铂族元素矿床的主要类型、成矿作用及研究展望

唐冬梅,秦克章,刘秉光,孙赫,李金祥. 铂族元素矿床的主要类型、成矿作用及研究展望[J]. 岩石学报, 2008, 24(3).
引用本文: 唐冬梅,秦克章,刘秉光,孙赫,李金祥. 铂族元素矿床的主要类型、成矿作用及研究展望[J]. 岩石学报, 2008, 24(3).
The major types, metallogenesis of platinum-group element deposits and some prospects[J]. Acta Petrologica Sinica, 2008, 24(3).
Citation: The major types, metallogenesis of platinum-group element deposits and some prospects[J]. Acta Petrologica Sinica, 2008, 24(3).

铂族元素矿床的主要类型、成矿作用及研究展望

  • 基金项目:

    中国科学院知识创新工程重要方向项目 , 青藏973项目斑岩铜矿课题 , 国家"十一五"科技支撑计划新疆305项目东天山铜镍矿专题资助

The major types, metallogenesis of platinum-group element deposits and some prospects

  • 铂族元素(PGE)矿床的研究在过去几十年取得了重要的进展.它可以赋存于不同的岩石类型、形成于不同的时代.内生PGE矿床与不同的岩浆类型及热液活动有关.由于铂族元素特殊的化学性质,比较稳定且难熔于普通的酸、碱等,故铂族元素成矿具有特殊性.PGE矿床可划分为岩浆型、热液型、火山块状硫化物型(VMS)和外生型四大类型.岩浆型又可分为铜镍硫化物型、铬铁矿型和磁铁矿型,热液型主要有斑岩型和夕卡岩型,外生型包括黑色页岩型和砂铂矿型.本文讨论了各岩浆演化过程中:(i)硅酸盐和氧化物的分异,(ii)富Fe矿物(橄榄石、辉石、磁铁矿、铬铁矿)的分异,(iii)岩浆的混染,(iv)不同成分、硫不饱和的岩浆的混合等,都可以导致岩浆中硫达到饱和,一旦形成不混熔硫化物熔体,硫化物富集,将形成有经济价值的PGE矿床.同时,成矿还受温度、Ni和Cu含量、体系中其它组分和硫逸度的控制.岩浆后期的热液蚀变会改变PGE的含量和品位,但典型的铂矿床一般没有遭受热液蚀变作用的显著影响.本文指出了铂族元素矿床研究存在的主要问题.如PGE矿床的物质来源、PGE演化过程中的分配规律、铂族元素矿物(PGM)的赋存状态,并对以后的发展前景做了展望,指出西藏(蛇绿岩套铬铁矿亚类和俯冲增生弧斑岩型Cu-Au矿)和新疆(碰撞后二叠纪岩浆Cu-Nj硫化物型和黑色页岩型)是我国寻找PGE矿床的最有利地区.
  • 加载中
  • [1]

    Armitage PEB, McDonald I, Edwards SJ and Manby GM. 2002. Platinum-group element mineralization in the Platreef and calcsilicate footwall at Sandsloot, Potgietersrus District, South Africa. Trans. Inst. Min. Metall. , 111 : 36 - 45

    [2]

    Auge T, Genna A, Legendre O, lvanov KS and Volchenko YA. 2005. Primary platinum mineralization in the Nizhny Tagil and Kachkanar ultramafic complexs, Urals, Russia: A genetic model for PGE concentration in chromite-rich zones. Econ. Geol. , 100:707 -732

    [3]

    Auge T. 1985. Platinum-group mineral inclusions in ophiolitic chromitite from the vourinos complex, Greece. Canadian Mineralogist, 23:163 - 171

    [4]

    B chl A, Brugmann G and Batanova VG. 2004. Formation of podiform chromitite deposits: Implications from PGE abundances and Os isotopic compositions of chromites from the Troodos complex, Cyprus. Chemical Geology, 208 : 217 - 232

    [5]

    Bai WJ, Paul TR, Fang QS and Yang JS. 2004. PGE and base metal alloy in podiform chromitite in Luobusa ophiolite of South Tibet. Acta Geoscientica Sinica, 25 (4) : 385 - 396

    [6]

    Bai WJ, Robinson PT, Hu XF, Zhou MF and Malpas J. 2000. The PGE and Base-metal alloys in the podiform chromitites of the Luobusa ophiolite, southem Tibet. The Canadian Mineralogist, 38:585- 598

    [7]

    Bai WJ, Fang QS, Zhang ZM, Yan BG and Yang JS. 2001. Crystal structure of forsterite from podiform chromitite in Luobusa ophiolite of Tibet and its implications. Acta Petrologica et Mineralogica, 20( 1 ) : 1 -10

    [8]

    Baker DR, Barnes SJ, Simon G and Bemier F. 2001. Fluid transport of sulfur and metals between sulfide melt and basaltic melt. Can. Miner. , 39:537 -546

    [9]

    BaUhaus C, Ryan CG, Memagh TP and Green DH. 1994. The partitioning of Fe, Ni, Cu, Pt, and Au between sulfide, metal, and fluid phases: A pilot study. Geochim. Cosmochim. Act,a, 58:811 - 826

    [10]

    BaUhaus Ch and Ulmer P. 1995. Platinum-group elements in the Merensky Reef:Ⅱ. Experimental solubilities of platimun and palludium in Fe-S from 950 to 450 C under controlled fs2 and fH, Geochimica et Cosmochimica Acta. , 59(23): 4881 -4888

    [11]

    Barnes SJ and Lightfoot P. 2005. The formation of magmatic nickelcoper-PGE sultlde deposits. Economic Geology, 190:135 -154

    [12]

    Barnes SJ and Maier WD. 1999. The fractionation of Ni, Cu and the noble metals in silicate and sulphide liquids. In: Keays RR, Lesher CM, Lighffoot PC and Farrow CEG (eds.). Dynamic Processes in Magmatic Ore Deposits and Their Application to Mineral Exploration, Short Course Notes. Geol. Assoc. Can. , 13 : 69 - 106

    [13]

    Barnes SJ and Maier WD. 2002. Platinum-group elements and microstructures of normal Merensky Reef from Impala Platinum Mines, Bushveld Complex. J. Petrol. , 43 : 103 - 128

    [14]

    Barnes SJ, Naldrett AJ and Gorton MP. 1985. The origin of the fraetionation of platinum-group elements in terrestrial magmas. Chemical Geololgy, 53 : 303 - 323

    [15]

    Barnes SJ, Van Achterbergh E, Makovicky E and Li C. 2001. Proton microprobe results for the partitioning of platinum-group elements between monosulfide solid solution and sulfide liquid. S. Afr. J. Geol. , 104:275 -286

    [16]

    Barnes SJ, Zientek ML and Severson MJ. 1997. Ni, Cu, Au and platinum-group element contents of sulphides associated with intraplate magmatism: A synthesis. Can. J. Earth Sci. , 34:337 - 351

    [17]

    Barnes SJ, Boyd R, Korneliusson A, Nilsson LP, Often M, Pedersen BB and Robins B. 1988. The use of mantle normalization and metal rations in discriminating between the effects of paritial melting, crystal fractionation and sulphide segregation on platlnum-group dements, gold, nickel and copper: Examples from Norway. In: Prichard HM, Potts PJ, Bowles JFW and Cribb SJ (eds.). Geo- Platinum. Elsevier, London, 87 : 113 - 143

    [18]

    Barnes SJ. 1990. The use of metal ratios in prospecting for platinumgroup element deposits in mafic and uhramafic intrusions. Journal of Geochemical Exploration, 37 ( 1 ) : 91 - 99

    [19]

    Beane RE and Titley SR. 1981. Porphyry copper deposits. Part Ⅱ: Hydrothermal, alteration and mineralization. In: Skinner BJ( ed. ). Econ. Geol. , 75th Anniversary: 235 -269

    [20]

    Berzina NA, Sotnikov IV, Eliopoulos EM and Eliopoulos GD. 2005. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 26(1-2) : 91 -113

    [21]

    Bezmen NI, Asif M, Briigmann GE, Romanenko IM and Naldrett AJ. 1994. Distribution of Pd, Rh, Ru, lr, Os, and Au between sulfide and silicate melts. Geochim. Cosmochim. Acta, 58:1251 -1260

    [22]

    Boudreau AE and Meurer WP. 1999. Concentration of platinum-group elements by magmatic fluids in layered intrusions. Econ. Geol. , 94 : 1830 - 1848

    [23]

    Boudreau AE, Mathez EA and McCallum IS. 1986. Halogen geochemistry of the StiUwater and Bushveld complexes: Evidence from hydrous silicates and fluid inclusions. J. Petrol., 27:967 - 986

    [24]

    Boudreau AE. 1988. Investigations of the Stillwater Complex: Ⅵ. The role of volatiles in the petrogenesis of the J-M reef, Minneapolis section. Can. Mineral. , 26 : 193 - 208

    [25]

    Brace TD and Wilton DH. 1990. Platinum-group elements in the Arehean Florence Lake Group, central Labrador. Canadian Mineralogist, 28: 419 - 429

    [26]

    Braun A, Chen J, Maas A and Waloszek D. 2003. Plankton from early Cambrian black shale series on the Yangtze Platform and its influences on lithologies. Progress in Natural Science, 13 (10) : 777 - 782

    [27]

    Brenan JM, McDonough WF and Ash R. 2005. An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt. Earth and Planetary Science Letters, 237: 855 - 872

    [28]

    Brenan JM, McDonough WF and Dalpe C. 2003. Experimental constraints on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt. Earth and Planetary Science Letters, 212 : 135 - 150

    [29]

    Brugmann GE, Arndt NT and Hoffmann AW. 1987. Noble metal abundances in komatiite suites from Alexo, Ontario and Gorgona Island, Colombia. Geochim. Cosmochim. Aeta, 51:2159-2169

    [30]

    Brugmann GE, Birck JL, Herzig PM and Hofmann AW. 1998. Os isotopic composition and Os and Re distribution in the active mound of the TAG hydrothermal system, Mid-Atlantic Ridge. In: Her-zig PM, Humphris SE, Miller D and Zierenberg RA (eds.). Proceedings of the Ocean Drilling Program. Scientific Results, 158: 91 -100

    [31]

    Brugmann GE, Naldrett AJ and MacDonald AJ. 1989. Magma mixing and constitutional zone refining in the Lac des Iles Complex, Ontario: Genesis of platinum-group element mineralization. Economic Geology, 84:1557 - 1573

    [32]

    Buchanan DL and Nolan J. 1979. Solubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld Complex rocks. Can. Miner. , 17:483 -494

    [33]

    Campbell IH and Barnes SJ. 1984. A model for the geochemistry of the platinum-group elements in magrnatie sulfide depsoits. Can. Mineral. , 22:151 -160

    [34]

    Candela PA. 1994. Combined chemical and physical model for plutonic devolatilization-a non-rayleigh fractionation algorithm. Geochim. Cosmochim. Acta, 58:2157-2167

    [35]

    Canet C, Alfonso P, Melgarejo JC and Belyatsky BV. 2004. Geochemical evidences of sedimentary-exhalative origin of the shale-hosted PGE- Ag-Au-Zn-Cu occurences of the Prades Mountains (Catalonia, Spain) : Trace-element abundances and Sm-Nd isotopes. Journal of Geochemical Exploration, 82 : 17 - 33

    [36]

    Capobianco CJ, Hervig RL and Drake MJ. 1994. Experiments on crystal/ liquid partitioning of Ru, Rh and Pd for magnetite and hematite solid solutions crystallized from silicate melts. Chem. Geol. , 113 : 23 -43

    [37]

    Cave RR, Ravizza GE, German CR, Thomson J and Nesbitt RW. 2003. Deposition of osmium and other platinum-group elements beneath the ultramafic-hosted Rainbow hydrothermal plume. Earth and Planetary Science Letters, 210:65-79

    [38]

    Cawthorn RG, Merkle RKW and Viljoen MJ. 2002. Platinum group element deposits in the Bushveld Complex, South Africa. In: Cabri LJ (ed.). The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum group Elements, Can. Inst. Min. Metall. , Spec. , 54:389-429

    [39]

    Chu XL, Sun M and Zhou MF. 2001. The platinum-group element geochemistry in chemical geodynamics. Acta Petrologica Sinica, 17 (1) : 112 -122

    [40]

    Cohen AS, Coe AL, Bartlett JM and Hawkesworth CJ. 1999. Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. Earth and Planetary Science Letters, 167:159 - 173

    [41]

    Colodner D, Boyle EA and Edmond JM. 1990. A study of some platinum group elements in marine sediments: The mobile nobles EOS. American Geophysical Union, 71 (43) : 1421

    [42]

    Coveney Jr. RM, Murowchick JB, Grauch RI, Michael D, Glascock D and Denison JD. 1992. Gold and platinum in shales with evidence against extraterrestrial sources of metals. Chemical Geology, 99 : 101 - 114

    [43]

    Coveney Jr. RM. 2003. Re-Os dating of polymetallic Ni-Mo-PGE-Aumineralization in Lower Cambrian black shales of South China and its geological significance: A discussion. Economic Geology, 95:661 -665

    [44]

    Crocket JH. 1979. Platinum-group elements in mafic and uhra-mafic rocks : Survey. Canadian Mineralogist, 17 : 391 - 402

    [45]

    Croeket JH. 1990. Nobel metals in seafloor hydrothermal mineralization from the\\'Juan de Fuea and Mid-Atlantic Ridges: A fraetionation of gold from platinum metals in hydrothermal fluids. Canadian Mineralogist, 28 : 639 - 648

    [46]

    Distler VV, Yudovskaya MA, Mitrofanov GL, Prokof\\'ev VY and Lishnevskii EN. 2004. Geology, composition, and genesis of the Sukhoi Log noble metals deposit, Russia. Ore Geology Reviews, 24: 7-44

    [47]

    Dobrovolskaya MG. 1999. The noble metals and their distribution in Cumassive ore deposits of the south Urals. Journal of Conference Abstracts, 4 : 490

    [48]

    Eliopoulos DG and Eliopoulos ME. 1991. Platium-group element and gold contents in the Skouries porphyry copper deposit, Chakidiki Peninsula, Northern Greece. Econ. Geol. , 86 : 740 -749

    [49]

    Eliopoulos ME and Eliopoulos DG. 2000. Palladium, platinum and gold concentration in porphyry copper system of Greece and their genetic significance. Ore Geol. Rev., 16:59-70

    [50]

    Eliopoulos ME. 1996. Platinum-group element distribution in chromite ores from ophiolite complexes : Implications for their exploration. Ore Geology Reviews, 11 : 363 -381

    [51]

    Eliopoulos ME. 2005. Platinum-group element potential of porphyry deposits. In : Mungall JE ( ed. ). Exploration for Platinum-Group Element Deposits. Mineralogical Association of Canada, Short Course, 35:203 -245

    [52]

    Fan D, Yang R and Huang Z. 1984. The Lower Cambrian black shales series and the iridium anomaly in south China. Development in Geoscience, International Geological Congress, 27th, Moscow. Beijing: Science Press, 215 -224

    [53]

    Fan D, Ye J and Liu T. 1992. Black shale series-hosted silver vanadium deposits of the Upper Sinian Doushantuo Formation, western Hubei Province, China. Exploration Mining Geology, 1 : 29 - 38

    [54]

    Fleet ME and Wu TW. 1993. Volatile transport of platinum-group elements in sulfide-chloride assemblages at 1000℃. Geochim. Cosmochim. Acta, 57:3519-3531

    [55]

    Fleet ME and Wu TW. 1995. Volatile mass transfer of precious metals at 1000℃: Speciation, fractionation and effect of base-metal sulfide. Geochim. Cosmochim. Acta, 59:487-495

    [56]

    Fleet ME, Crocket JH and Stone WE. 1991. Partitioning of palladium, irdium, and platinum between sulfide liquid and basalt melt: Effects of melt composition, concentration, and oxygen fugacity. Geochim. Cosmochim. Acta, 55:2545 -2554

    [57]

    Fleet ME, Crocket JH, Liu MH and Stone WE. 1999. Laboratory partitioning of platinum-group elements (PGE) and gold with application to magmatic sulfide-PGE deposits. Lithos, 47:127 - 142

    [58]

    Francis D and Ludden J. 1995. The signature of amphibole in maflc alkaline lavas, a study in the northen Canadian Cordillera. Journal of Petrology, 36 : 1171 - 1192

    [59]

    Franklin JM, Lydon JW and Sangster DF. 1981. Volcanic-associated massive sulfide deposits. Economic Geology 75th Anniversary Volume, 485 - 627

    [60]

    Frey FA, Haskin MA, Poetz JA and Gammons CH. 1996. Experimental investigations of the hydrothermal geochemistry of platinum and palladium: V Equilibria between platinum metal, Pt(Ⅱ) and Pt (Ⅳ) chloride complexes at 25 to 300℃. Geochimica et Cosmochimica Acta, 60 : 1683 - 1694

  • 加载中
计量
  • 文章访问数:  7747
  • PDF下载数:  11876
  • 施引文献:  0
出版历程
刊出日期:  2008-03-31

目录