峨眉山大火成岩省内带黑谷田含钒钛磁铁矿层状岩体成因

陈列锰, 易俊年, 宋谢炎, 于宋月, 佘宇伟, 颉炜, 栾燕, 向建新. 峨眉山大火成岩省内带黑谷田含钒钛磁铁矿层状岩体成因[J]. 岩石学报, 2014, 30(5): 1415-1431.
引用本文: 陈列锰, 易俊年, 宋谢炎, 于宋月, 佘宇伟, 颉炜, 栾燕, 向建新. 峨眉山大火成岩省内带黑谷田含钒钛磁铁矿层状岩体成因[J]. 岩石学报, 2014, 30(5): 1415-1431.
CHEN LieMeng, YI JunNian, SONG XieYan, YU SongYue, SHE YuWei, XIE Wei, LUAN Yan, XIANG JianXin. Petrogenesis of the Heigutian Ti-V-magnetite ore-bearing layered intrusion, the inner zone of the Emeishan large igneous province[J]. Acta Petrologica Sinica, 2014, 30(5): 1415-1431.
Citation: CHEN LieMeng, YI JunNian, SONG XieYan, YU SongYue, SHE YuWei, XIE Wei, LUAN Yan, XIANG JianXin. Petrogenesis of the Heigutian Ti-V-magnetite ore-bearing layered intrusion, the inner zone of the Emeishan large igneous province[J]. Acta Petrologica Sinica, 2014, 30(5): 1415-1431.

峨眉山大火成岩省内带黑谷田含钒钛磁铁矿层状岩体成因

  • 基金项目:

    本文受国家重点基础研究发展计划(2012CB416804)、中国科学院地球化学研究所矿床地球化学国家重点实验室项目(SKLODG-ZY125-06、201201)、中国科学院国家外国专家局创新团队国际合作伙伴计划“陆内成矿作用研究团队”(KZZD-EW-TZ-20)和国家自然科学基金项目(41172090)联合资助.

详细信息

Petrogenesis of the Heigutian Ti-V-magnetite ore-bearing layered intrusion, the inner zone of the Emeishan large igneous province

More Information
  • 黑谷田岩体产于峨眉山大火成岩省内带,是一个小型含钒钛磁铁矿辉长岩体。与区内其它典型大型基性-超基性层状岩体具有多个旋回岩相的特征不同,黑谷田层状岩体分为下部、上部两个岩相带:下部岩相带从底到顶依次为橄榄辉石岩、磁铁辉长岩、含磷灰石辉长岩和中粒辉长岩,上部岩相带为细粒辉长岩,二者呈突变接触关系。黑谷田岩体的锆石SHRIMP U-Pb年龄为263±5Ma,表明其是~260Ma峨眉山地幔柱岩浆主活动期的产物。岩石的矿物组合(主要为单斜辉石、斜长石,磁铁矿,少量橄榄石等)、元素地球化学(富Fe2O3、TiO2、P2O5,高Sm/Yb及低La/Sm)及低的初始87Sr/86Sr值和亏损的εNd(t)值特征一致指示黑谷田岩体与峨眉山高Ti玄武岩具有密切的内在成因联系。岩体的岩相学及地球化学特征暗示下部岩相带是富Fe-Ti岩浆侵入发生橄榄石、单斜辉石、磁铁矿、斜长石、磷灰石等矿物分离结晶、堆积固结的产物,而上部岩相带是另一期岩浆上侵较为快速冷却固结的结果,矿物堆晶作用不显著,但是二者起源于相同的母岩浆。下部岩相带比上部岩相带具有相对低的初始87Sr/86Sr值(分别为0.7041~0.7051和0.7050~0.7056)和略高的εNd(t)值(分别为2.1~4.4和0.6~1.3),表明后者比前者经历了稍微强烈的地壳物质同化混染。下部岩相带仅有橄榄辉石岩及辉长岩而缺少正长岩和花岗岩、以及较厚的氧化物矿体赋存在岩体底部下凹部位说明黑谷田钒钛磁铁矿形成于岩浆通道系统中,磁铁矿在流动过程中由于重力作用堆积成矿。黑谷田含钒钛磁铁矿岩体的发现表明小型层状岩体也具有重要的Fe-Ti氧化物成矿潜力,在勘探找矿中不容忽视。
  • 加载中
  • [1]

    Bindeman IN, Davis AM and Drake MJM. 1998. Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim. Cosmochim. Acta, 62(7): 1175-1193

    [2]

    Bai ZJ, Zhong H, Naldrett AJ et al. 2012. Whole-rock and mineral composition constraints on the genesis of the giant hongge Fe-Ti-V oxide deposit in the Emeishan large igneous Province, Southwest China. Econ. Geol., 107(3): 507-524

    [3]

    Chung SL and Jahn BM. 1995. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology, 23(10): 889-892

    [4]

    Cong BL. 1988. Formation and Evolution of the Panxi (Panzhihua-Xichang) Old Rift. Beijing: Science Press, 1-424 (in Chinese)

    [5]

    Fujimaki H. 1986. Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contrib. Mineral. Petrol., 94(1): 42-45

    [6]

    He B, Xu YG, Huang XL et al. 2007. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U-Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth Planet. Sci. Lett., 255(3-4): 306-323

    [7]

    He Q, Xiao L, Balta B et al. 2010. Variety and complexity of the Late-Permian Emeishan basalts: Reappraisal of plume-lithosphere interaction processes. Lithos, 119(1): 91-107

    [8]

    Hou T, Zhang ZC, Kusky T et al. 2011. A reappraisal of the high-Ti and low-Ti classification of basalts and petrogenetic linkage between basalts and mafic-ultramafic intrusions in the Emeishan Large Igneous Province, SW China. Ore Geol. Rev., 41(1): 133-143

    [9]

    Hou T, Zhang ZC, Encarnacion J and Santosh M. 2012a. Petrogenesis and metallogenesis of the Taihe gabbroic intrusion associated with Fe-Ti-oxide ores in the Panxi district, Emeishan Large Igneous Province, Southwest China. Ore Geol. Rev., 49: 109-127

    [10]

    Hou T, Zhang ZC and Pirajno F. 2012b. A new metallogenic model of the Panzhihua giant V-Ti-iron oxide deposit (Emeishan Large Igneous Province) based on high-Mg olivine-bearing wehrlite and new field evidence. Int. Geol. Rev., 54(15): 1721-1745

    [11]

    Hou T, Zhang Z, Encarnacion J et al. 2013. The role of recycled oceanic crust in magmatism and metallogeny: Os-Sr-Nd isotopes, U-Pb geochronology and geochemistry of picritic dykes in the Panzhihua giant Fe-Ti oxide deposit, central Emeishan large igneous province, SW China. Contrib. Mineral. Petrol., 165(4): 805-822

    [12]

    Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorphic Geol., 18(4): 423-439

    [13]

    Howarth GH and Prevec SA. 2013. Trace element, PGE, and Sr-Nd isotope geochemistry of the Panzhihua mafic layered intrusion, SW China: Constraints on ore-forming processes and evolution of parent magma at depth in a plumbing-system. Geochim. Cosmochim. Acta, 120: 459-478

    [14]

    Hu RZ, Tao Y, Zhong H et al. 2005. Mineralization systems of a mantle plume: A case study from the Emeishan igneous province, southwest China. Earth Science Frontiers, 12(1): 42-54 (in Chinese with English abstract)

    [15]

    Jones JH. 1995. Experimental Trace Element Partitioning, in Rock Physics and Phase Relations, A Handbook of Physical Constants, Reference Shelf 3, 73-104, American Geophysical Union, Washington, DC

    [16]

    Kamenetsky VS, Chung SL, Kamenetsky MB et al. 2012. Picrites from the Emeishan Large Igneous Province, SW China: A compositional continuum in primitive magmas and their respective mantle sources. J. Petrol., 53(10): 2095-2113

    [17]

    Qi L, Jing H and Gregoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507-513

    [18]

    Luan Y, Song XY, Chen LM et al. 2014. Key factors controlling the accumulation of the Fe-Ti oxides in the Hongge layered intrusion in the Emeishan Large Igneous Province, SW China. Ore Geol. Rev., 57: 518-538

    [19]

    Ludwig KR. 2001a. SQUID 1.03. A user manual. Berkeley: Berkeley Geochronological Center, Special Publication, 2: 19

    [20]

    Ludwig KR. 2001b. ISOPLOT/Ex.Version 2.49: A geochronological toolkit for Microsoft Excel: Berkeley Geochronological Center, Special Publication 1a, 56

    [21]

    Luo WJ, Zhang ZC, Hou T et al. 2013. Geochronology-geochemistry of the Cida bimodal intrusive complex, central Emeishan large igneous province, Southwest China: Petrogenesis and plume-lithosphere interaction. Int. Geol. Rev., 55(1): 88-114

    [22]

    Nielsen RL. 1992. BIGD.FOR: A FORTRAN program to calculate trace-element partition coefficients for natural mafic and intermediate composition magmas. Computers and Geosciences, 18(7): 773-788

    [23]

    Pang KN, Li CS, Zhou MF et al. 2008a. Abundant Fe-Ti oxide inclusions in olivine from the Panzhihua and Hongge layered intrusions, SW China: Evidence for early saturation of Fe-Ti oxides in ferrobasaltic magma. Contrib. Mineral. Petrol., 156(3): 307-321

    [24]

    Pang KN, Zhou MF, Lindsley D et al. 2008b. Origin of Fe-Ti oxide ores in mafic intrusions: Evidence from the Panzhihua intrusion, SW China. J. Petrol., 49(2): 295-313

    [25]

    Pearce JA and Parkinson IJ. 1993. Trace element models for mantle melting: Application to volcanic arc petrogenesis. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 76(1): 373-403

    [26]

    Qi L, Wang CY and Zhou MF. 2008. Controls on the PGE distribution of Permian Emeishan alkaline and peralkaline volcanic rocks in Longzhoushan, Sichuan Province, SW China. Lithos, 106(3-4): 222-236

    [27]

    Righter K, Campbell AJ, Humayun M et al. 2004. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts. Geochim. Cosmochim. Acta, 68(4): 867-880

    [28]

    She YW, Yu SY, Song XY et al. 2014. The formation of P-rich Fe-Ti oxide ore layers in the Taihe layered intrusion, SW China: Implications for magma-plumbing system process. Ore Geol. Rev., 57: 539-559

    [29]

    Shellnutt JG, Zhou MF and Zellmer G. 2009a. The role of Fe-Ti oxide crystallization in the formation of A-type granitoids with implications for the Daly gap: An example from the Permian Baima igneous complex, SW China. Chem. Geol., 259(3-4): 204-217

    [30]

    Shellnutt JG, Wang CY, Zhou MF et al. 2009b. Zircon Lu-Hf isotopic compositions of metaluminous and peralkaline A-type granitic plutons of the Emeishan large igneous province (SW China): Constraints on the mantle source. J. Asian Earth Sci., 35(1): 45-55

    [31]

    Song B, Zhang YH, Wan YS et al. 2002. The SHRIMP sample manufacture, test and explanation of some phenomena for the zircon. Geological Review, 48(S1): 26-30 (in Chinese with English abstract)

    [32]

    Song XY, Wang YL, Zhang ZJ et al. 1999. Quantitative simulation of formation of the rhythmic layering in layered intrusions: A case study of the Panzhihua layered intrusion, Sichuan Province. Acta Geologica Sinica, 73(1): 37-46 (in Chinese with English abstract)

    [33]

    Song XY, Zhang CJ, Hu RZ et al. 2005. Genetic links of magmatic deposits in the Emeishan Large Igneous Province with dynamics of mantle plume. Journal of Mineralogy Petrology, 25(4): 35-44 (in Chinese with English abstract)

    [34]

    Song XY, Zhou MF, Keays RR et al. 2006. Geochemistry of the Emeishan flood basalts at Yangliuping, Sichuan, SW China: Implications for sulfide segregation. Contrib. Mineral. Petrol., 152(1): 53-74

    [35]

    Song XY, Keays RR, Xiao L et al. 2009. Platinum-group element geochemistry of the continental flood basalts in the central Emeisihan Large Igneous Province, SW China. Chem. Geol., 262(3-4): 246-261

    [36]

    Song XY, Qi HW, Hu RZ et al. 2013. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China. Geochem. Geophy. Geosy., 14(3): 712-732

    [37]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society Special Publication, 42(1): 313-345

    [38]

    Tao Y, Li CS, Hu RZ et al. 2007. Petrogenesis of the Pt-Pd mineralized Jinbaoshan ultramafic intrusion in the Permian Emeishan Large Igneous Province, SW China. Contrib. Mineral. Petrol., 153(3): 321-337

    [39]

    Tao Y, Li C, Song XY et al. 2008. Mineralogical, petrological, and geochemical studies of the Limahe mafic-ultramatic intrusion and associated Ni-Cu sulfide ores, SW China. Miner. Deposita, 43(8): 849-872

    [40]

    Tao Y, Ma YS, Miao LC et al. 2009. SHRIMP U-Pb zircon age of the Jinbaoshan ultramafic intrusion, Yunnan Province, SW China. Chinese Sci. Bull., 54(1): 168-172

    [41]

    Wang CY and Zhou MF. 2013. New textural and mineralogical constraints on the origin of the Hongge Fe-Ti-V oxide deposit, SW China. Miner. Deposita, 48(6): 787-798

    [42]

    Williams IS, Buick A and Cartwright I. 1996. An extended of early episode mesopmtemzoic metamorphic fluid flow in the Reynold Region central Australia. J. Metamorphic Geol., 14: 29-47

    [43]

    Xiao L, Xu YG, Mei HJ et al. 2004. Distinct mantle sources of low-Ti and high-Ti basalts from the western Emeishan large igneous province, SW China: Implications for plume-lithosphere interaction. Earth Planet. Sci. Lett., 228(3-4): 525-546

    [44]

    Xu YG, Chung SL, Jahn BM et al. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China. Lithos, 58(3-4): 145-168

    [45]

    Xu YG, Mei HJ, Xu JG et al. 2003. Origin of two differentiation trends in the Emeishan flood basalts. Chinese Sci. Bull., 48(4): 390-394

    [46]

    Yu SY, Song XY, Chen LM, et al. 2014. Postdated melting of subcontinental lithospheric mantle by the Emeishan mantle plume: Evidence from the Anyi intrusion, Yunnan, SW China. Ore Geol. Rev., 57: 560-573

    [47]

    Zhang XQ, Zhang JF, Song XY et al. 2011. Implications of compositions of plagioclase and olivine on the formation of the Panzhihua V-Ti magnetite deposit, Sichuan Province. Acta Petrologica Sinica, 27(12): 3675-3688 (in Chinese with English abstract)

    [48]

    Zhang XQ, Song XY, Chen LM et al. 2012. Fractional crystallization and the formation of thick Fe-Ti-V oxide layers in the Baima layered intrusion, SW China. Ore Geol. Rev., 49: 96-108

    [49]

    Zhang XQ, Song XY, Chen LM et al. 2013. Chalcophile element geochemistry of the Baima layered intrusion, Emeishan Large Igneous Province, SW China: Implications for sulfur saturation history and genetic relationship with high-Ti basalts. Contrib. Mineral. Petrol., 166(1): 193-209

    [50]

    Zhang YX, Luo YN and Yang CX. 1988. Panxi Rift and It’s Geodynamics. Beijing: Geological Publishing House, 1-415 (in Chinese)

    [51]

    Zhang ZC, Li Y, Zhao L et al. 2007. Geochemistry of three layered mafic-ultramafic intrusions in the Panxi area and constraints on their sources. Acta Petrologica Sinica, 23(10): 2339-2352 (in Chinese with English abstract)

    [52]

    Zhang ZC, Mahoney JJ, Mao JW et al. 2006. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province. China. J. Petrol., 47(10): 1997-2019

    [53]

    Zhang ZC, Mao JW, Saunders AD, Ai Y, Li Y and Zhao L. 2009. Petrogenetic modeling of three mafic-ultramafic layered intrusions in the Emeishan large igneous province, SW China, based on isotopic and bulk chemical constraints. Lithos, 113(3-4): 369-392

    [54]

    Zhang ZC, Hou T, Santosh M, Li HM, Li JW, Zhang ZH, Song XY and Wang M. 2014. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geol. Rev., 57: 247-263

    [55]

    Zhang ZC, Hou T, Li HM, Li JW, Zhang ZH and Song XY. 2014. Enrichment mechanism of iron in magmatic-hydrothermal system. Acta Petrologica Sinica, 30(5): 1189-1204(in Chinese with English abstract)

    [56]

    Zhao L, Zhang ZC, Wang FS et al. 2006. Open-system magma chamber: An example from the Xinjie mafic-ultramafic layered intrusion in Panxi region, SW China. Acta Petrologica Sinica, 22(6): 1565-1578 (in Chinese with English abstract)

    [57]

    Zhong H, Zhou XH, Zhou MF et al. 2002. Platinum-group element geochemistry of the Hongge Fe-V-Ti deposit in the Pan-Xi area, southwestern China. Miner. Deposita, 37(2): 226-239

    [58]

    Zhong H, Yao Y, Prevec SA et al. 2004. Trace-element and Sr-Nd isotopic geochemistry of the PGE-bearing Xinjie layered intrusion in SW China. Chem. Geol., 203(3-4): 237-252

    [59]

    Zhong H, Hu RZ, Wilson AH et al. 2005. Review of the link between the Hongge layered intrusion and Emeishan flood basalts, Southwest China. Int. Geol. Rev., 47(9): 971-985

    [60]

    Zhong H and Zhu WG. 2006. Geochronology of layered mafic intrusions from the Pan-Xi area in the Emeishan large igneous province, SW China. Miner. Deposita, 41(6): 599-606

    [61]

    Zhong H, Zhu WG, Qi L et al. 2006. Platinum-group element (PGE) geochemistry of the Emeishan basalts in the Pan-Xi area, SW China. Chinese Sci. Bull., 51(7): 845-854

    [62]

    Zhong H, Qi L, Hu RZ et al. 2011. Rhenium-osmium isotope and platinum-group elements in the Xinjie layered intrusion, SW China: Implications for source mantle composition, mantle evolution, PGE fractionation and mineralization. Geochim. Cosmochim. Acta, 75(6): 1621-1641

    [63]

    Zhou MF, Yan DP, Kennedy AK et al. 2002a. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci. Lett., 196(1-2): 51-67

    [64]

    Zhou MF, Malpas J, Song XY et al. 2002b. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction. Earth Planet. Sci. Lett., 196(3-4): 113-122

    [65]

    Zhou MF, Robinson PT, Lesher CM et al. 2005. Geochemistry, petrogenesis and metallogenesis of the Panzhihua gabbroic layered intrusion and associated Fe-Ti-V oxide deposits, Sichuan Province, SW China. J. Petrol., 46(11): 2253-2280

    [66]

    Zhou MF, Arndt NT, Malpas J et al. 2008. Two magma series and associated ore deposit types in the Permian Emeishan large igneous province, SW China. Lithos, 103(3-4): 352-368

    [67]

    Zhou MF, Chen WT, Wang CY et al. 2013. Two stages of immiscible liquid separation in the formation of Panzhihua-type Fe-Ti-V oxide deposits, SW China. Geoscience Frontiers, 4(5): 481-502

    [68]

    从柏林. 1988. 攀西古裂谷的形成与演化. 北京: 科学出版社, 1-424

    [69]

    胡瑞忠, 陶琰, 钟宏等. 2005. 地幔柱成矿系统: 以峨眉山地幔柱为例. 地学前缘, 12(1): 42-54

    [70]

    宋彪, 张玉海, 万渝生等. 2002. 锆石SHRIMP样品靶制作、年龄测定及有关现象讨论. 地质论评, 48(增刊): 26-30

    [71]

    宋谢炎, 王玉兰, 张正阶等. 1999. 层状侵入体韵律层理形成过程的定量模拟——以四川攀枝花层状岩体为例. 地质学报, 73(1): 37-46

    [72]

    宋谢炎, 张成江, 胡瑞忠等. 2005. 峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系. 矿物岩石, 25(4): 35-44

    [73]

    张晓琪, 张加飞, 宋谢炎等. 2011. 斜长石和橄榄石成分对四川攀枝花钒钛磁铁矿床成因的指示意义. 岩石学报, 27(12): 3675-3688

    [74]

    张云湘, 骆耀南, 杨崇喜. 1988. 攀西裂谷. 北京: 地质出版社, 1-415

    [75]

    张招崇, 李莹, 赵莉等. 2007. 攀西三个镁铁-超镁铁质岩体的地球化学及其对源区的约束. 岩石学报, 23(10): 2339-2352

    [76]

    张招崇, 侯通, 李厚民, 李建威, 张作衡, 宋谢炎. 2014. 岩浆-热液系统中铁的富集机制探讨. 岩石学报, 30(5): 1189-1204

    [77]

    赵莉, 张招崇, 王福生等. 2006. 一个开放的岩浆房系统: 攀西新街镁铁-超镁铁质层状岩体. 岩石学报, 22(6): 1565-1578

  • 加载中
计量
  • 文章访问数:  5638
  • PDF下载数:  6489
  • 施引文献:  0
出版历程
收稿日期:  2013-10-08
修回日期:  2014-02-01
刊出日期:  2014-05-31

目录