川北元坝地区长兴组白云石化作用机制及其对储层形成的影响

孟万斌, 武恒志, 李国蓉, 张小青, 吕正祥. 川北元坝地区长兴组白云石化作用机制及其对储层形成的影响[J]. 岩石学报, 2014, 30(3): 699-708.
引用本文: 孟万斌, 武恒志, 李国蓉, 张小青, 吕正祥. 川北元坝地区长兴组白云石化作用机制及其对储层形成的影响[J]. 岩石学报, 2014, 30(3): 699-708.
MENG WanBin, WU HengZhi, LI GuoRong, ZHANG XiaoQing, LÜ ZhengXiang. Dolomitization mechanisms and influence on reservoir development in the Upper Permian Changxing Formation in Yuanba area, northern Sichuan Basin[J]. Acta Petrologica Sinica, 2014, 30(3): 699-708.
Citation: MENG WanBin, WU HengZhi, LI GuoRong, ZHANG XiaoQing, LÜ ZhengXiang. Dolomitization mechanisms and influence on reservoir development in the Upper Permian Changxing Formation in Yuanba area, northern Sichuan Basin[J]. Acta Petrologica Sinica, 2014, 30(3): 699-708.

川北元坝地区长兴组白云石化作用机制及其对储层形成的影响

  • 基金项目:

    本文受油气藏地质及开发工程国家重点实验室自主科研项目(国重科研C04)资助.

详细信息

Dolomitization mechanisms and influence on reservoir development in the Upper Permian Changxing Formation in Yuanba area, northern Sichuan Basin

More Information
  • 通过岩心观察和薄片鉴定,在岩石学和矿物学特征分析基础上,结合白云石有序度测定,碳、氧同位素、锶同位素和稀土元素组成及配分模式分析,详细研究了川北元坝地区长兴组白云石化作用的特征、机制及模式,结果表明长兴组发育微晶白云石(岩)、粉-中晶他形白云石、粉-中晶自形白云石和异形白云石等四种类型,它们的有序度由低变高;白云石的碳、氧同位素、锶同位素和稀土元素组成及配分模式特征表明,长兴组微晶白云石(岩)、粉-中晶他形白云石、粉-中晶自形白云石主要形成于浓缩海水环境、正常海水环境、或者与正常海水相似的地层水环境中,并遭受过热液地质作用的改造,从微晶白云石(岩)→粉-中晶他形白云石→粉-中晶自形白云石是一个沉积埋藏过程中多阶段白云石化作用的产物,异形白云石则由热液作用形成;根据长兴组白云石的矿物学和地球化学特征及白云石化作用与层序和沉积相之间的关系,分别可以用准同生期蒸发泵白云石化作用模式、准同生期渗透回流白云石化作用模式、成岩早期浅埋藏状态下地层水白云石化作用模式和成岩晚期热液白云石化作用模式来解释微晶白云石(岩),粉-中晶他形白云石、粉-中晶自形白云石和异形白云石的形成。白云石化作用是有利于长兴组储层形成的建设性成岩作用。
  • 加载中
  • [1]

    Badiozamani K. 1973. The Dorag dolomitization model-application to the Middle Ordovician of Wisconsin. Journal of Sedimentary Petrology, 43(4): 965-984

    [2]

    Brown A. 1997. Porosity variation in carbonates as a function of depth: Mississippian Madison Group, Williston Basin. In: Kupecz JA, Gluyas J and Bloch S (eds.). Reservoir Quality Prediction in Sandstones and Carbonates: AAPG Memoir 69, 29-46

    [3]

    Dang LR, Zheng RC, Zheng C, Wen QB, Chen SH and Liao J. 2011. Origins and diagenetic system of dolomite reservoirs in the Upper Permian Changxing Fm., eastern Sichuan Basin. Natural Gas Industry, 31(11): 17-52 (in Chinese with English abstract)

    [4]

    Ding ZJ, Liu CQ, Yao SZ and Zhou ZG. 2000. Rare earth elements compositions of high temperature hydrothermal fluids in sea floor and control factors. Advance in Earth Sciences, 15(6): 307-312 (in Chinese with English abstract)

    [5]

    Feng SB, Zhou HR, Yan CH, Peng Y, Yuan XQ and He J. 2007. Geochemical characteristics of hydrothermal cherts of Erlangping Group in East Qinling and their geologic significance. Acta Sedimentologica Sinica, 25(4): 564-573 (in Chinese with English abstract)

    [6]

    Guo JC, Ma HZ, Song EY and Chen N. 2008. Applications of lacustrine carbonate in paleoenvironment research. Journal of Salt Lake Research, 16(2): 66-72 (in Chinese with English abstract)

    [7]

    Guo TL. 2011. Reservoir characteristics and its controlling factors of the Changxing Formation reservoir in the Yuanba gas field, Sichuan Basin, China. Acta Petrologica Sinica, 27(8): 2381-2391 (in Chinese with English abstract)

    [8]

    Hardie LA. 1987. Dolomitization: A critical view of some current views. Journal of Sedimentary Research, 57(1): 166-183

    [9]

    Hu WX, Chen Q, Wang XL and Cao J. 2010. REE models for the discrimination of fluids in the formation and evolution of dolomite reservoirs. Oil & Gas Geology, 31(6): 810-818 (in Chinese with English abstract)

    [10]

    Huang SJ, Huang Y, Lan YF and Huang KK. 2011. A comparative study on strontium isotope composition of dolomites and their coeval seawater in the Late Permian-Early Triassic, NE Sichuan Basin. Acta Petrologica Sinica, 27(12): 3831-3842 (in Chinese with English abstract)

    [11]

    Huang SJ, Huang KK, LÜ J and Lan YF. 2012. Carbon isotopic composition of Early Triassic marine carbonates, eastern Sichuan Basin, China. Scientia Sinica (Terrae), 42(10): 1508-1522 (in Chinese)

    [12]

    Kamber BS and Webb GE. 2001. The geochemistry of Late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history. Geochim. Cosmochim. Acta, 65(15): 2509-2525

    [13]

    Lucia FJ and Major RP. 1994. Porosity evolution through hypersaline reflux dolomitization. In: Purser B, Tucker M and Zenger D (eds.). Dolomite: A Volume in Honor of Dolomieu. Oxford: Blackwell Publishing Ltd., 325-341

    [14]

    Ma YS, Mu CL, Tan QY and Yu Q. 2006a. A discussion on Kaijiang-Liangping ocean trough. Oil & Gas Geology, 27(3): 326-331 (in Chinese with English abstract)

    [15]

    Ma YS, Mu CL, Guo XS, Tan QY and Yu Q. 2006b. Characteristic and framework of the Changxingian sedientation in the northeastern Sichuan Basin. Geological Review, 52(1): 25-29 (in Chinese with English abstract)

    [16]

    Ma YS, Guo XS, Guo TL, Huang R, Cai XY and Li GX. 2007. The Puguang gas field: New giant discovery in the mature Sichuan Basin, Southwest China. AAPG Bulletin, 91(5): 627-643

    [17]

    Ma YS, Mou CL, Tan QY, Yu Q and Wang RH. 2007. Reef-bank features of Permian Changxing Formation and Triassic Feixianguan Formation in the Daxian-Xuanhan area, Sichuan Province, South China and constraint for the reservoirs of natural gas. Earth Science Frontiers, 14(1): 182-192 (in Chinese with English abstract)

    [18]

    Ma YS, Zhang SC, Guo TL, Zhu GY, Cai XY and Li MW. 2008. Petroleum geology of the Puguang sour gas field in the Sichuan Basin, SW China. Marine and Petroleum Geology, 25(4-5): 357-370

    [19]

    Murray RC. 1960. Origin of porosity in carbonate rocks. Journal of Sedimentary Petrology, 30(1): 59-84

    [20]

    Purser BH, Brown A and Aissaoui DM. 1994. Nature, origins and evolution of porosity in dolomites. In: Purser B, Tucker M and Zenger D (eds.). Dolomites: A Volume in Honor of Dolomieu. Oxford, UK: Blackwell Publishing Ltd., 283-308

    [21]

    Runnells DD. 1969. Diagenesis, chemical sediments, and the mixing of natural waters. Journal of Sedimentary Petrology, 39(3): 1188-1201

    [22]

    Sun SQ. 1995. Dolomite reservoirs: Porosity evolution and reservoir characteristics. AAPG Bulletin, 79(2): 186-204

    [23]

    Wang RH, Mou CL, Tan QY, Yu Q and Yan JF. 2007. Porosity evolution during the diagenesis of the reef shoal dolostones from the Changxing Formation in the Daxian-Xuanhan region, Sichuan. Sedimentary Geology and Tethyan Geology, 27(2): 9-13 (in Chinese with English abstract)

    [24]

    Wang YG, Zhang J, Liu XG, Xu DH, Shi XR, Song SJ and Wen YC. 2005. Sedimentary facies of evaporative carbonate platform of the Feixianguan Formation of Lower Triassic in northeastern Sichuan Basin. Journal of Palaeogeography, 7(3): 357-370 (in Chinese with English abstract)

    [25]

    Wang YG, Wen YC, Hong HT, Xia ML and Song SY. 2006a. Dalong Formation found in Kaijiang-Liangping ocenic trough in the Sichuan Basin. Natural Gas Industry, 26(9): 32-36 (in Chinese with English abstract)

    [26]

    Wang YG, Wen YC, Hong HT, Xia ML, Zhang J, Song SY and Liu HY. 2006b. Petroleum geological characteristics of deep water deposits in Upper Permian-Lower Triassic trough in Sichuan Basin and adjacent areas. Oil & Gas Geology, 27(5): 702-714 (in Chinese with English abstract)

    [27]

    Wang YG, Wen YC, Hong HT, Xia ML, Fan Y, Wen L, Kong LX and Wu CH. 2009. Carbonate slope facies sedimentary character istics of the Late Permian to Early Triassic in northern Sichuan Basin. Journal of Palaeogeography, 11(2): 143-156 (in Chinese with English abstract)

    [28]

    Warren J. 2000. Dolomite: Occurrence, evolution and economically important associations. Earth-Science Reviews, 52(1-3): 1-81

    [29]

    Webb GE and Kamber BS. 2000. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochim. Cosmochim. Acta, 64(9): 1557-1565

    [30]

    Weyl PK. 1960. Porosity through dolomitization: Conservation of mass requirements. Journal of Sedimentary Research, 30(1): 85-90

    [31]

    Yu ZW. 1999. Application of oxygen and carbon isotope in petrogenesis of dolomite. Bulletin of Mineralogy, Petrology and Geochemistry, 18(2): 103-105 (in Chinese with English abstract)

    [32]

    党录瑞, 郑荣才, 郑超, 文其兵, 陈守春, 廖军. 2011. 川东地区长兴组白云岩储层成因与成岩系统. 天然气工业, 31(11): 17-52

    [33]

    丁振举, 刘丛强, 姚书振, 周宗桂. 2000. 海底热液系统高温流体的稀土元素组成及其控制因素. 地球科学进展, 15(6): 307-312

    [34]

    冯胜斌, 周洪瑞, 燕长海, 彭翼, 袁效奇, 贺静. 2007. 东秦岭二郎坪群硅质岩热水沉积地球化学特征及其地质意义. 沉积学报, 25(4): 564-573

    [35]

    郭金春, 马海州, 宋恩玉, 陈宁. 2008. 湖泊碳酸盐在过去环境变化研究中的应用. 盐湖研究, 16(2): 66-72

    [36]

    郭彤楼. 2011. 元坝气田长兴组储层特征与形成主控因素研究. 岩石学报, 27(8): 2381-2391

    [37]

    胡文塇, 陈琪, 王小林, 曹剑. 2010. 白云岩储层形成演化过程中不同流体作用的稀土元素判别模式. 石油与天然气地质, 31(6): 810-818

    [38]

    黄思静, 黄喻, 兰叶芳, 黄可可. 2011. 四川盆地东北部晚二叠世-早三叠世白云岩与同期海水锶同位素组成的对比研究. 岩石学报, 27(12): 3831-3842

    [39]

    黄思静, 黄可可, 吕杰, 兰叶芳. 2012. 早三叠世海水的碳同位素组成与演化——来自四川盆地东部的研究. 中国科学(地球科学), 42(10): 1508-1522

    [40]

    马永生, 牟传龙, 谭钦银, 余谦. 2006a. 关于开江-梁平海槽的认识. 石油与天然气地质, 27(3): 326-331

    [41]

    马永生, 牟传龙, 郭旭升, 谭钦银, 余谦. 2006b. 四川盆地东北部长兴期沉积特征与沉积格局. 地质论评, 52(1): 25-29

    [42]

    马永生, 牟传龙, 谭钦银, 余谦, 王瑞华. 2007. 达县-宣汉地区长兴组-飞仙关组礁滩相特征及其对储层的制约. 地学前缘, 14(1): 182-192

    [43]

    王瑞华, 牟传龙, 谭钦银, 余谦, 闫剑飞. 2007. 达县-宣汉地区长兴组礁滩白云岩成岩过程中的孔隙演化. 沉积与特提斯地质, 27(2): 9-13

    [44]

    王一刚, 张静, 刘兴刚, 徐丹舟, 师晓蓉, 宋蜀筠, 文应初. 2005. 四川盆地东北部下三叠统飞仙关组碳酸盐岩蒸发台地沉积相. 古地理学报, 7(3): 357-370

    [45]

    王一刚, 文应初, 洪海涛, 夏茂龙, 宋蜀筠. 2006a. 四川盆地开江-梁平海槽内发现大隆组. 天然气工业, 26(9): 32-36

    [46]

    王一刚, 文应初, 洪海涛, 夏茂龙, 张静, 宋蜀绮, 刘划一. 2006b. 四川盆地及邻区上二叠统-下三叠统海槽的深水沉积特征. 石油与天然气地质, 27(5): 702-714

    [47]

    王一刚, 文应初, 洪海涛, 夏茂龙, 范毅, 文龙, 孔令霞, 武川红. 2009. 四川盆地北部晚二叠世-早三叠世碳酸盐岩斜坡相带沉积特征. 古地理学报, 11(2): 143-156

    [48]

    余志伟. 1999. 氧、碳同位素在白云岩成因研究中的应用. 矿物岩石地球化学通报, 18(2): 103-105

  • 加载中
计量
  • 文章访问数:  5729
  • PDF下载数:  5748
  • 施引文献:  0
出版历程
收稿日期:  2013-07-07
修回日期:  2013-11-26
刊出日期:  2014-03-31

目录