磁铁矿和钛铁矿成分对四川太和富磷灰石钒钛磁铁矿床成因的约束

佘宇伟, 宋谢炎, 于宋月, 陈列锰, 魏宇, 郑文勤. 磁铁矿和钛铁矿成分对四川太和富磷灰石钒钛磁铁矿床成因的约束[J]. 岩石学报, 2014, 30(5): 1443-1456.
引用本文: 佘宇伟, 宋谢炎, 于宋月, 陈列锰, 魏宇, 郑文勤. 磁铁矿和钛铁矿成分对四川太和富磷灰石钒钛磁铁矿床成因的约束[J]. 岩石学报, 2014, 30(5): 1443-1456.
SHE YuWei, SONG XieYan, YU SongYue, CHEN LieMeng, WEI Yu, ZHENG WenQin. The compositions of magnetite and ilmenite of the Taihe layered intrusion, Sichuan Province:Constraints on the formation of the P-rich Fe-Ti oxide ores[J]. Acta Petrologica Sinica, 2014, 30(5): 1443-1456.
Citation: SHE YuWei, SONG XieYan, YU SongYue, CHEN LieMeng, WEI Yu, ZHENG WenQin. The compositions of magnetite and ilmenite of the Taihe layered intrusion, Sichuan Province:Constraints on the formation of the P-rich Fe-Ti oxide ores[J]. Acta Petrologica Sinica, 2014, 30(5): 1443-1456.

磁铁矿和钛铁矿成分对四川太和富磷灰石钒钛磁铁矿床成因的约束

  • 基金项目:

    本文受国家“973”项目(2012CB416804)、矿床地球化学国家重点实验室项目群(SKLODG-ZY125-06)、中国科学院国家外国专家局创新团队国际合作伙伴计划“陆内成矿作用研究团队”(KZZD-EW-TZ-20)和国家自然科学基金项目(40730420)联合资助.

详细信息

The compositions of magnetite and ilmenite of the Taihe layered intrusion, Sichuan Province:Constraints on the formation of the P-rich Fe-Ti oxide ores

More Information
  • 产于层状镁铁质-超镁铁质岩体中的太和岩浆型Fe-Ti氧化物矿床是峨眉山大火成岩省内带几个超大型Fe-Ti氧化物矿床之一。太和岩体长超过3km,宽2km,厚约1.2km。根据矿物含量和结构等特征,整个岩体从下向上可划分为下部岩相带、中部岩相带、上部岩相带。下部岩相带主要以(橄榄)辉长岩和厚层不含磷灰石的块状Fe-Ti氧化物矿层组成。中部岩相带韵律旋回发育,(磷灰石)磁铁辉石岩主要位于旋回的底部,旋回上部为(磷灰石)辉长岩。上部岩相带主要是贫Fe-Ti氧化物的磷灰石辉长岩。太和中部岩相带磷灰石磁铁辉石岩含有5%~12%磷灰石、20%~35% Fe-Ti氧化物、50%~60%硅酸盐矿物,且硅酸盐矿物与磷灰石呈堆积结构。磷灰石磁铁辉石岩中磁铁矿显示高TiO2、FeO、MnO、MgO,且变化范围与趋势接近于攀枝花岩体。钛铁矿FeO分别与TiO2、MgO显示负相关,而FeO分别与Fe2O3、MnO显示正的相关,且TiO2、FeO、MnO、MgO含量变化较大,这些特征都暗示磁铁矿和钛铁矿是从富Fe-Ti-P岩浆中分离结晶。因此,可以推断太和磷灰石磁铁矿辉石岩形成于矿物重力分选和堆积。太和下部岩相带包裹在橄榄石中磁铁矿含有相对较高Cr2O3(0.07%~0.21%),而中部岩相带包裹在橄榄石中磁铁矿Cr2O3(0.00%~0.03%)显著降低,且这些磁铁矿Cr2O3含量变化与单斜辉石Cr含量和斜长石An牌号呈正相关。这些特征印证了形成中部岩相带的相对演化的富Fe-Ti-P母岩浆可能是源自中部岩浆房的混合岩浆。上部岩相带磁铁矿和中部岩相带顶部少量磁铁矿显示较低Ti+V可能是由于岩浆房中累积的岩浆热液对磁铁矿成分进行了改造。
  • 加载中
  • [1]

    Ali JR, Thompson GM, Zhou MF and Song XY. 2005. Emeishan large igneous province, SW China. Lithos, 79(3-4): 475-489

    [2]

    Bai ZJ, Zhong H, Naldrett AJ, Zhu WG and Xu GW. 2012. Whole-rock and mineral composition constraints on the genesis of the giant Hongge Fe-Ti-V oxide deposit in the Emeishan large igneous province, Southwest China. Economic Geology, 107(3):507-524

    [3]

    Barton MD and Johnson DA. 1996. An evaporitic-source model for igneous related Fe-oxide (-REE-Cu-Au-U) mineralization. Geology, 24(3): 259-262

    [4]

    Charlier B, Duchesne JC and Vander Auwera J. 2006. Magma chamber processes in the Tellnes ilmenite deposit (Rogaland Anorthosite Province, SW Norway) and the formation of Fe-Ti ores in massif-type anorthosites. Chemical Geology, 234(3): 264-290

    [5]

    Charlier B and Grove TL. 2012. Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contributions to Mineralogy and Petrology, 164(1): 27-44

    [6]

    Chen W, Zhao TP, Wei QG and Xu YH. 2008. Genesis of nelsonite from the Damiao Fe-Ti-P deposit, Hebei Province, China: Evidence from apatite. Acta Petrologica Sinica, 24(10): 2301-2312 (in Chinese with English abstract)

    [7]

    Chen WT, Zhou MF and Zhao TP. 2013. Differentiation of nelsonitic magmas in the formation of the ~1.74Ga Damiao Fe-Ti-P ore deposit, North China. Contributions to Mineralogy and Petrology, 165(6): 1341-1362

    [8]

    Chung SL and Jahn BM. 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 23(10): 889-892

    [9]

    Duchesne JC. 1999. Fe-Ti deposits in Rogaland anorthosites (South Norway): Geochemical characteristics and problems of interpretation. Mineralium Deposita, 34(2): 182-198

    [10]

    Dupuis C and Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46(4): 319-335

    [11]

    Dymek RF and Owens BE. 2001. Petrogenesis of apatite-rich rocks (nelsonites and oxide-apatite gabbronorites) associated with massif anorthosites. Economic Geology, 96(4): 797-815

    [12]

    Fan WM, Zhang CH, Wang YJ, Guo F and Peng TP. 2008. Geochronology and geochemistry of Permian basalts in western Guangxi Province, Southwest China: Evidence for plume-lithosphere interaction. Lithos, 102(1-2): 218-236

    [13]

    Foose MP and Mclelland JM. 1995. Proterozoic low-Ti iron-oxide deposits in New York and New Jersey: Relation to Fe-oxide (Cu-U-Au-rare earth element) deposits and tectonic implications. Geology, 23(7): 665-668

    [14]

    Hou T, Zhang ZC, Encarnacion J and Santosh M. 2012. Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe-Ti oxide ores in the Panxi district, Emeishan Large Igneous Province, Southwest China. Ore Geology Reviews, 49: 109-127

    [15]

    Jakobsen JK, Veksler IV, Tegner C and Brooks CK. 2005. Immiscible iron-and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology, 33(11): 885-888

    [16]

    Klemme S, Günther D, Hametner K, Prowatke S and Zack T. 2006. The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chemical Geology, 234(3-4): 251-263

    [17]

    Kolker A. 1982. Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis. Economic Geology, 77(5): 1146-1158

    [18]

    McBirney A. 1996. The Skaergaard intrusion. Developments in Petrology, 15: 147-180

    [19]

    Namur O, Charlier B, Toplis MJ, Higgins MD, Liégeois JP and Vander Auwera J. 2010. Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada. Journal of Petrology, 51(6): 1203-1236

    [20]

    Pang KN, Li C, Zhou MF and Ripley EM. 2008a. Abundant Fe-Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions, SW China: Evidence for early saturation of Fe-Ti oxides in ferrobasaltic magma. Contributions to Mineralogy and Petrology, 156(3): 307-321

    [21]

    Pang KN, Zhou MF, Lindsley D, Zhao D and Malpas J. 2008b. Origin of Fe-Ti oxide ores in mafic intrusions: Evidence from the Panzhihua Intrusion, SW China. Journal of Petrology, 49(2): 295-313

    [22]

    Philpotts AR. 1967. Origin of certain iron-titanium oxide and apatite rocks. Economic Geology, 62(3): 303-315

    [23]

    She YW, Yu SY, Song XY, Chen LM, Zheng WQ and Luan Y. 2014. The formation of P-rich Fe-Ti oxide ore layers in the Taihe layered intrusion, SW China: Implications for magma-plumbing system process. Ore Geology Reviews, 57:539-559

    [24]

    Song XY, Zhou MF, Hou ZQ, Cao ZM, Wang YL and Li Y. 2001. Geochemical constraints on the mantle source of the Upper Permian Emeishan continental flood basalts, southwestern China. International Geology Review, 43(3): 213-225

    [25]

    Song XY, Zhou MF, Cao ZM and Robinson PT. 2004. Late Permian rifting of the South China Craton caused by the Emeishan mantle plume? Journal of the Geological Society of London, 161(5): 773-781

    [26]

    Song XY, Qi HW, Hu RZ, Chen LM, Yu SY and Zhang JF. 2013. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China. Geochemistry Geophysics Geosystems, 14(3): 712-732

    [27]

    Tegner C, Cawthorn RG and Kruger FJ. 2006. Cyclicity in the Main and Upper Zones of the Bushveld Complex, South Africa: Crystallization from a zoned magma sheet. Journal of Petrology, 47(11): 2257-2279

    [28]

    Tollari N, Barnes SJ, Cox RA and Nabil H. 2008. Trace element concentrations in apatites from the Sept-les Intrusive Suite, Canada: Implications for the genesis of nelsonites. Chemical Geology, 252(3-4): 180-190

    [29]

    Vantongeren JA and Mathez EA. 2012. Large-scale liquid immiscibility at the top of the Bushveld Complex, South Africa. Geology, 40(6): 491-494

    [30]

    Wei Y, Bai WL, Li SJ, Guo YW, Xia SP, Chen GH, Lü D, Liu W, Li ZH and Zhang XM. 2012. The geology and exploration prospect of the Taihe V-Ti magnetite deposit from Xichang City, Sichuan Province. Acta Geologica Sichuan, 32(S2): 44-50 (in Chinese)

    [31]

    Xiao L, Xu YG, Mei HJ, Zheng YF, He B and Pirajno F. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plume-lithosphere interaction. Earth and Planetary Science Letters, 228(3-4): 525-546

    [32]

    Xu YG, Chung SL, Jahn BM and Wu G. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 58(3-4): 145-168

    [33]

    Xu YG, He B, Chung SL, Menzies MA and Frey FA. 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology, 32(10): 917-920

    [34]

    Zhang XQ, Zhang JF, Song XY, Deng YF, Guan JX and Zheng WQ. 2011. Implications of compositions of plagioclase and olivine on the formation of the Panzhihua V-Ti magnetite deposit, Sichuan Province. Acta Petrologica Sinica, 27(12): 3675-3688 (in Chinese with English abstract)

    [35]

    Zhang XQ, Song XY, Chen LM, Xie W, Yu SY, Zheng WQ, Deng YF, Zhang JF and Gui SG. 2012. Fractional crystallization and the formation of thick Fe-Ti-V oxide layers in the Baima layered intrusion, SW China. Ore Geology Reviews, 49: 96-108

    [36]

    Zhang ZC, Mahoney JJ, Mao JW and Wang FH. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. Journal of Petrology, 47(10): 1997-2019

    [37]

    Zhang ZC, Zhi XC, Chen L, Saunders AD and Reichow MK. 2008. Re-Os isotopic compositions of picrites from the Emeishan flood basalt province, China. Earth and Planetary Science Letters, 276(1-2): 30-39

    [38]

    Zhang ZC, Mao JW, Saunders AD, Ai Y, Li Y and Zhao L. 2009. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos, 113(3-4): 369-392

    [39]

    Zhang ZC, Hou T, Santosh M, Li HM, Li JW, Zhang ZH, Song XY and Wang M. 2014. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geology Reviews, 57: 247-263

    [40]

    Zhang ZC, Hou T, Li HM, Li JW, Zhang ZH and Song XY. 2014. Enrichment mechanism of iron in magmatic-hydrothermal system. Acta Petrologica Sinica, 30(5): 1189-1204(in Chinese with English abstract)

    [41]

    Zhao TP, Chen W and Zhou MF. 2009. Geochemical and Nd-Hf isotopic constraints on the origin of the ~1.74Ga Damiao anorthosite complex, North China Craton. Lithos, 113: 673-690

    [42]

    Zheng WQ, Deng YF, Song XY, Chen LM, Yu SY, Zhou GF, Liu SR and Xiang JX. 2014. Composition and genetic significance of the ilmenite of the Panzhihua intrusion. Acta Petrologica Sinica, 30(5): 1432-1442 (in Chinese with English abstract)

    [43]

    Zhong H, Zhou XH, Zhou MF, Sun M and Liu BG. 2002. Platinum-group element geochemistry of the Hongge Fe-V-Ti deposit in the Pan-Xi area, southwestern China. Mineralium Deposita, 37(2): 226-239

    [44]

    Zhong H and Zhu WG. 2006. Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province, SW China. Mineralium Deposita, 41(6): 599-606

    [45]

    Zhong H, Xu GW, Zhu WG, Hu RZ and He DF. 2009. Petrogenesis of the Taihe granites in the Emeishan large igneous province and its tectonic implications. Bulletin of Mineralogy, Petrology and Geochemistry, 28(2): 99-110 (in Chinese with English abstract)

    [46]

    Zhong H, Campbell IH, Zhu WG, Allen CM, Hu RZ, Xie LW and He DF. 2011. Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochimica et Cosmochimica Acta, 75(5): 1374-1395

    [47]

    Zhou MF, Yan DP, Kennedy AK, Li Y and Ding J. 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67

    [48]

    Zhou MF, Robinson PT, Lesher CM, Keays RR, Zhang CJ and Malpas J. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280

    [49]

    Zhou MF, Arndt NT, Malpas J, Wang CY and Kennedy AK. 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos, 103(3-4): 352-368

    [50]

    陈伟, 赵太平, 魏庆国, 徐勇航. 2008. 河北大庙Fe-Ti-P矿床中钛铁磷灰岩的成因: 来自磷灰石的证据. 岩石学报,24(10): 2301-2312

    [51]

    魏宇, 柏万灵, 李松键, 郭耀文, 夏世平, 陈赓户, 吕杜, 柳维, 李作华, 张旭明. 2012. 四川省西昌市太和钒钛磁铁矿区地质特征及找矿远景. 四川地质学报, 32(S2): 44-50

    [52]

    张晓琪, 张加飞, 宋谢炎, 邓宇峰, 官建祥, 郑文勤. 2011. 斜长石和橄榄石成分对四川攀枝花钒钛磁铁矿矿床成因的指示意义. 岩石学报, 27(12): 3675-3688

    [53]

    张招崇, 侯通, 李厚民, 李建威, 张作衡, 宋谢炎. 2014. 岩浆-热液系统中铁的富集机制探讨. 岩石学报, 30(5): 1189-1204

    [54]

    郑文勤,邓宇峰,宋谢炎,陈列锰,于宋月,周国富,刘世荣,向建新. 2014. 攀枝花岩体钛铁矿成分特征及其成因意义. 岩石学报, 30(5): 1432-1442

    [55]

    钟宏, 徐桂文, 朱维光, 胡瑞忠, 何德锋. 2009. 峨眉山大火成岩省太和花岗岩的成因及构造意义. 矿物岩石地球化学通报, 28(2): 99-110

  • 加载中
计量
  • 文章访问数:  7617
  • PDF下载数:  8642
  • 施引文献:  0
出版历程
收稿日期:  2013-09-01
修回日期:  2014-01-27
刊出日期:  2014-05-31

目录