东天山三条高压变质带地质特征和流体作用

刘斌,钱一雄. 东天山三条高压变质带地质特征和流体作用[J]. 岩石学报, 2003, 19(2): 283-296.
引用本文: 刘斌,钱一雄. 东天山三条高压变质带地质特征和流体作用[J]. 岩石学报, 2003, 19(2): 283-296.
LIU Bin and QIAN YiXiong 1. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China2. Research Institute of Experimental Geology,SINOPEC,Wuxi 214151,China. The geologic characteristics and fluid evolution in the three high-pressure metamorphic belts of eastern Tianshan.[J]. Acta Petrologica Sinica, 2003, 19(2): 283-296.
Citation: LIU Bin and QIAN YiXiong 1. Department of Geotechnical Engineering,Tongji University,Shanghai 200092,China2. Research Institute of Experimental Geology,SINOPEC,Wuxi 214151,China. The geologic characteristics and fluid evolution in the three high-pressure metamorphic belts of eastern Tianshan.[J]. Acta Petrologica Sinica, 2003, 19(2): 283-296.

东天山三条高压变质带地质特征和流体作用

  • 基金项目:

    国家自然科学基金(40173029,49672161),八五国家重点科技攻关项目(85-101-02-01)部分研究成果

The geologic characteristics and fluid evolution in the three high-pressure metamorphic belts of eastern Tianshan.

  • 微板块活动边缘常常产生高压变质作用,我们在东天山地区发现了三条高压变质带,分别出露在南天山北缘、中天山北缘和北天山南缘的早古生代至晚古生代地层中,它们是天山微板块多期次俯冲-碰撞-拼贴作用的产物。(南天山北缘铜花山高压变质带中有不同变异的蓝闪石类高压矿物,蓝闪石Ar~(40)/Ar~(39)同位素测定为360Ma年龄,而在同一带的西部的榆树沟有C型和B型的榴辉岩分布。中天山北缘乌斯特沟-米什沟高压变质带中发现了青铝闪石,同一阶段生成的多硅白云母为345Ma的年龄;北天山南缘后峡高压变质带中以出露在石炭世地层中钠闪石和多硅白云母为特征,三条高压变质带均经历过三个变质-变形作用阶段:①高压变质;②退变质;③韧性-脆性变质变形作用。) 流体活动与微板块构造作用密切相关,不同构造阶段有不同的变质-变形作用和矿物-流体反应:①高压变质作用阶段:微板块碰撞阶段产生不同的进变质作用,主要发生脱挥发组分的矿物反应,含水矿物转化成无水或少水矿物。南天山北缘有两次微板块与洋壳碰撞-俯冲作用,第一次碰撞-俯冲的热力学条件是:中-高温、高压和埋藏深度较大(540~720℃,0.92~1.29GPa,35~>50km),导致榴辉岩的生成,除了大量挥发组分逸出以外,另有不少熔体产生,变质矿物以捕获大量熔体和少量气-液流体包裹
  • 加载中
  • [1]

    [1]Bailey D K, Macdonald R, 1975. The evolution of the crystalline rocks. Earth Academic Press, 64-160

    [2]

    [2]Brown E H. 1977. The crossite content of Ca-amphibole as a guide to pressure of metamorphism. Journal of Petrology, 18: 53-72

    [3]

    [3]Cameron K L. 1975. An experimental study of actinolitecummingtonite phase relations with notes on the synthesis of Fe-rich anthophillite. Am. Miner., 60:375~390

    [4]

    [4]Coleman R G, Lee D E, Beatty L B & Branok W E. 1965. Eclogites and eclogites their differences and similarities. Geol. Soc. Am. Bull., 76: 486~508

    [5]

    [5]Ellis D J and Green D H. 1979. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol., 71: 13-22

    [6]

    [6]Enami M & Zang Q. 1990. Quartz pseudomorphs after coesite in eclogites from Shandong phovince, east China. Am. Mineral., 75:381~386

    [7]

    [7]Frantz G, Thomas S and Smith D C. 1986. High-pressure Phegite decomposition in the Weissenstein eclogites, Munchberger Gneiss Massif, Germany. Contrib. Mineral. Petrol., 92:71-108

    [8]

    [8]Gu Lianxing, Hu Shouxi, Yu Chunshui, Li Hongyu, Xiao Xinjian and Yan Zhanfu. 2000. Carboniferous volcanites in the Bogda orogenic belt of eastern Tianshan: their tectonic implications. Acta Petrologica Sinica, 16(3): 305-316(in Chinese with English abstract)

    [9]

    [9]Gao Changlin, Cui Kerui, Qian Yixiong, Liu Bin, Ding Daogui and Yin Yong. 1995. Microplate Tectonics in the Tianshan and the Northern Tarim Basin. Beijing: Geological Publishing House, 29~125 (in Chinese with English abstract)

    [10]

    [10]Guo Fuxiang. 2000. Affinity between Palaeozoic blocks of Xinjiang and their suturing ages. Acta Geologica Sinica (English Edition), 74(1): 1~6

    [11]

    [11]Guo Jun, Xiao Xuchang, Tang Yaoqing, Zhao Min, Wang Jun and Wu Hanquan. 1993. The discovery of blueschist in Kumux of The Southern Tianshan Mountains and its tectonic significance. Regional Geology of China, (4):344~347

    [12]

    [12]Holland T J B. 1980. The reaction albite = jadeite + quartz determined experimentally in the range 600-1200℃. American Mineralogist, 65: 129-134

    [13]

    [13]Hyndman D. 1985. Petrology of igneous and metamorphic rocks. McGraw-Hill Book Company, 91~187. Klemd R. 1989. P - T evolution and fluid inclusion characteristics of retrograde eclogites, Munchberger Gneiss Complex, Germany. Contrib. Mineral. Petrol., 102: 221-229

    [14]

    [14]Krogh E J. 1988. The garnet-clinopyroxene Fe-Mg geothermometer- a reinterpretation of existing experimental data. Contributions to Mineralogy and Petrology, 99: 44-48

    [15]

    [15]Lespinasse M, Cathelineau M and Poty B. 1991. Time/space reconstruction of fluid percolation in fault systems: The use of fluid inclusion planes (FIP). Proceedings 25th SGA aniversary, Nancy. A.A. Balkema Pub, 495-468

    [16]

    [16]Lespinasse M. 1995. Paleostress magnitudes determination by using fault slip and inclusions planes (FIP) data. J of Geophysical Research, 100:3895~3904

    [17]

    [17]Lespinasse M. 1999. Are fluid inclusion planes useful in structural geology. Joural of Structural Geology, 21: 1237~1243

    [18]

    [18]Liu Bin. 1986. The use of immiscible fluid inclusions as geothermometers and geobarometers. The Bulletin of Sciences, (18):1432~1436 (in Chinese)

    [19]

    [19]Liu Bin. 1988. Calculation of formation temperatures and pressures by use of thermodynamic equations for equilibrium of fluid inclusions with paragenetic host minerals. Scientia Sinica Series B-Chemical Biological Agricultural Medical and Earth Sciences, 31: 344 (in Chinese)

    [20]

    [20]Liu Bin and Shen Kun. 1999. Thermodynamics of Fluid Inclusions. Beijing: Geological Publishing House, 118 ~206 (in Chinese with English abstract)

    [21]

    [21]Liu Dequan, Tang Yanling and Zhou Ruhong. 1998. Five-stage moldel of the Palaeozoic crustal evolution in Xinjiang. Acta Geologica Sinica (English Edition), 72(4): 339~349

    [22]

    [22]Maruyama S, Cho M & liou J G. 1986. Experimental investigations of blueschist-greenschist transition equilibria: pressure dependence of Al2O3 contents in sodic amphibole - A new geobarometer. Geological Society of America, Memoir, 164: 1-16

    [23]

    [23]Massonne H J and Schreyer W. 1987. Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contrib. Mineral. Petrol., 96:212-224

    [24]

    [24]Phillips W R and Griffen T D. 1981. Optical Mineralogy. Freeman Company, San Francisco

    [25]

    [25]Rahaim A and Green D H. 1974. Experimental determination of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and clinepyroxene. Contr. Mineral. Petrol., 48:179~203

    [26]

    [26]Reynards B & Ballevre M. 1988. Coexisting amphiboles in an eclogite from the Western Alps: new constraints on the miscibility gap between sodic and calcic amphiboles. Journal Metamorphic Geology, 6: 333~350

    [27]

    [27]Shu Liangshu, Charvet J, Lu Huafu and Laurent S C. 2002. Palaeozoic Acretion-Collision events and Kinematics of ductile deformation in the Eastern part of the southern-central Tianshan belt, China. Acta Geologica Sinica (English Edition), 76(3): 324~330

    [28]

    [28]Swanenberg H. 1980. Fluid inclusion in high-grade metamorphic rocks from S. W. Norway. Geological Ultraiectina Utrecht, No.25, P146

    [29]

    [29]Touret J L R and Dietvorst P. 1983. Fluid inclusions in high-grade anatectic metamorphism: J. Geol. Sci. London, 140: 635-648

    [30]

    [30]Touret J L R. 1992. Fluid inclusions in bubducted rocks. Proc. K. Ned. Akad. Wetensch, 95:385-403

    [31]

    [31]Velde B. 1965. Phengite micas: Synthesis stability, and natural occurrence. Am. Mineral., 263:886-913

    [32]

    [32]Whitney J A and Stormer J C. 1977. The distribution of NaAlSi3O8 between coexisting microcline and plagioclase and effect on geothermometric calculations. Amer. Mineralogist, 62:687-691

    [33]

    [33]Zhang Ruai, Chong Bailin. 1983. Mineral geothermometer and geobarometer. Beijing: Geological Publishing House, 280:163-180 (in Chinese)

    [34]

    [34]Zhang Wenhuai, Cheng Ziying. 1993. The geology of fluid inclusions. Wuhan: China University of Geosciences, 246:14-20 (in Chinese)

    [35]

    [35]高长林, 崔可锐, 钱一雄, 刘斌, 丁道桂, 殷勇. 1995. 天山微板块构造与塔北盆地. 北京:地质出版社, 29 ~125

    [36]

    [36]高俊, 肖序常, 汤耀庆, 赵民, 王军, 吴汉泉. 1993. 南天山库米什蓝片岩的发现及其大地构造意义. 中国区域地质, (4): 344~347

    [37]

    [37]刘斌. 1986. 利用不混溶流体包裹体作为地质温度计和地质压力计. 科学通报, (16): 1432~1436

    [38]

    [38]刘斌.1988. 利用流体包裹体及其主矿物共生平衡热力学方程计算形成温度和压力. 中国科学(英文版), 31: 344

    [39]

    [39]刘斌, 沈昆. 1999. 流体包裹体热力学. 北京:地质出版社, 118 ~206

    [40]

    [40]刘德权, 唐延龄, 周汝洪. 1998. 新疆古生代地壳发展的五阶段模式. 地质学报(英文版), 72(4): 339~349

    [41]

    [41]张儒瑷, 从柏林. 1983. 矿物温度计和矿物压力计. 北京:地质出版社, 163-180

    [42]

    [42]张文淮, 陈紫英. 1993. 流体包裹体地质学. 武汉:中国地质大学出版社, 14-20

    [43]

    [43]顾连兴, 胡受奚, 于春水, 李宏宇, 肖新建, 严正富. 2000. 东天山博格达造山带石炭纪火山岩及其形成地质环境. 岩石学报, 16(3): 305-316

    [44]

    [44]郭福祥. 2000. 中国新疆古生代块体的亲缘关系和缝合时代. 地质学报(英文版), 74(1): 1~6

    [45]

    [45]舒良树,Charvet J, 卢华复, Laurent SC. 2002. 中国中南天山造山带东段古生代增生-碰撞事件和韧性变形运动学. 地质学报(英文版), 76(3): 308~323

  • 加载中
计量
  • 文章访问数:  7647
  • PDF下载数:  8302
  • 施引文献:  0
出版历程
修回日期:  2002-11-12
刊出日期:  2003-05-31

目录