Middle-Lower Yangtze Valley: Constraints on tectonic setting of magmatism and mineralization. International Geology Review, 69: 853-868

    [29]

    Tang WG, Li J and Han QL. 2008. Mineral resource estimation in a mine scale: Taking Xingtianling tungsten deposit as an example. Land and Resources Herald, (4): 70-74 (in Chinese)

    [30]

    Teixeira RJS, Neiva AMR, Gomes MEP, Corfu F, Cuesta A and Croudace I. 2012. The role of fractional crystallization in the genesis of early syn-D3, tin-mineralized Variscan two-mica granites from the Carrazeda de Ansiães area, northern Portugal. Lithos, 153: 177-191

    [31]

    Wang CL, Luo SH and Xu YZ. 1987. Geology of the Shizhuyuan Tungsten Polymetallic Deposit. Beijing: Geological Publishing House, 1-173 (in Chinese)

    [32]

    Wang H, Feng CY, Li DX, Xiang XK and Zhou JH. 2015. Sources of granitoids and ore-forming materials of Dahutang tungsten deposit in northern Jiangxi Province: Constraints from mineralogy and isotopic tracing. Acta Petrologica Sinica, 31(3): 725-739 (in Chinese with English abstract)

    [33]

    Wu SH, Wang XD and Xiong BK. 2014. Fluid inclusion studies of the Xianglushan skarn tungsten deposit, Jiangxi Province, China. Acta Petrologica Sinica, 30(1): 178-188 (in Chinese with English abstract)

    [34]

    Xiang XK, Wang SL, Zhang GN, Xiao E. Hu AN, Hu BZ and Pan WJ. 2011. Geological feature of "One Area-Three Ore Types" of a W-Cu-Mo deposit in Shimen Temple area. Zhangjiang Land and Mineral Resources, (Suppl.): 60-71 (in Chinese with English abstract)

    [35]

    Xiang XK, Liu XM and Zhan GN. 2012a. Discovery of Shimensi super-large tungsten deposit and its prospecting significance in Dahutang area, Jiangxi Province. Resources Survey & Environment, 33(3): 141-151 (in Chinese with English abstract)

    [36]

    Xiang XK, Chen MS, Zhan GN, Qian ZY, Li H and Xu JH. 2012b. Metallogenic geological conditions of Shimensi tungsten-polymetallic deposit in north Jiangxi Province. Contributions to Geology and Mineral Resources Research, 27(2): 143-155 (in Chinese with English abstract)

    [37]

    Xiang XK, Wang P, Zhan GN, Sun DM, Zhong B, Qian ZY and Tan R. 2013a. Geological characteristics of Shimensi tungsten polymetallic deposit in northern Jiangxi Province. Mineral Deposits, 32(6): 1171-1187 (in Chinese with English abstract)

    [38]

    Xiang XK, Wang P, Sun DM and Zhong B. 2013b. Isotopic geochemical characteristics of the Shimensi tungsten-polymetallic deposit in northern Jiangxi Province. Acta Geoscientica Sinica, 34(3): 263-271 (in Chinese with English abstract)

    [39]

    Xiang XK, Wang P, Sun DM and Zhong B. 2013c. Re-Os isotopic age of molybdeinte from the Shimensi tungsten polymetallic deposit in northern Jiangxi Province and its geological implications. Geological Bulletin of China, 32(11): 1824-1831 (in Chinese with English abstract)

    [40]

    Yang MG, Wu GA and Zhong NC. 1988. Mesoproterozoic to Late Proterozoic stratigraphic division, characteristics of sedimentary formations and tectonic evolution in South China. Jiangxi Geology, 2(2):112-121 (in Chinese with English abstract)

    [41]

    Yang MG, Wang FN and Zeng Y. 2004. Geology of Metallic Ore Deposits in Northern Jiangxi Province. Beijing: China Land Publishing House, 1-129 (in Chinese with English abstract)

    [42]

    Yuan Y, Liao ZT and Wang C. 2012. Multi-stage tectonic evolution in Jiangnan uplift (Jiuling Terran) from granitoids records. Journal of Tongji University (Natural Science), 40(9): 1415-1420 (in Chinese with English abstract)

    [43]

    Zhang JJ, Mei YP, Wang DH and Li HQ. 2008. Geochronology study on the Xianglushan scheelite deposit in North Jiangxi Province and its geological significance. Acta Geologica Sinica, 82(7): 927-931 (in Chinese with English abstract)

    [44]

    Zhang ZH, Geng L, Jia WB, Gong XD, Du ZZ and Zhang MC. 2014. Regional geological characteristics study of tungsten-polymetallic ore field in Dahutang tungsten polymetallic deposit in North Jiangxi. China Mining Magazine, 23 (Suppl. 2): 133-148 (in Chinese with English abstract)

    [45]

    Zhong YF, Ma CQ, She ZB, Lin GC, Jin XH, Wang RJ, Yang QG and Liu Q. 2005. SHRIMP U-Pb zircon geochronology of the Jiuling granitic complex batholith in Jiangxi Province. Earth Science, 30(6): 685-691 (in Chinese with English abstract)

    [46]

    Zuo QS. 2006. Analysis on the geological conditions and the assessment of the further ore-finding foreground from Dahutang to Liyangdou metallogenic region in the western part of Jiulingshan, Jiangxi Province. Resources Environment & Engineering, 20(4): 348-353 (in Chinese with English abstract)

    [47]

    Zuo QS, Zhang P and Zhou CJ. 2014. Basic characteristics of Yanshanian magmatic rocks and its implication for mineralization in Dahutang ore-concentrated area of Jianxi. Mineral Resources and Geology, 28(5): 519-526 (in Chinese with English abstract)

    [48]

    丰成友, 张德全, 项新葵, 李大新, 瞿泓滢, 刘建楠, 肖晔. 2012. 赣西北大湖塘钨矿床辉钼矿Re-Os同位素定年及其意义. 岩石学报, 28(12): 3858-3868

    [49]

    高林志, 杨明桂, 丁孝忠, 刘燕学, 刘训, 凌联海, 张传恒. 2008. 华南双桥山群和河上镇群凝灰岩中的锆石SHRIMP U-Pb年龄——对江南新元古代造山带演化的制约. 地质通报, 27(10): 1744-1751

    [50]

    高林志,黄志忠,丁孝忠,刘燕学,庞建峰,张传恒. 2012. 赣西北新元古代修水组和马涧桥组SHRIMP锆石U-Pb年龄. 地质通报, 31(7): 1086-1093

    [51]

    黄兰椿, 蒋少涌. 2012. 江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究. 岩石学报, 28(12): 3887-3900

    [52]

    黄兰椿,蒋少涌. 2013. 江西大湖塘富钨花岗斑岩年代学、地球化学特征及成因研究. 岩石学报,28(12): 4323-4335

    [53]

    江西省地质矿产局. 1984. 江西省区域地质志. 北京: 地质出版社, 1-921

    [54]

    李春海, 邢光福, 姜耀辉, 董永观, 俞锡明, 陈志洪, 姜杨, 陈荣. 2010. 浙江平水铜矿含硫化物石英脉锆石U-Pb定年及其地质意义. 中国地质, 37(2): 477-487

    [55]

    林黎, 占岗乐, 喻晓平. 2006a. 江西大湖塘钨(锡)矿田地质特征及远景分析. 资源调查与环境, 27(1): 25-28

    [56]

    林黎, 余忠珍, 罗小洪, 丁少辉. 2006b. 江西大湖塘钨矿田成矿预测. 东华理工学院学报, 3(增): 139-142

    [57]

    刘南庆,黄剑凤,秦润君,张炳远,余振东. 2014. 江西大湖塘地区燕山期构造-岩浆热液成矿系统及其成矿机理. 地质找矿论丛,29(3):311-320

    [58]

    秦燕,王登红,李延河,王克友,吴礼彬,梅玉萍. 2010. 安徽青阳百丈岩钨钼矿床成岩成矿年龄测定及地质意义. 地学前缘,17(2):170-177

    [59]

    唐卫国,李剑,韩巧玲. 2008. 重视矿区矿产资源整合中的资源储量估算——以郴州市北湖区新田岭钨矿区资源整合为例. 国土资源导刊,(4):70-74

    [60]

    阮昆,王晓娜,吴奕,杨春鹏,管伟村,潘家永. 2013.大湖塘矿田构造、花岗岩与钨成矿关系探讨.中国钨业,28(5): 1-5

    [61]

    王昌烈,罗仕徽,胥友志. 1987. 柿竹园钨多金属矿床地质. 北京:地质出版社,1-173

    [62]

    王辉, 丰成友, 李大新, 项新葵, 周建厚. 2015. 赣北大湖塘钨矿成岩成矿物质来源的矿物学和同位素示踪研究,岩石学报,31(3): 725-739

    [63]

    吴胜华, 王旭东, 熊必康. 2014. 江西香炉山矽卡岩型钨矿床流体包裹体研究. 岩石学报,30(1): 178-188

    [64]

    项新葵, 汪石林,詹国年, 肖锷,胡安南,胡笔正,潘文锦. 2011. 石门寺"一区三型"钨铜钼矿床地质特征. 浙江国土资源,(增刊): 60-71

    [65]

    项新葵,刘显沐,詹国年. 2012a 江西省大湖塘石门寺矿区超大型钨矿的发现及找矿意义. 资源调查与环境,33(3): 141-151

    [66]

    项新葵,陈茂松,詹国年,钱振义,李辉,许建华. 2012b 赣北石门寺矿区钨多金属矿床成矿地质条件. 地质找矿论丛,27(2): 143-155

    [67]

    项新葵,王朋,詹国年,孙德明,钟波,钱振义,谭荣. 2013a. 赣北石门寺超大型钨多金属矿床地质特征. 矿床地质,32(6): 1171-1187

    [68]

    项新葵,王朋,孙德明,钟波. 2013b. 赣北石门寺钨多金属矿床同位素地球化学研究. 地球学报,34(3): 263-271

    [69]

    项新葵,王朋,孙德明,钟波. 2013c. 赣北石门寺钨多金属矿床辉钼矿Re-Os同位素年龄及其地质意义. 地质通报,32(11): 1824-1831

    [70]

    杨明桂, 吴安国, 钟南昌. 1988. 华南中晚元古代地层划分、沉积建造特征及其地壳构造演化. 江西地质, 2(2): 112-121

    [71]

    杨明桂, 王发宁,曾勇,2004. 江西北部金属成矿地质.北京:中国大地出版社,1-129

    [72]

    袁媛, 廖宗廷, 王超. 2012. 江南隆起(九岭)多阶段构造演化的花岗岩记录. 同济大学学报(自然科学版), 40(9): 1415-1420

    [73]

    张家菁,梅玉萍,王登红,李华芹. 2008. 赣北香炉山白钨矿床的同位素年代学研究及其地质意义. 地质学报,82(7):927-931

    [74]

    张志辉,耿林,贾文彬,巩小栋,杜泽忠,张明超. 2014. 赣北大湖塘钨多金属矿田区域地质特征研究. 中国矿业,23(增2): 133-148

    [75]

    钟玉芳, 马昌前, 佘振兵, 林广春, 续海金, 王人镜, 杨坤光, 刘强. 2005. 江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学. 地球科学, 30(6): 685-691

    [76]

    左全狮, 2006. 江西九岭山西段大湖塘-李杨斗成矿区成矿地质条件分析及进一步找矿前景评价.资源环境与工程,20(4): 348-353

    [77]

    左全狮, 章平,周才坚. 2014. 江西大湖塘矿集区燕山期岩浆岩基本特征及其与成矿的关系. 矿产与地质,28(5): 519-526

  • 加载中
计量
  • 文章访问数:  9308
  • PDF下载数:  8409
  • 施引文献:  0
出版历程
收稿日期:  2014-12-01
修回日期:  2015-01-28
刊出日期:  2015-03-31

目录