胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义

张华锋 翟明国 何中甫 彭澎 许保良. 胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义[J]. 岩石学报, 2004, 20(3): 369-380.
引用本文: 张华锋 翟明国 何中甫 彭澎 许保良. 胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义[J]. 岩石学报, 2004, 20(3): 369-380.
Petrogenesis and implications of the sodium-rich granites from the Kunyushan complex, eastern Shandong province[J]. Acta Petrologica Sinica, 2004, 20(3): 369-380.
Citation: Petrogenesis and implications of the sodium-rich granites from the Kunyushan complex, eastern Shandong province[J]. Acta Petrologica Sinica, 2004, 20(3): 369-380.

胶东昆嵛山杂岩中高锶花岗岩地球化学成因及其意义

  • 基金项目:

    基金重点项目(40234050),中科院创新项目(KZCX1-07)资助

Petrogenesis and implications of the sodium-rich granites from the Kunyushan complex, eastern Shandong province

  • 华北克拉通性质的胶东陆块之间.本文主要对其中具定向构造的垛崮山与瓦善高锶花岗岩体的地球化学成因及其地质意义的研究.垛崮山岩体岩性主要为花岗闪长岩,瓦善岩体主要为二长花岗岩.岩石化学特征表明两岩体为亚碱性岩石,属钙碱性系列和高钾钙碱性系列.SiO2=69~71%,高Al(Al2O3>15%,SiO2=70%),富碱Na2O=3.54~4.88%,K2O=2.11~4.44%,K2O+Na2O=5.65~9.02%.Na2O/K2O=0.9~1.9,表明属Na质花岗岩.富集大离子亲石元素,如Ba、Sr(Ba>1440μg/g,Sr>650μg/g),而亏损高场强元素(如Nb、P、Ti以及Y<18μg/g、<2μg/g),具右倾陡斜的稀土配分模式(Lan/Ybn>12),无Eu异常或Eu异常不明显.上述地球化学特点与Adakite、太古宙TTG、秘鲁科迪勒拉布兰卡钠质花岗岩以及中国东部大量中生代花岗质岩石类似.然而,本文中的花岗岩石化学显示与钠质花岗岩最为相近,其钙碱性演化趋势不同于TTG、埃达克岩通常所显示的奥长花岗岩演化趋势.前人报道的同位素特征(Sr87/Sr86i=0.7097~0.7098,εNd(t)=-19.6~-20.0)和700~800Ma的继承锆石特征以及胶东区域地质上没有与之同期甚至早期的基性岩浆伴生共同表明,昆嵛山高锶花岗岩不可能来自幔源岩浆混合或基性岩浆的结晶分异,也不可能是新生玄武质下地壳和太古宙胶东陆块的熔融产物,而是以晚元古扬子陆块的基性下地壳(>40km)部分熔融为主.尽管均表现出高锶花岗岩的地球化学特征,但两岩体岩石、地化特征存在一定的差异.造成这种差异性的原因可能是晚期瓦善岩体源区有少量富集地幔特征的物质加入以及部分熔融程度相对早期垛崮山岩体低或源区较深所至.形成它们的动力学机制可能是岩石圈减薄作用引起的玄武质岩浆底侵导致基性下地壳的部分熔融.高锶花岗岩的低Y、Yb含量和高S∥Y、hn/¨n比值暗示源区残留固相以石榴石+角闪石为特征,而无斜长石的残留.源区深度在石榴石麻粒岩相至榴辉岩相,熔融后的残余固相(高压麻粒岩至榴辉岩相岩石)因密度大而可能引发下地壳沉入地幔,加速地壳的减薄.昆嵛山高锶花岗岩的成因暗示胶东地区140~160Ma加厚的铁镁质下地壳依然存在以及中国东部高锶花岗岩物质来源的多样性.
  • 加载中
  • [1]

    [1]Ajaji T, Weis D, Giret A & Bouabdellah M. 1998. Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: geochemical, isotopic and geochronological evidence. Lithos45:371 -393

    [2]

    [2]Arndt N and Goldstein S. 1989. An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics, 161: 201 -212

    [3]

    [3]Arth J G. 1976. Behaviour of trace elements during magmatic processes - a summary of theoretical models and their applications. J. Res.U.S. Geol. Surv. , 4: 41 - 47

    [4]

    [4]Atherton M P & Petford N. 1993. Generation of Sodium-rich magmas from newly underplated basaltic crust. Nature, 362: 144- 146

    [5]

    [5]Barker F & Arth J G. 1976. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites. Geology, 4:596 -600

    [6]

    [6]Bergantz G W. 1989. Underplating and partial melting: Implications for melt generation and extraction. Science, 245:1093 -1095

    [7]

    [7]Bird P. 1978. Initiation of intracontinental subduction in the Himalayas.J. Geophys. Res. , 83 (B10): 4975 -4987

    [8]

    [8]Brandon A D, Creaser R A & Chacko T. 1996. Constraints on rates of granitic magma transport from epidote dissolution kinetics. Scinece,271 (29): 1845-1848

    [9]

    [9]Chen B, Zhai M G & Shao J A. 2002. Genesis and implication of Mesozoic plutons in northern Taihangshan: geochemical evidence of major and trace elements. Science in China ( series D), 32 ( 11 ):896 - 907

    [10]

    [10]Chen Bin, Jahn Bor-ming & Wei Chunjing. 2002. Petrogenesis of Mesozoic granitoids in the Dabie UHP complex, Central China: trace element and Nd-Sr isotope evidence. Lithos, 60:67 -68

    [11]

    [11]Chen Guangyuan, Sun Daisheng, Shao Yue. 1996. Typomorphic significance of accessory minerals of gold-hosting Kunyushan monzonitic granite in Jiaodong, China Geoscience, 10 (2): 175 -186

    [12]

    [12]Defant M & Drummond M. 1993. Monut St. Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc.Geology, 21:547-550

    [13]

    [13]Defant M J & Drummond M S, . 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(18) :662 -665

    [14]

    [14]Drummond M S & Defant M J. 1990. A model for trondhjemite-tonalitedacite genesis and crustal growth via slab melting Archean to modern comparisons. J. Geophys. Res, 95 ( B13 ): 21503 - 21521

    [15]

    [15]Fan W M, Menzies M A. 1992. Destruction of aged lower lithosphere and asthenosphere mantle beneath eastern China. Geotectonica et Metallogenia, 16: 171 - 179

    [16]

    [16]FanW. - M, GuoF., WangY. - J., Lin G. &ZhangM.. 2001. Post-orogenic bimodal volcanism along the Sulu orogenic belt in eastern China. Phys. Chem. Earth (A) vol. 26, No. 9-10: 733-746

    [17]

    [17]Fowler M B, Henney P J, Darbyshire D P F, Greenwood P B. 2001. Petrogenesis of high Ba-Sr granites: the Rogart pluton, Stherland. J.Geol. Soc. London, 158:521 -534

    [18]

    [18]Ge Xiaoyue, Li Xianhua, Chen Zhigang & Li Wuping. 2002. Geochemistry and petrogenesis of the Yanshanian medium-felsic high Sr and low Y igneous rocks in the eastern China: Constraints on the thickness of continental crust of eastern China. Chinese Sci. Bull. ,47: 474 -480

    [19]

    [19]Glasner A F. 1994. Foundering of mafic plutons and density stratification of continental crust. Geology, 22: 435 - 438

    [20]

    [20]Guo Jinghui, Chen Fukun Wolfgang Siebel, Cong Boling. 2003. Melting of the once deeply subducted continental slab: revealed by SHRIMP zircon ages of post-collisional granites from the SuLu UHP zone,eastern China. Terra Nova, in press

    [21]

    [21]Hildreth W & Moorbath S. 1988. Crustal contribution to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol. , 98: 455 -489

    [22]

    [22]Holden P, Halliday A N and Stephens W E. 1987. Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production. Nature, 330: 53 - 56

    [23]

    [23]Huppert H E & Sparks R S. 1988. The generation of granitic magmas by intrusion of basalt into continental crust. J. Petrol. , 29: 599 - 632

    [24]

    [24]Johnston A D and Wyllie P J. 1988. Constraints on the origin of Archean trondhjemites based on phase relationships of N? k gneiss with pH2Oat 15kbar. Contrib. Mineral. Petrol. , 100:35 -46

    [25]

    [25]Kay R W & Gast P W. 1973. The rare earth content and origin of alkalirich basalts. J. Geol. , 81: 653 -682

    [26]

    [26]Kay R W & Kay S M. 1991. Cration and destruction of lower continental crust. Geologische Rundschau, 80 (2): 259 -278

    [27]

    [27]Kay R W & Kay S M. 1993. Delamination and delamination magmatism.Tectonophysics, 219: 177 - 189

    [28]

    [28]Lin J Q, Tan D J, Chi X G, Bi L J, Xie C F, Xu W L. 1992. Mesozoic Granites in Jiao-Liao peninsula. Science Press, Beijing: 24 -65

    [29]

    [29]Liu HT, Sun SH, Liu JM, Zhai MG. 2002a. The Mesozoic high-Sr granitoids in the northern marginal region of North China Craton:geochemistry and source region. Acta Petrologica Sinica, 18 (3):257 -274 (in Chinese with English abstract)

    [30]

    [30]Liu HT, Zhai MG, Liu JM, Sun SH. 2002b. The Mesozoic granitoids in the northern marginal region of North China Craton: evolution from post-collisional to anorogenic settings. Acta Petrologica Sinica, 18(4): 433 -448 (in Chinese with English abstract)

    [31]

    [31]Liu WJ. 2003. Petrochemical and geochemical study on the Mesozoic Tiezhai intrusive complex from the Luxi block western Shandong province, eastern China. [ Master thesis ] Institute of Geology and Geophysics, Chinese Academy of Sciences: 1 - 61

    [32]

    [32]Ma Changqian, Li Zhichang, Carl Elhers, Yang Kunguang, Wang Renjing. 1998. A post-collisional magmatic plumbing system:Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China. Lithos,45:431 -456

    [33]

    [33]Martin H. 1986. Effect of steeper Archean geothermal gradient on geochemistry of subduction zone magmas. Geology, 14:753 -756

    [34]

    [34]Martin H. 1987. Petrogenesis of Archean trondhjemites, tonalites and granodiorites from eastern Finland: major and trace element geochemistry. J. Petrol. , 28:921 -953

    [35]

    [35]Martin H. 1999. Adakitic magmas: modern analogues of Archean granitoids. Lithos, 46: 411 - 429

    [36]

    [36]Menzies M A, Fan W-M & Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of > 120Km of Archean lithosphere, SinoKorean craton, China. Geol. Soci. London Spec. Publ. , 76:71 -81

    [37]

    [37]Nakamura E, Campbell I J, McCulloch M T and Sun S S. 1989. Geochemical geodynamics in a back-arc region around the Sea of Japan: Implications for the genesis of alkaline basalts in Japan,Korea and China. J. Geophys. Res. , 94:4634 -4654

    [38]

    [38]Naney M T. 1983. Phase equilibria of rock-forming ferromagnesian silicates in granitic systems: Am. J. Sci. , 283:993 -1033

    [39]

    [39]Patino Douce A E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas.(in): Catro A, Fernandez C & Vigneresse J L (eds) Understanding Granites: integrating New and Classical Techniques. Geological Society, London, Special Publications, 168, 55 - 75

    [40]

    [40]Peacock S M, Rushmer T & Thompson A B. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121:227 - 244

    [41]

    [41]Petford N & Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J.Petrol. , 37: 1497 - 1521

    [42]

    [42]Qian Q, Chung SL, Lee TY & Wen DJ. 2002. Geochemical characteristics and petrogenesis of the Badaling high Ba-Sr granitoids: a comparison of igneous rocks from North China and the Dabie-Sulu Orogen. Acta Petrologica Sinica, 18 ( 3 ): 275 - 292 ( in Chinese with English abstract)

    [43]

    [43]Rapp R P, Watson E B. & Miller C F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites: Precam. Res. , 51: 1 - 25

    [44]

    [44]Rapp R P & Watson E B. 1995. Dehydration melting of metabasalt at 832kbar: implications for continental growth and crust-mantle recycling. J. Petrol. , 36:891 -931

    [45]

    [45]Roberts M P & Clemens J D. 1993. Origin of high-potassium, calcalkaline, Ⅰ-type granitoids. Geology, 21:825 - 828

    [46]

    [46]Rushmer, T. 1993. Experimental high pressure granulites: some applications to natural mafic xenolith suites and Archean granulite terranes. Geology, 21: 411 -414

    [47]

    [47]Rutter J M and Wyllie P. 1988. Metlting of vapour-absent tonalite at 10kbar to simulate dehydration-melting in the deep crust. Nature,331: 159 - 160

    [48]

    [48]Singh J and Johannes W. 1996. Dehydration melting of tonalites. Part Ⅱ.Composition of melts and solids. Contrib. Mineral. Petrol. , 125:26-44

    [49]

    [49]Skjerlie K P and Johnson A D. 1993. Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases:implications for anatexis in the deep to very deep continental crust and active continental margins. J. Petrol. , 37:661 -691

    [50]

    [50]Smithies R H. 2000. The Archaean tonalite-trondhjemites-granodiorite (TTG) series is not an analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182: 115 - 125

    [51]

    [51]Sun JG, Hu SX and Ling HF. 2000. Study on the geochemistry and subduction-crust mantle interaction of the high potassium-potassium dike rocks in old deposits concentration zone of east Shandong,China. Acta Petrologica Sinica, 16 (3): 401-412 (in Chinese with English abstract)

    [52]

    [52]Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Magmatism in the Ocean Basins (Saunders A D and Norry M J, eds. ) , Geological Society Special Publication, 42:313- 345

    [53]

    [53]Syverster P J. 1998. Post-collisional peraluminous granites. Lithos, 45:29 -44

    [54]

    [54]Tarney J & Jones C E. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models. J Geol. Soc. London,151: 855 -868

    [55]

    [55]Tarney J & Windley B F. 1977. Chemistry, thermal gradients and evolution of the lower continental crust. J. Geol. Soc. London,134:153-172

    [56]

    [56]Thompson A B. 1999. Some time-space relationships for crustal mehing and granitic intrusion at various depths. In: Castro A, Fernadez C &Vegeresse J L (eds.): Understanding Granites Integrating New and Classical Techniques. Geol. Soc. , London, Spec. Publ. 168:7 -25

    [57]

    [57]Wang Laiming &Yan Yimin. 1992. Archean tonalities in Qixia,Shandong. Geol. Shandong 1: 80 - 87. ( in Chinese with English abstract)

    [58]

    [58]Wang Qiang, Zhao Zhenhua, Xiong Xiaolin, Xu Jifeng. 2001. Melting of the underplated basaltic lower crust: Evidence from Shaxi adakitic quartz diorite-porphyrites Anhui province, China. Geochimica 30(4) :353 -362 ( in Chinese with English abstract)

    [59]

    [59]Wang Y & Zhang Q. 2001. Badaling granitic complexes in Beijing area:their composition, geochemical characteristics and geological significance. Acta Petrologica Sinica, 17: 533 - 540 ( in Chinese with English abstract)

    [60]

    [60]Weaver B L & Tarney J. 1984. Empirical approach to estimating the composition of the continental crust. Nature, 310 (16): 575 -577

  • 加载中
计量
  • 文章访问数:  7610
  • PDF下载数:  6001
  • 施引文献:  0
出版历程
修回日期:  2003-05-15
刊出日期:  2004-05-31

目录