华北克拉通北缘中生代花岗岩:从碰撞后到非造山

刘红涛 翟明国 等. 华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J]. 岩石学报, 2002, 18(4): 433-448.
引用本文: 刘红涛 翟明国 等. 华北克拉通北缘中生代花岗岩:从碰撞后到非造山[J]. 岩石学报, 2002, 18(4): 433-448.
The Mesozoic granitoids in the northern marginal region of North China Craton: evolution from post-collisional to anorogenic settings[J]. Acta Petrologica Sinica, 2002, 18(4): 433-448.
Citation: The Mesozoic granitoids in the northern marginal region of North China Craton: evolution from post-collisional to anorogenic settings[J]. Acta Petrologica Sinica, 2002, 18(4): 433-448.

华北克拉通北缘中生代花岗岩:从碰撞后到非造山

  • 基金项目:

    中国科学院资源环境领域知识创新工程重大项目(KZCX1-07)资助

The Mesozoic granitoids in the northern marginal region of North China Craton: evolution from post-collisional to anorogenic settings

  • 根据岩石地球化学特征,可以将华北克拉通北缘的中生代花岗岩类划分为钙碱性和高钾钙碱笥花岗岩、强过铝质淡色花岗岩、高锶花岗岩、碱质A型花岗岩和碱性花岗岩五个类型。强过铝质淡色花岗岩起源于泥砂质变沉积岩在地壳加厚和隆升过程中的减压脱水熔融;高锶花岗岩起源于强烈加厚陆壳的下部或壳幔过渡带的中酸性或基性岩石脱水部分熔融;碱质A型花岗岩和碱性花岗岩均为岩石圈伸展背景下的岩浆作用产物,但后者明确指示区域岩石圈已处于板内裂谷状态。在区域地质演化总体框架下,中生代各类型花岗质岩浆活动的时间序列,明确反映出区域地球动力学背景从碰撞后到非造山的演化过程:钙碱性和高钾钙碱性花岗岩+强过铝质淡色花岗岩+高锶花岗岩+碱质A型花岗岩构成碰撞后花岗岩套,而碱性花岗岩+碱质A型花岗岩则构成板内非造山花岗岩套。区域花岗岩浆活动的演化表明,华北克拉通北缘地区中生代重大构造 转折应发生在160-150Ma之间。在160Ma以前的中生代早中期,区域岩石圈仍处于碰撞后前期的强烈加厚的过程之中,该时期以出现大量的高锶花岗岩和少量过铝质淡色花岗岩为特征;150-110Ma期间为碰撞后晚期的区域岩石圈强烈伸展时期,该时期则以高锶花岗岩侵位事件的急剧减少和碱质A型花岗岩大量出现为特征。在大约110Ma左右,区域岩石圈基本减薄到正常厚度(35-40km),并进入板内非造山的裂谷阶段,此时以出现碱性花岗岩为特征。研究认为,贯穿整个碰撞后阶段的钙碱性和高钾钙碱性花岗岩之所以具有消减带岩浆的地球化学特征,是因为它们继承了碰撞前西伯利亚板块向华北板块消减阶段及同碰撞阶段已经活化的源区(包括富集的地幔楔及下地壳)性质。
  • 加载中
  • [1]

    Arculus RJ. 1987. The significance of source versus process in the tectonic controls of magma genesis. Journal Volc. Geotherm. Res., 32: 1-12

    [2]

    Bea F. 1996. Residence of REE, Y, Th and U in granites and crustal protoliths, Implications for the chemistry of crustal melts. Journal of Petrology, 37(3): 523-551

    [3]

    Bird P. 1978. Initiation of intracontinental subduction in the Himalayas. Journal of Geophysical Research, 83(B 10): 4975-987

    [4]

    Bird P. 1979. Continental delamination and the Colorado Plateau. Journal of Geophysical Research, 84(B13): 7561-7571

    [5]

    Bonin B. 1990. From Orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geol. J. W. S. Pitcher Special Issue, 25: 261-270

    [6]

    Brown GC and Fyfe WS. 1970. The production of granitic melts during ultrametamorphism. Contribution to Mineralogy and Petrology, 28: 310-318

    [7]

    Brown GC, Thorpe RS and Webb PC. 1984. The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. Journal of the Geological Society, London, 141: 413-426

    [8]

    Brown M. 1994. The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally derived granite connection in thickened orogens. Earth Science Reviews, 36: 83-130

    [9]

    Bureau of Geology and Mineral Resources of Liaoning Province. 1989. Regional Geology of Liaoning Province. Geological Publishing House, Beijing. 1-856 (in Chinese)

    [10]

    Castro A, Moreno-Ventas I and de la Rosa JD. 1991. H-type (hybrid) granitoids: a proposed revision of the granite-type classification and nomenclature. Earth Science Reviews, 31: 237-253

    [11]

    Castro A, Pati~no Douce AE, Corretge LG, de la Rosa JD, El-Biad M and El-Hmidi H. 1999. Origin of peraluminous granites and granodiorites, Iberian massif, Spain: an experimental test of granite petrogenesis. Contribution to Mineralogy and Petrology, 135: 255-276

    [12]

    Cheng Yuqi. 1994. Outline of Regional Geology of China. Geological Publishing House, Beijing. 1-517 (in Chinese)

    [13]

    Clarke DB, Macdonald MA, Reynolds PH and Longstaffe FJ. 1993. Leucogranite from the eastern part of the South Mountain Batholith, Nova Scotia. Journal of Petrology, 34(4): 653-679

    [14]

    Cobbing EJ. 1990. A comparison of granites and their tectonic settings from south American Andes and Southeast Asia Tin belt. Geological Society Special Papers, 241: 193-204

    [15]

    Deng Jinfu, Mo Xuanxue, Zhaohailing, Luo Zhoahua and Du Yangsong. 1994. Lithospheric root/ de-rooting and activation. Journal of Graduate School, China University of Geosciences, 8(3): 350-356(in Chinese with English abstract)

    [16]

    Deng Jinfu, Zhaohailing, Mo Xuanxue, Wu Zongxu and Luo Zhoahua. 1996. Continental roots-plume tectonics of China - Key to the continental dynamics. Beijing: Geological Publishing House. 1-110(in Chinese)

    [17]

    Deniel C, Vidal P, Fernandez A, Le Fort P and Peucat JJ. 1987. Isotopic study of the Manaslu granite (Himalaya, Nepal): inferences of the age and source of Himalayan leucogranites. Contribution to Mineralogy and Petrology, 96: 78-92

    [18]

    DePaolo DJ, Perry FV and Baldridge WS. 1992. Crustal versus mantle sources of granitic magmas: a two-parameter model based on Nd isotopic studies. Transaction of the Royal Society of Edinburgh: Earth Sciences, 83: 439-446

    [19]

    Eby GN. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20: 641-644

    [20]

    Evans OC and Hanson GN. 1993. Accessory-mineral fractionation of rare-earth element (REE) abundance in granitoid rocks. Chemical Geology, 110: 69-93

    [21]

    Ferrara G, Lombardo B, Tonarini S and Turi B. 1991. Sr, Nd and O isotopic characterization of the Gophu La and Gumburanjun leucogranites (High Himalaya). Schweiz. Mineral. Petrogr. Mitt., 71: 35-51

    [22]

    Ge Wenchun, Lin Qiang, Sun Deyou, Wu Fuyuan, Won Chongkwan, Lee Moonwon, Jin Myunshik and Yun Sunghyo. 1999. Geochemical characteristics of the Mesozoic basalts in Da Hinggan Ling: evidence of the mantle-crust interaction. Acta Petrologica Sinica, 15(3): 397-407(in Chinese with English abstract)

    [23]

    Gill JB. 1981. Orogenic Andesites and Plate Tectonics. Springer-Verlag, New York. 1-390

    [24]

    Guillot S and Le Fort P. 1995. Chemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos, 35: 221-234

    [25]

    Hadj-Kaddor Z, Liegeios J-P, Demaiffe D and Caby R. 1998. The alkaline-peralkaline granitic post-collisional Tin Zebane dyke swarm (Pan-African belt, Tuareg Shield, Algeria): prevalent mantle signature and late agpaitic differentiation. Lithos: 45: 223-244

    [26]

    Hanson JN. 1978. The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth and Planetary Science Letters. 38: 26-43

    [27]

    Harris NBW, Ayres M and Massey J. 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite: implication for the extraction of Himalayan leucogranite magmas. Journal of Geophysical Research, 100(B8): 15766-15591

    [28]

    Harris NBW and Inger S. 1992. Trace element modeling of pelite-derived granites. Contribution to Mineralogy and Petrology, 110: 46-56

    [29]

    Hess PC. 1989. Origin of Igneous Rocks. Harvard University Press, Cambridge, Mass. 1-336

    [30]

    Holtz F and Barbey P. 1991. Genesis of peraluminous granites II. Mineralogy and chemistry of the Tourem Complex (North Portugal), sequential melting vs. restite unmixing. Journal of Petrology, 32(5): 959-978

    [31]

    Hong Dawei. 1994. Recent development in granite research. Earth Science Frontiers, 1(1-2): 79-86 (in Chinese with English abstract)

    [32]

    Jin Zhenmin and Gao Shan. 1996. Underplating and its implication for crust-mantle evolution. Geological Science and Technology Information, 15(2): 1-7 (in Chinese with English abstract)

    [33]

    Jung S, Mezger K and Hoernes S. 1998. Petrology and geochemistry of syn- and post-collisional metaluminous A-type granites: a major and trace element and Nd-Sr-Pb-O-isotope study from the Proterozoic Damara Belt, Namibia. Lithos, 45: 147-176

    [34]

    Kay RW and Kay SM. 1993. Delamination and delamination magmatism. Tectonophysics, 219(1-3): 177~189

    [35]

    Le Fort P. 1981. Manaslu leucogranite: a collision signature of Himalaya-A model for its genesis and emplacement. Journal of Geophysical Research, 86: 10545-10568

    [36]

    Liegeios J-P, Navez J, Hertogen J and Black R. 1998. Contrasting origin of post-collisional high-K calc-alkaline and shoshonitic versus alkaline and peralkaline granitoids. The use of sliding normalization. Lithos, 45: 1-28

    [37]

    Litvinovsky BA, Steele IM and Wickham SM. 2000. Silicic magma formation in overthickened crust: melting of charnockite and leucogranite at 15, 20 and 25 kbar. Journal of Petrology, 41 (5): 717-737

    [38]

    Liu Jianzhong, Liu xishan, Zhang Fuqin, Li Shuxun, Li Guilin and Ouyan Ziyuan. 2000. Characteristics and genesis of granitic complex in Fuxin-Jinzhou area, Liaoning Province. Geology-Geochemistry, 28(3): 65-74(in Chinese with English abstract)

    [39]

    Liu HT, Sun SH, Liu JM and Zhai MG. 2002. The Mesozoic high-Sr granitoids in the northern marginal region of North China Craton: geochemistry and source region. Acta Petrologica Sinica, 18(3):257-274(in Chinese with English abstract)

    [40]

    Lu Fengxiang, Zheng Jianping, Li Wuping, Chen Meihua and Cheng Zhongmei. 2000. The main evolution pattern of Phanerozoic mantle in the eastern China: the "Mushroom Cloud" model. Earth Sciences Frontiers, 7(1): 97-107 (in Chinese with English abstract)

    [41]

    Maruyama S and Seno T. 1986. Orogeny and relative plate motions: example of the Japanese Islands. Tectonophysics, 127: 306-329

    [42]

    Maruyama S, Isozaki Y, Kimura G and Terabayashi M. 1997. Paleographic maps of the Japanese Islands: plate tectonic synthesis from 750Ma to the present. The Island Arc, 6: 121-142

  • 加载中
计量
  • 文章访问数:  9347
  • PDF下载数:  10417
  • 施引文献:  0
出版历程
修回日期:  2002-04-17
刊出日期:  2002-11-30

目录