浆液过渡态流体在矽卡岩型钨矿成矿过程中的作用——以湖南柿竹园钨锡多金属矿为例

祝新友, 王京彬, 王艳丽, 陈细音. 浆液过渡态流体在矽卡岩型钨矿成矿过程中的作用——以湖南柿竹园钨锡多金属矿为例[J]. 岩石学报, 2015, 31(3): 891-905.
引用本文: 祝新友, 王京彬, 王艳丽, 陈细音. 浆液过渡态流体在矽卡岩型钨矿成矿过程中的作用——以湖南柿竹园钨锡多金属矿为例[J]. 岩石学报, 2015, 31(3): 891-905.
ZHU XinYou, WANG JingBin, WANG YanLi, CHEN XiYin. The role of magma-hydrothermal transition fluid in the skarn-type tungsten mineralization process: A case study from the Shizhuyuan tungsten and tin polymetallic ore deposit[J]. Acta Petrologica Sinica, 2015, 31(3): 891-905.
Citation: ZHU XinYou, WANG JingBin, WANG YanLi, CHEN XiYin. The role of magma-hydrothermal transition fluid in the skarn-type tungsten mineralization process: A case study from the Shizhuyuan tungsten and tin polymetallic ore deposit[J]. Acta Petrologica Sinica, 2015, 31(3): 891-905.

浆液过渡态流体在矽卡岩型钨矿成矿过程中的作用——以湖南柿竹园钨锡多金属矿为例

  • 基金项目:

    本文受国家科技支撑项目(2011BAB04B08)、国土资源部公益性行业科研专项(201411024-1)和全国危机矿山接替资源找矿项目(20089927)联合资助.

The role of magma-hydrothermal transition fluid in the skarn-type tungsten mineralization process: A case study from the Shizhuyuan tungsten and tin polymetallic ore deposit

  • 湖南杮竹园是世界著名的大型矽卡岩型锡钨多金属矿床,产于千里山碱长花岗岩岩体南部接触带。矽卡岩中广泛发育网脉状碱交代脉和少量花岗岩脉、云英岩脉等各类脉体。碱交代脉主体由钾长石、萤石、少量石英、磁铁矿、黑钨矿、白钨矿及花岗岩构成,以往被统称为"云英岩脉"。其中早阶段碱交代脉中央发育花岗岩,边部为钾长石-萤石-黑钨矿,脉体两侧发育石榴子石透辉石矽卡岩化,对应矽卡岩阶段。晚阶段碱交代脉主要成分为钾长石、萤石,脉体及两侧出现大量阳起石、绿帘石、磁铁矿、白钨矿及辉钼矿、辉铋矿、自然铋等,对应退变质氧化物阶段。空间上,碱交代脉分布于矽卡岩和矽卡岩化大理岩中,不进入岩体。自花岗岩体→岩脉→碱交代脉→矽卡岩,CaO、TiO2、成矿元素W、Bi、Mo、Cu、Pb、Zn以及Sr、Ba等元素含量增高,显示出成矿元素向热液中富集,且岩浆和矽卡岩受到碳酸盐岩围岩的影响。碱交代脉的组构显示出其形成于富含成矿物质和挥发份流体的岩浆,其中广泛发育熔融包裹体和熔流包裹体,显示其浆液过渡态流体的成因性质。从岩浆晚期分异演化→热液阶段是连续演化的过程,块状云英岩和矽卡岩阶段,岩浆并未完全固结,成矿作用自岩浆固结之前已经开始。总结了杮竹园矿床成矿模型:碱长花岗岩岩浆演化晚期分异出的高度富含挥发份的熔浆,在岩体顶部聚集,部分形成似伟晶岩(壳)和块状云英岩以及条带状硅灰石符山石矽卡岩。进一步聚集以及矽卡岩化产生大量CO2引起大规模隐爆,富含挥发份的岩浆或浆液过渡态流体沿隐爆形成的碎裂裂隙进入碳酸盐岩围岩,与碳酸盐岩不断发生反应,在脉体边部形成钾长石化以及大范围的石榴子石透辉石矽卡岩化。至退变质氧化物阶段,随着岩浆冷凝和温度、压力的降低,地下水大范围参与,成矿流体逐渐转变为热液性质,形成大量阳起石、磁铁矿、白钨矿及钼、铋硫化物。硫化物阶段,大量的大气降水参与成矿,温度、盐度进一步降低,在矽卡岩及其外侧的碳酸盐岩中形成铅锌硫化物矿石。
  • 加载中
  • [1]

    Bowman JR, Covert JJ, Clark AH and Mathieson GA. 1985. The Cantung E zone scheelite skarn orebody, tungsten, Northwest Territories: Oxygen, hydrogen, and carbon isotope studies. Economic Geology, 80(7): 1872-1895

    [2]

    Chen J. 1993. Discontinuous evolution of the Shizhuyuan W, Mo, Bi and Sn skarn system in South China: Fluid inclusion studies. Journal of Nanjing University (Natural Sciences Edition), 29(3): 439-447 (in Chinese with English abstract)

    [3]

    Chen J and Wang HN. 2004. Geochemistry. Beijing: Science Press (in Chinese)

    [4]

    Chen YC, Pei RF, Zhang HL et al. 1989. The Geology of Non-ferrous and Rear Metal Deposits Related to Mesozoic Granitoids in Nanling Region. Beijing: Geological Publishing House, 414-463 (in Chinese)

    [5]

    Du YS, Cao Y, Zhang ZY, Pang ZS and Li DP. 2011. Mesozoic in-situ and external skarn magmatic-hydrothermal mineralization in the Anhui segment of the Lower Yangtze metallogenic belt. Acta Geologica Sinica, 85(5): 699-711 (in Chinese with English abstract)

    [6]

    Ferreira VP, Sial AN and Whitney JA. 1994. Large-scale silicate liquid immiscibility: A possible example from northeastern Brazil. Lithos, 33(4): 285-302

    [7]

    Heinrich CA. 1990. The chemistry of hydrothermal tin (-tungsten) ore deposition. Economic Geology, 85(3): 529-550

    [8]

    Heinrich CA. 1995. Geochemical evolution and hydrothermal mineral deposition in Sn (-W-base metal) and other granite-related ore systems, some conclusions from Australian examples. In: Thompson JFH (ed.). Magmas, Fluids, and Ore Deposits. Mineral Association of Canada Short Course Series, 23: 203-220

    [9]

    Hua LB, Ding MH, Zhen YQ et al. 2010. Characters of the skarn metasomatic column in the Middle and Lower Reaches of the Yangtze River region and deep prospecting. Geological Survey and Research, 33(1): 115-129 (in Chinese with English abstract)

    [10]

    Huang WL. 1988. The geochemistry study of ore fluid in Dongpo polymetallic deposit, Hunan Province. Ph. D. Dissertation. Guiyang: Institute of Geochemistry,Chinese Academy of Sciences (in Chinese)

    [11]

    Kelly WC and Rye RO. 1979. Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Economic Geology, 74(8): 1721-1822

    [12]

    Landis GP and Rye RO. 1974. Geologic, fluid inclusion, and stable isotope studies of the Pasto Buena tungsten-base metal ore deposit, northern Peru. Economic Geology, 69(7): 1025-1059

    [13]

    Li BL, Xie YH and Wang YL. 1983. New understanding of porphyrite type iron ore deposits acquired through inclusion studies. Mineral Deposits, 2(2): 25-32 (in Chinese with English abstract)

    [14]

    Li HY, Mao JW, Sun YL, Zou XQ, He HL and Du AD. 1996. Re-Os isotopic chronology of molybdenites in the Shizhuyuan polymetallic tungsten deposit, southern Hunan. Geological Review, 42(3): 261-267 (in Chinese with English abstract)

    [15]

    Li ST, Wang JB, Zhu XY, Wang YL, Han Y and Guo NN. 2011. Chronological characteristics of the Yaogangxian composite pluton in Hunan Province. Geology and Exploration, 47(2): 143-150 (in Chinese with English abstract)

    [16]

    Li XH, Liu DY, Sun M, Li WX, Liang XR and Liu Y. 2004. Precise Sm-Nd and U-Pb isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China. Geol. Mag., 141(2): 225-231

    [17]

    Lin XD, Zhang DH and Zhang CL. 1986. A discussion on the property of ore-forming fluid of the wolframite quartz-vein in the Yaogangxian tungsten deposit, Yizhang County, Hunan Province. Earth Science, 11(2): 153-160 (in Chinese with English abstract)

    [18]

    Liu HF and Lu Q. 2008. Distribution of skarn minerals and Sn in the epidote in Jinchuantang mining area, Hunan. Earth Science, 33(2): 210-218 (in Chinese with English abstract)

    [19]

    Liu XF, Yuan SD and Wu SH. 2012. Re-Os dating of the molybdenite from the Jinchuantang tin-bismuth deposit in Hunan Province and its geological significance. Acta Petrologica Sinica, 28(1): 39-51 (in Chinese with English abstract)

    [20]

    Liu YM, Wang CL, Xu YZ and Lu HZ. 1995. Metallization and metallogenetic conditions of Shizhuyuan ultra-large Tungsten deposit. Hunan Geology, 14(4): 211-219 (in Chinese with English abstract)

    [21]

    Liu YM, Dai TM, Lu HZ, Xu YZ, Wang CL and Kang WQ. 1997. 40Ar-39Ar and Sm-Nd isotope dating of rock-forming, ore-forming of the Qianlishan granites. Science in China (Series D), 27(5): 425-430 (in Chinese)

    [22]

    Lu HZ, Liu YM, Wang CL, Xu YZ and Li HQ. 2003. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Economic Geology, 98(5): 955-974

    [23]

    Mao JW, Li HY and Pei RF. 1995. Nd-Sr isotopic and petrogenetic studies of the Qianlishan granite stock, Hunan Province. Mineral Deposits, 14(3): 235-242 (in Chinese with English abstract)

    [24]

    Mao JW, Li HY, Shimazaki H, Raimbault L and Guy B. 1996. Geology and metallogeny of the Shizhuyuan skarn-greisen deposit, Hunan Province, China. International Geology Review, 38(11): 1020-1039

    [25]

    Mao JW. 1997. Metallogenic speciality of super giant polymetallic Tungsten deposit: Taking the Shizhuyuan deposit as an example. Scientia Geologica Sinica, 32(3): 351-363 (in Chinese with English abstract)

    [26]

    Mao JW, Li HY, Song XX et al. 1998. Geology and Geochemistry of the Shizhuyuan W, Sn, Mo, Bi Polymetallic Deposits, Hunan Province. Beijing: Geological Publishing House, 1-215 (in Chinese)

    [27]

    Pollard PJ and Taylor RG. 1986. Progressive evolution of alteration and tin mineralization: Controls by interstitial permeability and fracture-related tapping of magmatic fluid reservoirs in tin granites. Economic Geology, 81(7): 1795-1800

    [28]

    Rajesh HM. 2003. Outcrop-scale silicate liquid immiscibility from an alkali syenite (A-type granitoid)-pyroxenite association near Puttetti, Trivandrum Block, South India. Contributions to Mineralogy and Petrology, 145(5): 612-627

    [29]

    Rasmussen KL, Lentz DR, Falck H and Pattison DRM. 2011. Felsic magmatic phases and the role of late-stage aplitic dykes in the formation of the world-class Cantung tungsten skarn deposit, Northwest Territories, Canada. Ore Geology Reviews, 41(1): 75-111

    [30]

    Roberts S, Sanderson DJ and Gumiel P. 1998. Fractal analysis of Sn-W mineralization from Central Iberia: Insights into the role of fracture connectivity in the formation of an ore deposit. Economic Geology, 93(3): 360-365

    [31]

    Sanderson DJ, Roberts S, Gumiel P and Greenfield C. 2008. Quantitative analysis of tin- and tungsten-bearing sheeted vein systems. Economic Geology, 103(5): 1043-1056

    [32]

    Song XX and Zhang JK. 1990. Study of fluid inclusions of the Shizhuyuan-Yejiwei W-Sn-Mo-Bi-polymetallic deposit in southern Hunan. Mineral Deposits, 9(4): 332-338 (in Chinese with English abstract)

    [33]

    Thomas R, Föerster HJ and Heinrich W. 2003. The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: A melt and fluid-inclusion study. Contributions to Mineralogy and Petrology, 144(4): 457-472

    [34]

    Tong LH. 2013. The petrogenesis and metallogenetic model of Qianlishan tin-tungsten bearing granite in Hunan, China. Master Degree Thesis. Beijing: China University of Geosciences (in Chinese)

    [35]

    Veksler IV and Thomas R. 2002. An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contributions to Mineralogy and Petrology, 143(6): 673-683

    [36]

    Veksler IV, Thomas R and Schmidt C. 2002. Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite. American Mineralogist, 87: 775-779

    [37]

    Veksler IV. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: A summary of experimental studies. Chemical Geology, 210(1-4): 7-31

    [38]

    Wang CL, Luo SW, Xu YZ et al. 1987. Geology of the Shizhuyuan Tungsten Polymetallic Deposit. Beijing: Geological Publishing House (in Chinese)

    [39]

    Wang JB. 1990. Features and origin of the Xiangyuan tin deposit. Geology and Prospecting, 26(9): 17-20 (in Chinese with English abstract)

    [40]

    Wang LK, Zhu WF and Zhang SL. 1983. Liquid segregation-one of the main modes of differentiations of the Nanling granite. Geological Review, 29(2): 65-373 (in Chinese with English abstract)

    [41]

    Wang LK, Wang HF and Huang ZL. 1997. Discovery on the three end-members’ components of Li-F granite rock and its liquid-state separation origin. Geology and Prospecting, 33(3): 11-20 (in Chinese with English abstract)

    [42]

    Wang LK and Huang ZL. 2000. Liquid Segregation and Experiments of Li-F Granites. Beijing: Science Press, 1-280 (in Chinese)

    [43]

    Wang SF and Zhang QL. 1988. Overview of Ore Deposit of Shizhuyuan, Hunan Province. Beijing: Science Press, 1-115 (in Chinese)

    [44]

    Wood SA and Samson IM. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Economic Geology, 95(1): 143-182

    [45]

    Xia WH, Zhang JT and Feng ZW. 1989. Geology of Rare Metal Ore Deposits for the Nanling Granite Type. Wuhan: Publishing House of China University of Geosciences, 14-115 (in Chinese)

    [46]

    Xiao XJ, Gu LX and Ni P. 2002. Multi-episode fluid boiling in the Shizishan copper-gold deposit at Tongling, Anhui Province: It’s bearing on ore-formation. Science in China (Series D), 45(1): 34-44

    [47]

    Yang CQ. 1980. W-Mo-Bi-polymetallic net veined greisen-skarn deposit of Dongpo, Hunan Province. Bulletin of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1(1): 76-94 (in Chinese)

    [48]

    Yu CW, Cen K, Gong QJ et al. 2003. Research on the complexity of ore formation for the super-large tungsten-polymetallic ore deposit of Shizhuyuan, Hunan Province. Earth Science Frontiers, 10(3): 15-39 (in Chinese with English abstract)

    [49]

    Yuan JQ, Zhu SQ and Zhai YS. 1985. Mineral Deposits. Beijing: Geological Publishing House, 1-346 (in Chinese)

    [50]

    Yuvan J, Shelton K and Falck H. 2007. Geochemical investigations of the high-grade quartz-scheelite veins of the Cantung Mine, Northwest Territories. In: Wright DF, Lemkow D and Harris JR (eds.). Mineral and Energy Resource Assessment of the Greater Nahanni Ecosystem under Consideration for the Expansion of the Nahanni National Park Reserve, Northwest Territories. Geological Survey of Canada, Open File 5344, 177-190

    [51]

    Zaw K and Singoyi B. 2000. Formation of magnetite-scheelite skarn mineralization at Kara, northwestern Tasmania: Evidence from mineral chemistry and stable isotopes. Economic Geology, 95(6): 1215-1230

    [52]

    Zhai YS, Yao SZ and Cai KQ. 2011. Mineral Deposits. Beijing: Geological Publishing House, 1-345 (in Chinese)

    [53]

    Zhang DH. 1988. On the liquid fractionation origin of wolframite quartz veins. Geology and Prospecting, 24(4): 15-20 (in Chinese with English abstract)

    [54]

    Zhao B, Li YS and Zhao JS. 1995. The evidence from inclusions for magma-genetic skarn. Geochimica, 24(2): 198-200 (in Chinese with English abstract)

    [55]

    Zhao B, Zhao JS, Zhang CZ et al. 2002. Characteristics of melt inclusions in skarn minerals from Fe, Cu(Au) and Au(Cu)ore deposits in the region from Daye to Jiujiang. Science in China (Series D), 32(7): 550-561 (in Chinese)

    [56]

    Zhao JS and Newberry RJ. 1996. Novel knowledge on the origin and mineralization of skarns from Shizhuyuan. Acta Mineralogica Sinica, 16(4): 442-449 (in Chinese with English abstract)

    [57]

    Zhao JS, Qiu XL and Xia B. 2007. Microscopic characteristics and Raman spectra analysis of a liquid-melt inclusion in quartz in net veined greisen of the super-large tungsten-polymetallic ore deposit of Shizhuyuan, Hunan Province. Paper of International Academic Conferences on Geological Fluid and Fluid Inclusions Studies (in Chinese)

    [58]

    Zhao JS, Xia B, Qiu XL et al. 2008. Finding of melt inclusion in garnet from skarn of Shilu iron deposit, Hainan Province. Acta Petrologica Sinica, 24(1): 149-160 (in Chinese with English abstract)

    [59]

    Zhao YM, Bi CS and Li DX. 1983. The characteristics of volatile components and alkaline metasomatism in main skarn-type iron deposits of China and their role in ore deposit formation. Geological Review, 29(1): 66-74 (in Chinese with English abstract)

    [60]

    Zhao YM, Lin WW, Bi CS et al. 1990. Skarn Deposits of China. Beijing: Geological Publishing House, 1-354 (in Chinese)

    [61]

    Zhao YM. 2002. Some new important advances in study of skarn deposits. Mineral Deposits, 21(2): 113-120, 136 (in Chinese with English abstract)

    [62]

    Zhu JC, Rao B, Xiong XL et al. 2002. Comparison and genetic interpretation of Li-F rich, rare-metal bearing granitic rocks. Geochimica, 31(2): 141-152 (in Chinese with English abstract)

    [63]

    Zhu XY, Wang JB, Wang YL et al. 2012a. Characteristics of alkali feldspar granite in tungsten (tin) deposits of Nanling region. Geology in China, 39(2): 359-381 (in Chinese with English abstract)

    [64]

    Zhu XY, Wang JB, Wang YL, Cheng XY and Fu QB. 2012b. Sulfur and lead isotope constraints on ore formation of the Huangshaping W-Mo-Bi-Pb-Zn polymetallic ore deposit, Hunan Province, South China. Acta Petrologica Sinica, 28(12): 3809-3822 (in Chinese with English abstract)

    [65]

    Zhu XY, Wang JB, Wang YL, Cheng XY, He P, Fu QB and Li ST. 2013. Characteristics of greisen inclusions in alkali feldspar granite of Yaogangxian tungsten deposit. Mineral Deposits, 32(3): 533-544 (in Chinese with English abstract)

    [66]

    Zhu YF, Zeng YS and Ai YF. 1995. The experimental study about the liquid immiscibility and ore-forming process in felsic magma. Acta Petrologica Sinica, 11(1): 1-8 (in Chinese with English abstract)

    [67]

    Zhuang YQ, Wang RZ and Yang SP. 1996. Gejiu Tin (Cu) Polymetallic Ore Deposits in Yunnan. Beijing: Seism Press, 1-183 (in Chinese)

    [68]

    陈骏. 1993. 柿竹园钨锡矽卡岩矿床中成矿流体的不连续演化现象. 南京大学学报(自然科学版), 29(3): 439-447

    [69]

    陈骏, 王鹤年. 2004. 地球化学. 北京: 科学出版社

    [70]

    陈毓川, 裴荣富, 张宏良等. 1989. 南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质. 北京: 地质出版社, 414-463

    [71]

    杜杨松, 曹毅, 张智宇, 庞振山, 李大鹏. 2012. 安徽沿江地区中生代原地和异地矽卡岩岩浆-热液成矿作用. 地质学报, 85(5): 699-711

    [72]

    花林宝, 丁梅花, 真允庆等. 2010. 长江中下游地区的矽卡岩交代柱特征与深部找矿. 地质调查与研究, 33(1): 115-129

    [73]

    黄伟林. 1988. 湖南东坡多金属矿田成矿流体地球化学研究. 博士学位论文.贵阳:中国科学院地球化学研究所

    [74]

    李秉伦, 谢奕汉, 王英兰. 1983. 根据矿物中包裹体的研究对玢岩铁矿的新认识. 矿床地质, 2(2): 25-32

    [75]

    李红艳, 毛景文, 孙亚利, 邹晓秋, 何红蓼, 杜安道. 1996. 柿竹园钨多金属矿床的Re-Os同位素等时线年龄研究. 地质论评, 42(3): 261-267

    [76]

    李顺庭, 王京彬, 祝新友, 王艳丽, 韩英, 郭宁宁. 2011. 湖南瑶岗仙复式岩体的年代学特征. 地质与勘探, 47(2): 143-150

    [77]

    林新多, 张德会, 章传玲. 1986. 湖南宜章瑶岗仙黑钨矿石英脉成矿流体性质的探讨. 地球科学, 11(2): 153-160

    [78]

    刘惠芳, 陆琦. 2008. 湖南金船塘矿区矽卡岩矿物及Sn元素在绿帘石中的分布特征. 地球科学, 33(2): 210-218

    [79]

    刘晓菲, 袁顺达, 吴胜华. 2012. 湖南金船塘锡铋矿床辉钼矿Re-Os同位素测年及其地质意义. 岩石学报, 28(1): 39-51

    [80]

    刘义茂, 王昌烈, 胥友志, 卢焕章. 1995. 柿竹园超大型钨矿床的成矿作用与成矿条件. 湖南地质, 14(4): 211-219

    [81]

    刘义茂, 戴橦谟, 卢焕章, 胥友志, 王昌烈, 康卫清. 1997. 千里山花岗岩成岩成矿的40Ar-39Ar和Sm-Nd同位素年龄. 中国科学(D辑), 27(5): 425-430

    [82]

    毛景文, 李红艳, 裴荣富. 1995. 湖南千里山花岗岩体的Nd-Sr同位素及岩石成因研究. 矿床地质, 14(3): 235-242

    [83]

    毛景文. 1997. 超大型钨多金属矿床成矿特殊性——以湖南柿竹园矿床为例. 地质科学, 32(3): 351-363

    [84]

    毛景文, 李红艳, 宋学信等. 1998. 湖南柿竹园钨锡钼铋多金属矿床地质与地球化学. 北京: 地质出版社, 1-215

    [85]

    宋学信, 张景凯. 1990. 柿竹园-野鸡尾钨锡钼铋多金属矿床流体包裹体初步研究. 矿床地质, 9(4): 332-338

    [86]

    仝立华. 2013. 湖南郴州千里山含钨锡金属花岗岩岩石成因及成矿模式探讨. 硕士学位论文. 北京: 中国地质大学

    [87]

    王昌烈, 罗仕微, 胥友志等. 1987. 柿竹园钨多金属矿床地质. 北京: 地质出版社

    [88]

    王京彬. 1990. 湘源锡矿床的特征及其成因探讨. 地质与勘探, 26(9): 17-20

    [89]

    王联魁, 朱为方, 张绍立. 1983. 液态分离——南岭花岗岩分异方式之一. 地质论评, 29(2): 65-373

    [90]

    王联魁, 王慧芬, 黄智龙. 1997. 锂氟花岗质岩石三端元组分的发现及其液态分离成因. 地质与勘探, 33(3): 11-20

    [91]

    王联魁, 黄智龙. 2000. Li-F花岗岩液态分离与实验. 北京: 科学出版社, 1-280

    [92]

    王书凤, 张绮玲. 1988. 柿竹园矿床地质概论. 北京: 科学出版社, 1-115

    [93]

    夏卫华, 章绵统, 冯志文等. 1989. 南岭花岗岩型稀有金属矿床地质. 武汉: 中国地质大学出版社, 14-115

    [94]

    肖新建,顾连兴,倪培. 2002. 安徽铜陵狮子山铜、金矿床流体多次沸腾及其与成矿的关系.中国科学(D辑),32(3): 199-206

    [95]

    杨超群. 1980. 湖南东坡网状云英-矽卡岩复合型钨钼铋矿床. 中国地质科学院宜昌地质矿产研究所分刊, 1(1): 76-94

    [96]

    於崇文, 岑况, 龚庆杰等. 2003. 湖南郴州柿竹园超大型钨多金属矿床的成矿复杂性研究. 地学前缘, 10(3): 15-39

    [97]

    袁见齐, 朱上庆, 翟裕生. 1985. 矿床学. 北京: 地质出版社, 1-346

    [98]

    翟裕生, 姚书振, 蔡克勤. 2011. 矿床学.第三版. 北京: 地质出版社, 1-345

    [99]

    张德会. 1988. 试论石英脉型黑钨矿床的液态分离成因. 地质与勘探, 24(4): 15-20

    [100]

    赵斌, 李院生, 赵劲松. 1995. 岩浆成因夕卡岩的包裹体证据. 地球化学, 24(2): 198-200

    [101]

    赵斌, 赵劲松, 张重泽等. 2002. 大冶-九江地区Fe, Cu(Au)和Au(Cu)矿床夕卡岩矿物里的熔融包裹体特征. 中国科学(D辑), 32(7): 550-561

    [102]

    赵劲松, Newberry RJ. 1996. 对柿竹园矽卡岩成因及其成矿作用的新认识. 矿物学报, 16(4): 442-449

    [103]

    赵劲松, 丘学林, 夏斌. 2007. 柿竹园多金属超大型矿床脉状云英岩石英里的一个流体-熔融包裹体显微镜下特征和拉曼光谱分析. 地质流体和流体包裹体研究国际学术会议暨第十五届全国流体包裹体会议论文集

    [104]

    赵劲松, 夏斌, 丘学林等. 2008. 海南岛石碌矽卡岩铁矿石中石榴子石的熔融包裹体及其意义. 岩石学报, 24(1): 149-160

    [105]

    赵一鸣, 毕承思, 李大新. 1983. 中国主要矽卡岩铁矿床的挥发组份和碱质交代特征及其在成矿中的作用. 地质论评, 29(1): 66-74

    [106]

    赵一鸣, 林文蔚, 毕承思等. 1990. 中国矽卡岩矿床. 北京: 地质出版社, 1-354

    [107]

    赵一鸣. 2002. 夕卡岩矿床研究的某些重要新进展. 矿床地质, 21(2): 113-120, 136

    [108]

    朱金初, 饶冰, 熊小林等. 2002. 富锂氟含稀有矿化花岗质岩石的对比和成因思考. 地球化学, 31(2): 141-152

    [109]

    祝新友, 王京彬, 王艳丽等. 2012a. 南岭锡钨多金属矿区碱长花岗岩的厘定及其意义. 中国地质, 39(2): 359-381

    [110]

    祝新友, 王京彬, 王艳丽, 陈细音, 傅其斌. 2012b. 湖南黄沙坪W-Mo-Bi-Pb-Zn多金属矿床的硫铅同位素地球化学研究. 岩石学报, 28(12): 3809-3822

    [111]

    祝新友, 王京彬, 王艳丽, 程细音, 何鹏, 傅其斌, 李顺庭. 2013. 石英脉型钨矿床中云英岩析离体及岩浆液态分异成矿研究——以湖南瑶岗仙钨矿床为例. 矿床地质, 32(3): 533-544

    [112]

    朱永峰, 曾贻善, 艾永富. 1995. 长英质岩浆中液态不混溶与成矿作用关系的实验研究. 岩石学报, 11(1): 1-8

    [113]

    庄永秋, 王任重, 杨树培. 1996. 云南个旧锡铜多金属矿床. 北京: 地震出版社, 1-183

  • 加载中
计量
  • 文章访问数:  8217
  • PDF下载数:  7293
  • 施引文献:  0
出版历程
收稿日期:  2014-04-22
修回日期:  2014-10-20
刊出日期:  2015-03-31

目录