岩浆-热液系统中铁的富集机制探讨

张招崇, 侯通, 李厚民, 李建威, 张作衡, 宋谢炎. 岩浆-热液系统中铁的富集机制探讨[J]. 岩石学报, 2014, 30(5): 1189-1204.
引用本文: 张招崇, 侯通, 李厚民, 李建威, 张作衡, 宋谢炎. 岩浆-热液系统中铁的富集机制探讨[J]. 岩石学报, 2014, 30(5): 1189-1204.
ZHANG ZhaoChong, HOU Tong, LI HouMin, LI JianWei, ZHANG ZuoHeng, SONG XieYan. Enrichment mechanism of iron in magmatic-hydrothermal system[J]. Acta Petrologica Sinica, 2014, 30(5): 1189-1204.
Citation: ZHANG ZhaoChong, HOU Tong, LI HouMin, LI JianWei, ZHANG ZuoHeng, SONG XieYan. Enrichment mechanism of iron in magmatic-hydrothermal system[J]. Acta Petrologica Sinica, 2014, 30(5): 1189-1204.

岩浆-热液系统中铁的富集机制探讨

  • 基金项目:

    本文受国家“973”计划项目(2012CB416800)、国家自然科学基金项目(40925006)和国土资源部公益性行业科研专项(200911007-25)联合资助.

Enrichment mechanism of iron in magmatic-hydrothermal system

  • 与岩浆-热液系统有关的铁矿类型有岩浆型钒钛磁铁矿床、玢岩铁矿、矽卡岩型铁矿和海相火山岩型铁矿,与这些铁矿有关的岩浆岩从基性-超基性、中性到中酸性岩均有,其中岩浆型钒钛磁铁矿床与基性-超基性深成侵入岩有关,形成于岩浆阶段,主要与分离结晶作用有关,但是厚大的富铁矿石的形成则可归结于原始的富铁钛苦橄质岩浆、分离结晶作用、多期次的岩浆补充以及流动分异等联合过程。钒钛磁铁矿石产于岩体下部还是上部与母岩浆的氧逸度有关:高的氧逸度导致磁铁矿早期结晶而使得其堆积于岩体的下部,相反,低氧逸度则导致低品位的浸染状矿石产于岩体的上部。虽然野外一些证据表明,元古宙斜长岩中的磷铁矿石可能是不混溶作用形成的,但是目前尚无实验证据。某些玢岩铁矿的一些磷灰石-磁铁矿石可能与闪长质岩浆同化混染了地壳中的磷导致的不混溶作用有关。除此之外,其他各类与岩浆作用有关的铁矿床均与岩浆后期的岩浆-热液作用有关。这些不同类型铁矿床的蚀变和矿化过程具有相似性,反映了它们形成过程具有相似的物理化学条件。成矿实验以及流体包裹体研究表明,岩浆-流体转换过程中出溶流体的数量以及成分受多种因素控制,其中岩浆分离结晶作用以及碳酸盐地层和膏盐层的混染可导致出溶的流体中Cl浓度的升高。早期高氧逸度环境可以使得硫以SO42-形式存在,抑制硫与铁的结合形成黄铁矿,有利于铁在早期以Cl的络合物发生迁移。大型富铁矿的形成需要一个长期稳定的流体对流循环系统,而岩浆的多期侵位或岩浆房以及在相对封闭的环境中(需要一个不透水层)一个有利于流体循环的断裂/裂隙系统是形成一个长期稳定的流体对流循环系统的必要条件。但是由于不同地质环境,流体中铁的卸载方式和位置会有明显差别,由此导致不同的矿石结构构造和不同的矿体产状。
  • 加载中
  • [1]

    Bodnar RJ. 1995. Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits. Mineralogical Association of Canada Short Course Series, 23: 139-152

    [2]

    Bowers TS and Helgeson HC. 1983. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta, 47(7): 1247-1275

    [3]

    Chen BL, Jiang RB, Li L, Chen ZL, Qi WX, Liu R, Cui LL and Wang SX. 2009. Discovery of iron ore zones in the Kaladawan area within the eastern part of the Altun Mountains and its significance. Acta Geoscientica Sinica, 30(2): 143-154 (in Chinese with English abstract)

    [4]

    Deng JF. 1987. Phase Equilibrium of Rocks and Petrogenesis. Wuhan: Wuhan Geological College Press, 198 (in Chinese)

    [5]

    Dill HG. 2010. The "chessboard" classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth Science Reviews, 100(1-4): 1-420

    [6]

    Du YS, Cao Y, Zhang ZY, Pang ZS and Li DP. 2011. Mesozoic In-situ and external skarn magmatic-hydrothermal mineralization in the Anhui segment of the Lower Yangtze metallogenic belt. Acta Geologica Sinica, 85(5): 699-711 (in Chinese with English abstract)

    [7]

    Duan SG, Zhang ZH, Jiang ZS, Zhao J, Zhang YP, Li FM and Tian JQ. 2014. Geology, geochemistry, and geochronology of the Dunde iron-zinc ore deposit in western Tianshan, China. Ore Geology Reviews, 57: 441-461

    [8]

    Duchesne JC. 1996. Liquid ilmenite or liquids ilmenite: A comment on the nature of ilmenite vein deposits. In: Demai ED (ed.). Petrology and Geochemistry of Magnatic Suites of Rocks in the Continental and Oceanic Crusts. A Volume Dedicated to Professor Jean Michot, Universite? Libre de Bruxelles, Royal Museum for Central Africa (Tezvuren), 73-82

    [9]

    Duchesne JC. 1999. Fe-Ti deposits in Rogaland anorthosites (South Norway): Geochemical characteristics and problems of interpretation. Mineralium Deposita, 34(2): 182-198

    [10]

    Eastoe CJ. 1978. A fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea. Economic Geology, 73(5): 721-748

    [11]

    Einaudi MT, Meinert LD and Newberry RJ. 1981. Skarn Deposits. Economic Geology, 75th Anniversary Volume, 317-391

    [12]

    Fan Y, Zhou TF, Hao L, Yuan F, Zhang LJ and Wang WC. 2012. Ore-forming fluid characteristic of Nihe iron deposit in Lu-Zong basin, Anhui Province and its significance to ore genesis. Acta Petrologica Sinica, 28(10): 3113-3124 (in Chinese with English abstract)

    [13]

    Ganino C, Arndt NT, Zhou MF, Gaillard F and Chauvel C. 2008. Interaction of magma with sedimentary wall rock and magnetite ore genesis in the Panzhihua mafic intrusion, SW China. Mineralium Deposita, 43(6): 677-694

    [14]

    Ganino C, Arndt NT, Chauvel C, Jean A and Athurion C. 2013a. Melting of carbonate wall rocks and formation of the heterogeneous aureole of the Panzhihua intrusion, China. Geoscience Frontiers, 4(5): 535-546

    [15]

    Ganino C, Harris C, Arndt NT, Prevec SA and Howarth GH. 2013b. Assimilation of carbonate country rock by the parent magma of the Panzhihua Fe-Ti-V deposit (SW China): Evidence from stable isotopes. Geoscience Frontiers, 4(5): 547-554

    [16]

    Heinrich CA, Günther D, Audétat A, Ulrich T and Frischknecht R. 1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology, 27(8): 755-758

    [17]

    Hong W, Zhang ZH, Li FM and Liu XZ. 2012a. Stable isotopic characteristics of the chagangnuoer iron deposit in western Tianshan, Xinjiang and its geological significance. Rock and Mineral Analysis, 31(6): 1077-1087 (in Chinese with English abstract)

    [18]

    Hong W, Zhang ZH, Li HQ, Li FM and Liu QZ. 2012b. Metallogenic epoch of Chagangnuoer iron deposit in western Tianshan Mountains, Xinjiang: Information from garnet Sm-Nd isochron age. Mineral Deposits, 31(5): 1067-1074 (in Chinese with English abstract)

    [19]

    Hou T, Zhang ZC, Encarnacion J, Du YS, Zhao ZD and Liu JL. 2010. Geochemistry of Late Mesozoic dioritic porphyries associated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores, Middle-Lower Yangtze Valley, eastern China: Constraints on petrogenesis and iron sources. Lithos, 119(3-4): 330-344

    [20]

    Hou T, Zhang ZC, Ye X, Encarnacion J and Reichow MK. 2011a. Noble gas isotopic systematics of Fe-Ti-V oxide ore-related mafic-ultramafic layered intrusions in the Panxi area, China: The role of recycled oceanic crust in their petrogenesis. Geochimica et Cosmochimica Acta, 75(22): 6727-6741

    [21]

    Hou T, Zhang ZC and Kusky T. 2011b. Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type? Ore Geology Reviews, 43(1): 333-346

    [22]

    Hou T, Zhang ZC and Pirajno F. 2012. A new metallogenic model of the Panzhihua giant V-Ti iron oxide deposit in the Emeishan large province: Based on high-Mg olivine-bearing wehrlites and new field evidence. International Geology Review, 54(15): 1721-1745

    [23]

    Hou T, Zhang ZC, Encarnacion J, Santosh M and Sun Y. 2013a. The role recycled oceanic crust in magmatism and metallogenesis: Os-Sr-Nd isotpes, U-Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe-Ti oxide deposit, central Emeishan large igneous province. Contributions to Mineralogy and Petrology, 165(4): 805-822

    [24]

    Hou T, Zhang ZC, Santosh M, Encarnacion J and Wang M. 2013b. The Cihai diabase in the Beishan region, NW China: Isotope geochronology, geochemistry and implications for Cornwall-style iron mineralization. Journal of Asian Earth Sciences, 70-71: 231-249

    [25]

    Hou T, Zhang ZC, Santosh M, Zhu J and Luo WJ. 2014a. Geochronology and geochemistry of submarine volcanic rocks in the Yamansu iron deposit, Eastern Tianshan Mountains, NW China: Constraints on the metallogenesis. Ore Geology Reviews, 56: 487-502

    [26]

    Hou T, Zhang ZC, Pirajno F, Santosh M, Encarnacion J, Liu J, Zhao Z and Zhang L. 2014b. Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China: An overview. Ore Geology Reviews, 57: 498-517

    [27]

    Hu H, Li JW, Lentz D, Ren Z, Zhao XF, Deng XD and Hall D. 2014. Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit: Insights into ore genesis and implication for in-situ chemical analysis of magnetite. Ore Geology Reviews, 57: 393-405

    [28]

    Hu H, Duan Z, Luo Y, Ren Z and Li JW. 2014. Geochemical characteristics of magnetite from the Chengchao iron deposit in the Daye district: Insights into ore genesis. Acta Petrologica Sinica, 30(5): 1292-1306 (in Chinese with English abstract)

    [29]

    Hu XJ and Chen WG. 2010. Geological characteristics and genesis of Chagangnuoer large-sized magnetite deposit in southern Tianshan, Xinjiang. Resources Survey and Environment, 31(3): 185-193 (in Chinese with English abstract)

    [30]

    Huang QT and Yan GP. 1989. Luohe Iron Deposit in Lujiang, Anhui. Beijing: Geological Publishing House, 131-167 (in Chinese)

    [31]

    Hunter RH and Sparks RSJ. 1987. The differentiation of the Skaergaard intrusion. Contributions to Mineralogy and Petrology, 95(4): 451-461

    [32]

    Hutchinson RW. 1990. Precious metals in massive base metal sulfide deposits. Geologische Rundschau, 79(2): 241-263

    [33]

    Irvine TN. 1975. Crystallization sequences in Muskox intrusion and other layered intrusions. II. Origin of chromitite layers and similar deposits of other magmatic ores. Geochimica et Cosmochimica Acta, 39(6-7): 991-1020

    [34]

    Jakobsen JK, Veksler IV, Tegner C and Brooks CK. 2005. Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology, 33(11): 885-888

    [35]

    Jiang ZS, Zhang ZH, Wang ZH, Duan SG, Li FM and Tian JQ. 2013. Geology, geochemistry, and geochronology of the Zhibo iron deposit in the western Tianshan, NW China: Constraints on metallogenesis and tectonic setting. Ore Geology Reviews, 57: 406-424

    [36]

    Joyce DB and Holloway JR. 1993. An experimental determination of the thermodynamic properties of H2O-CO2-NaCl fluids at high pressures and temperatures. Geochemica et Cosmochemical Acta, 57(4): 733-746

    [37]

    Li HM, Chen YC, Li LX and Wang DH. 2012. Metallogeny of the Iron Deposits in China. Beijing: Geological Publishing House, 1-246 (in Chinese)

    [38]

    Li J, Vasconcelos P, Zhou M, Deng X, Cohen B, Bi S, Zhao X and Selby D. 2014. Longevity of magmatic-hydrothermal systems in the Daye Cu-Fe-Au district, eastern China with implications for mineral exploration. Ore Geology Reviews, 57: 375-392

    [39]

    Li JL, Zhang GL and Su LH. 1986. An experimental study on the iron ore deposits formed by "ore magma" related to FeO-Ca5(PO4)3-NaAlSiO4-CaMgSi2O6 system. Bulletin of The Institute of Mineral Deposits, Chinese Academy of Geological Sciences, (2): 198-204 (in Chinese with English abstract)

    [40]

    Li YH, Xie GQ, Duan C, Han D and Wang CY. 2013. Effect of sulfide evaporate salt layer over the formation of skarn-type iron ores. Acta Geologica Sinica, 87(9): 1324-1334 (in Chinese with English abstract)

    [41]

    Lindsley DH. 2003. Do Fe-Ti oxide magma exist? Geology: Yes; Experiment: No. NGU Special Publication, 9: 34-35

    [42]

    Ma F, Jiang SF, Ni P and Ling HF. 2006. Fluid inclusions and H-O isotopic compositions in the Washan and Dongshan iron deposits, Ningwu basin, China. Acta Petrologica Sinica, 22(10): 2581-2589 (in Chinese with English abstract)

    [43]

    Maynard JB. 1983. Geochemistry of Sedimentary Ore Deposits. Heidelberg: Springer Verlag, 305

    [44]

    McBirney AR. 1996. The Skaergaard intrusion. In: Cawthorn RG (ed.). Layered Intrusions. Amsterdam: Elsevier, 147-180

    [45]

    Meinert LD, Dipple GM and Nicolescu S. 2005. World skarn deposits. In: Hedenquist JW et al. (eds.). Economic Geology 100th Anniversary Volume. Littleton, Colorado, USA: Society of Economic Geologists, 299-336

    [46]

    Meng QL. 1988. On polygene of Laiwu magmatic complex, Shandong Province. Journal of Changchun University of Earth Science, 18(1): 43-52 (in Chinese with English abstract)

    [47]

    Morey GB. 1999. High-grade iron ore deposits of the Mesabi Range, Minnesota: Product of a continental-scale Proterozoic ground-water flow system. Economic Geology, 94(1): 133-142

    [48]

    Morse SA. 2008. Compositional convection trumps silicate liquid immiscibility in layered intrusions: A discussion of 'Liquid immiscibility and the evolution of basaltic magma’ by Veksler et al., Journal of Petrology 48, 2187-2210. Journal of Petrology, 49: 2157-2168

    [49]

    Nagaseki H and Hayashi K. 2008. Experimental study of the behavior of copper and zinc in a boiling hydrothermal system. Geology, 36(1): 27-30

    [50]

    Pang KN, Zhou MF, Lindsley D, Zhao D and Malpas J. 2008. Origin of Fe-Ti oxide ores in mafic intrusions: Evidence from the Panzhihua Intrusion, SW China. Journal of Petrology, 49(2): 295-313

    [51]

    Pang KN, Zhou MF, Qi L, Chung SL, Chu CH and Lee HY. 2013. Petrology and geochemistry at the Lower Zone-Middle Zone transition of the Panzhihua intrusion, SW China: Implications for differentiation and oxide ore genesis. Geoscience Frontiers, 4(5): 517-533

    [52]

    Park CF. 1961. A magnetite "flow" in northern Chile. Economic Geology, 56(2): 431-436

    [53]

    Parks J and Hill RET. 1986. Phase compositions and cryptic variation in a 2.2-km section of the Windimurra layered gabbroic intrusion, Yilgarn block, Western Australia: A comparison with the Stillwater complex. Economic Geology, 81(5): 1196-1202

    [54]

    Pei RF, Li JW, Wang YL and Wang HL. 2011. Metallogeny of the tectonomagmatic emplacing contact structural systems of the metallogenic belt in Middle and Lower Reaches of Yangtze. Geology and Resources, 20(6): 401-412 (in Chinese with English abstract)

    [55]

    Philpotts AR. 1967. Origin of certain iron-titanium oxide and apatite rocks. Economic Geology, 62(3): 303-315

    [56]

    Pirajno F. 2009. Hydrothermal Processes and Mineral Systems. Berlin, Germany: Springer, 1016

    [57]

    Powell CM, Oliver NS, Li ZX, Martin MB and Ronaszecki J. 1999. Hypogenic hydrothermal origin for giant Hamersley iron oxide ore bodies. Geology, 27: 175-178

    [58]

    Qian JH and Shen YR. 1990. The Dahongshan Paleovolcanic Iron-Copper Deposit. Beijing: Geological Publishing House, 1-236 (in Chinese)

    [59]

    Ren JS, Wang ZX, Chen BW, Jiang CF, Niu BG, Li JY, Xie GL, He ZJ and Liu ZG. 1999. See Tectonics of China from a Global Scale: A Brief Introduction to the Tectonic Map of China and Adjacent Areas. Beijing: Geological Publishing House, 1-50 (in Chinese)

    [60]

    Reynolds IM. 1985. The nature and origin of titaniferous magnetite-rich layers in the upper zone of the Bushveld complex: A review and synthesis. Economic Geology, 80(4): 1089-1108

    [61]

    Roedder E. 1971. Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Economic Geology, 66(1): 98-118

    [62]

    Rona PA. 1984. Hydrothermal mineralization at seafloor spreading centers. Earth Science Reviews, 20(1): 1-104

    [63]

    Scoon RN and Mitchell AA. 1994. Discordant iron-rich ultramafic pegmatites in the Bushveld complex and their relationship to ironrich intercumulus and residual liquids. Journal of Petrology, 35(4): 881-917

    [64]

    Shao QH, Liu SF, Liu XQ and Tian JQ. 2011. Geological characteristics of the Motuosala Fe-Mn deposits. West-China Exploration Engineering, 23(2): 131-135 (in Chinese)

    [65]

    Simon AC, Pettke T, Candela PA, Piccoli PM and Heinrich CA. 2007. The partitioning behavior of As and Au in S-free and S-bearing magmatic assemblages. Geochimica et Cosmochimica Acta, 71(7): 1764-1782

    [66]

    Song XX, Chen YC, Sheng JF and Ai YD. 1981. On iro deposits formed volcanogenic-hypabyssal ore magma. Acta Geologica Sinica, (1): 51-54 (in Chinese with English abstract)

    [67]

    Song XY, Qi H, Hu RZ, Chen LM, Yu SY and Zhang JF. 2013. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China. Geochemistry Geophysics Geosystems, 14(3): 712-732

    [68]

    Taylor D, Dalstra HJ, Harding AE, Broadbent GC and Barley ME. 2001. Genesis of high-grade hematite ore bodies of the Hamersley province, Western Australia. Economic Geology, 96(4): 837-873

    [69]

    Tollari N, Toplis MJ and Barnes SJ. 2006. Predicting phosphate saturation in silicate magmas: An experimental study of the effects of melt composition and temperature. Geochimica et Cosmochimica Acta, 70(6): 1518-1536

    [70]

    Tuff J, Takahashi E and Gibson SA. 2005. Experimental constraints on the role of garnet pyroxenite in the genesis of high-Fe mantle plume derived melts. Journal of Petrology, 46(10): 2023-2058

    [71]

    Veksler IV, Dorfman AM, Danyushevsky LM, Jakobsen JK and Dingwell DB. 2006. Immiscible silicate liquid partition coefficients: Implications for crystal-melt element partitioning and basalt petrogenesis. Contributions to Mineralogy and Petrology, 152(6): 685-702

    [72]

    Veksler IV, Dorfman AM, Borisov AA, Wirth R and Dingwell DB. 2007. Liquid immiscibility and the evolution of basaltic magma. Journal of Petrology, 48(11): 2187-2210

    [73]

    Veksler IV. 2009. Extreme iron enrichment and liquid immiscibility in mafic intrusions: Experimental evidence revisited. Lithos, 111(1-2): 72-82

    [74]

    Volcanic Iron Deposit Research Group of the Middle-lower Chang Jiang Valley. 1977. Porphyrite iron ore: A genetic model of a group of iron deposits in andesitic volcanic area. Acta Geologica Sinica, (1): 1-18 (in Chinese with English abstract)

    [75]

    Wang BY and Jiang CY. 2011. Petrogenesis and geochemical characteristics of Carboniferous volcanic rocks of Chagannur iron deposit area in western Tianshan, Xinjiang. Geological Science and Technology Information, 30(6): 18-27 (in Chinese with English abstract)

    [76]

    Wang CL, Wang YT, Dong LH, Zhang B and Ren Y. 2012. Geochemical characteristics of rare earth and trace elements compositions of Songhu iron deposit in western Tianshan of Xinjiang and their significance. Mineral Deposits, 31(5): 1038-1050 (in Chinese with English abstract)

    [77]

    Wang M, Zhang Z, Santosh M and Hou T. 2014. Geochemistry of Late Permian picritic porphyries associated with Pingchuan iron ores, Emeishan Large Igneous Province, Southwest China: Constraints on petrogenesis and iron sources. Ore Geology Reviews, 57: 602-617

    [78]

    Wang YR, Fan WD and Yu YM. 1981. Geochemical mechanism of alkali metasomatism and the formation of iron deposits. Geochimica, (1): 95-103 (in Chinese with English abstract)

    [79]

    Webster JD, Holloway JR and Hervig RL. 1989. Partitioning of lithophile trace elements between topaz rhyolite melt and H2O and H2O+CO2 fluids. Economic Geology, 84(1): 116-134

    [80]

    Webster JD. 2004. The exsolution of magmatic hydrosaline chloride liquids. Chemical Geology, 210(1-4): 33-48

    [81]

    Wedepohl KH. 1969. Handbook of Geochemistry. New York: Springer Verlag

    [82]

    Xu L, Mao J, Yang F, Daniel H and Zheng J. 2010. Geology, geochemistry and age constraints on the Mengku skarn iron deposit in Xinjiang Altai, NW China. Journal of Asian Earth Sciences, 39(5): 423-440

    [83]

    Yang CH, Xu WL, Yang DB, Liu CC, Liu XM and Hu ZC. 2006. High-Mg diorites in West Shandong Province: Evidences from chronology and petro-geochemistry. Earth Science, 31(1): 81-92 (in Chinese with English abstract)

    [84]

    Yang F, Mao J, Pirajno F, Yan SH, Liu GR, Zhou G, Zhang ZX, Liu F, Geng XX and Guo CL. 2012. A review of the geological characteristics and geodynamic setting of Late Paleozoic porphyry copper deposits in the Junggar region, Xinjiang Uygur Autonomous Region, Northwest China. Journal of Asian Earth Sciences, 49: 80-98

    [85]

    Yang FQ, Zhang ZQ, Qu WJ, Geng XX, Lü SJ, Chai FM, Jiang LP and Liu F. 2011. Re-Os age of molybdenite from the Mengku iron deposit in Altay, Xinjiang and its implication for metallogeny. Acta Geologica Sinica, 85(3): 396-404 (in Chinese with English abstract)

    [86]

    Yu JL and Zhao YJ. 1977. Discussion on the genesis of the Gushan iron deposit. Geology and Prospecting, (1): 22-24 (in Chinese with English abstract)

    [87]

    Yu XH. 1984. The geological sgnicance and the phase equilibrium experiments of wustite-fluor-phlogopite-diopside melt system at one bar and high temperature. Earth Sciences, 24(1): 12-17 (in Chinese with English abstract)

    [88]

    Zhai YS, Xiong YY, Yao SZ and Liu XD. 1996. Metallogeny of copper and iron deposits in the eastern Yangtze Craton, east-central China. Ore Geology Reviews, 11(4): 229-248

    [89]

    Zhang ZC, Mao JW, Saunders AD, Ai Y, Li Y and Zhao L. 2009. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos, 113(3-4): 369-392

    [90]

    Zhang ZH, Hong W, Duan SG, Wang ZH, Li M, Shi FP, Zhao J and Zheng RQ. 2012. Geological features, mineralization types and metallogenic setting of Late Paleozoic iron deposits in western Tianshan Mountains of Xinjiang. Mineral Deposits, 31(5): 941-964 (in Chinese with English abstract)

    [91]

    Zhao XF. 2010. Paleoproterozoic crustal evolution and Fe-Cu metallogeny of the western Yangtze block, SW China. Ph. D. Dissertation. Hong Kong: The University of Hong Kong

    [92]

    Zhao YM, Wu LS, Bai G, Yuan ZX, Ye QT, Huang MZ, Rui ZY, Sheng JF, Lin WW, Deng SP, Mao JW, Bi CS, Dang ZF, Wang LF, Zhang ZH and Chen WS. 2004. Metallogeny of the Major Metallic Ore Deposits in China. Beijing: Geological Publishing House, 13-62 (in Chinese)

    [93]

    Zhao ZM, Chen SJ, Ji WH, Zhang GX, Zha XF and Zhang HJ. 2013. The geological characteristics and formation of the magnetite-rich Kaixinling iron ore-deposit during Permian in Qinghai Province, China. Geotectonica et Metallogenia, 37(3): 422-439 (in Chinese with English abstract)

    [94]

    Zheng JM, Mao JW, Chen MH, Li GD and Ban CY. 2007. Geological characteristics and metallogenic model of skarn iron deposits in the Handan-Xingtai area, southern Hebei, China. Geological Bulletin of China, 26(2): 150-154 (in Chinese with English abstract)

    [95]

    Zhong H, Qi L, Hu RZ, Zhou MF, Gou TZ, Zhu WG, Liu BG and Chu ZY. 2011. Rhenium-osmium isotope and platinum-group elements in the Xinjie layered intrusion, SW China: Implications for source mantle composition, mantle evolution, PGE fractionation andmineralization. Geochimica et Cosmochimica Acta, 75(6): 1621-1641

    [96]

    Zhou MF, Robinson PT, Lesher CM, Keays RR. Zhang CJ and Malpas J. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated V-Ti-Fe oxide deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280

    [97]

    Zhou MF, Chen WT, Wang CY, Prevec SA, Liu PP, and Howarth GH. 2013. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China. Geoscience Frontiers, 4(5): 481-502

    [98]

    Zhou ZH, Wang AS and Li T. 2011. Fluid inclusion characteristics and metallogenic mechanism of Huanggang Sn-Fe deposit in Inner Mongolia. Mineral Deposits, 30(5): 867-889 (in Chinese with English abstract)

    [99]

    陈柏林, 蒋荣宝, 李丽, 陈正乐, 祁万修, 刘荣, 崔玲玲, 王世新. 2009. 阿尔金山东段喀腊大湾地区铁矿带的发现及其意义. 地球学报, 30(2): 143-154

    [100]

    邓晋福. 1987. 岩石相平衡与岩石成因. 武汉: 武汉地质学院出版社, 198

    [101]

    杜杨松, 曹毅, 张智宇, 庞振山, 李大鹏. 2011. 安徽沿江地区中生代原地和异地矽卡岩岩浆-热液成矿作用. 地质学报, 85(5): 699-711

    [102]

    范裕, 周涛发, 郝麟, 袁峰, 张乐骏, 王文财. 2012. 安徽庐枞盆地泥河铁矿床成矿流体特征及其对矿床成因的指示. 岩石学报, 28(10): 3113-3124

    [103]

    洪为, 张作衡, 李凤鸣, 刘兴忠. 2012a. 新疆西天山查岗诺尔铁矿床稳定同位素特征及其地质意义. 岩矿测试, 31(6): 1077-1087

    [104]

    洪为, 张作衡, 李华芹, 李凤鸣, 刘兴忠. 2012b. 新疆西天山查岗诺尔铁矿床成矿时代——来自石榴子石Sm-Nd等时线年龄的信息. 矿床地质, 31(5): 1067-1074

    [105]

    胡浩, 段壮, Luo Y, 任喆, 李建威. 2014. 长江中下游成矿带鄂东南矿集区程潮铁矿床磁铁矿的微量元素组成及其对矿床成因的制约. 岩石学报, 30(5): 1292-1306

    [106]

    胡秀军, 陈文革. 2010. 新疆南天山查岗诺尔大型磁铁矿矿床地质特征及矿床成因. 资源调查与环境, 31(3): 185-193

    [107]

    黄清涛, 尹恭沛. 1989. 安徽庐江罗河铁矿. 北京: 地质出版社, 131-167

    [108]

    李厚民, 陈毓川, 李立兴, 王登红. 2012. 中国铁矿成矿规律. 北京: 地质出版社, 1-246

    [109]

    李九玲, 张桂兰, 苏良赫. 1986. 与矿浆成矿有关的FeO-Ca5(PO4)3-NaAlSiO4-CaMgSi2O6模拟实验研究. 中国地质科学院矿床地质研究所所刊, (2): 198-204

    [110]

    李延河, 谢桂青, 段超, 韩丹, 王成玉. 2013. 膏盐层在矽卡岩型铁矿成矿中的作用. 地质学报, 87(9): 1324-1334

    [111]

    马芳, 蒋少涌, 姜耀辉, 倪培, 凌洪飞. 2006. 宁芜盆地凹山和东山铁矿床流体包裹体和氢氧同位素研究. 岩石学报, 22(10): 2581-2589

    [112]

    孟庆丽. 1988. 论山东莱芜岩浆杂岩的多源成因. 长春地质学院学报, 18(1): 43-52

    [113]

    裴荣富, 李进文, 王永磊, 王浩琳. 2011. 长江中下游成矿带构造岩浆侵位的接触构造体系与成矿. 地质与资源, 20(6): 401-412

    [114]

    钱锦和, 沈远仁. 1990. 云南大红山古火山岩铁铜矿床. 北京: 地质出版社, 1-236

    [115]

    任纪舜, 王作勋, 陈炳蔚, 姜春发, 牛宝贵, 李锦轶, 谢广连, 和政军, 刘志刚. 1999. 从全球看中国大地构造——中国及邻区大地构造简要说明. 北京: 地质出版社, 1-50

    [116]

    邵青红, 刘铭峰, 刘兴忠, 田敬全. 2011. 莫托萨拉铁锰矿床地质特征. 西部探矿工程, 23(2): 131-135

    [117]

    宋学信, 陈毓川, 盛继福, 艾永德. 1981. 论火山-浅成矿浆铁矿床. 地质学报, (1): 51-54

    [118]

    长江中下游火山岩区铁矿研究组. 1977. 玢岩铁矿-安山质火山岩地区铁矿床的一组成因模式. 地质学报, (1): 1-18

    [119]

    汪帮耀, 姜常义. 2011. 西天山查岗诺尔铁矿区石炭纪火山岩地球化学特征及岩石成因. 地质科技情报, 30(6): 18-27

    [120]

    王春龙, 王义天, 董连慧, 张兵, 任毅. 2012. 新疆西天山松湖铁矿床稀土和微量元素地球化学特征及其意义. 矿床地质, 31(5): 1038-1050

    [121]

    王玉荣, 樊文答, 郁云妹. 1981. 碱交代与铁矿形成的地球化学机理探讨. 地球化学, (1): 95-103

    [122]

    杨承海, 许文良, 杨德彬, 刘长春, 柳小明, 胡兆初. 2006. 鲁西中生代高Mg闪长岩的成因:年代学与岩石地球化学证据. 地球科学, 31(1): 81-92

    [123]

    杨富全, 张志欣, 屈文俊, 耿新霞, 吕书君, 柴凤梅, 姜丽萍, 刘锋. 2011. 新疆阿尔泰蒙库铁矿床的辉钼矿Re-Os年龄及意义. 地质学报, 85(3): 396-404

    [124]

    于景林, 赵云佳. 1977. 姑山式铁矿成因探讨. 地质与勘探, (1): 22-24

    [125]

    喻学慧. 1984. 常压高温下方铁矿(FeO)-氟-金云母(KMg3(AlSi3O10)F2)-透辉石(CaMgSi2O6)熔融体系相平衡实验及地质意义. 地球科学, 24(1): 12-17

    [126]

    张作衡, 洪为, 蒋宗胜, 段士刚, 王志华, 李凤鸣, 石福品, 赵军, 郑仁乔. 2012. 新疆西天山晚古生代铁矿床的地质特征、矿化类型及形成环境. 矿床地质, 31(5): 941-964

    [127]

    赵振明, 陈守建, 计文化, 张更新, 查显锋, 张海军. 2013. 青海开心岭二叠纪铁矿床富磁铁矿体的地质特征及成因分析. 大地构造与成矿学, 37(3): 422-439

    [128]

    赵一鸣, 吴良士, 白鸽, 袁忠信, 叶庆同, 黄民智, 芮宗瑶, 盛继福, 林文蔚, 邓顺平, 毛景文, 毕承思, 党泽发, 王龙生, 张作衡, 陈伟十. 2004. 中国主要金属矿床成矿规律. 北京: 地质出版社, 13-62

    [129]

    郑建民, 毛景文, 陈懋弘, 李广栋, 班长勇. 2007. 冀南邯郸-邢台地区矽卡岩铁矿的地质特征及成矿模式. 地质通报, 26(2): 150-154

    [130]

    周振华, 王挨顺, 李涛. 2011. 内蒙古黄岗锡铁矿床流体包裹体特征及成矿机制研究. 矿床地质, 30(5): 867-889

  • 加载中
计量
  • 文章访问数:  10782
  • PDF下载数:  12125
  • 施引文献:  0
出版历程
收稿日期:  2013-10-02
修回日期:  2014-02-05
刊出日期:  2014-05-31

目录