膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用

李延河, 段超, 韩丹, 陈新旺, 王丛林, 杨秉阳, 张成, 刘锋. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用[J]. 岩石学报, 2014, 30(5): 1355-1368.
引用本文: 李延河, 段超, 韩丹, 陈新旺, 王丛林, 杨秉阳, 张成, 刘锋. 膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用[J]. 岩石学报, 2014, 30(5): 1355-1368.
LI YanHe, DUAN Chao, HAN Dan, CHEN XinWang, WANG CongLin, YANG BingYang, ZHANG Cheng, LIU Feng. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the Middle-Lower Yangtze River area[J]. Acta Petrologica Sinica, 2014, 30(5): 1355-1368.
Citation: LI YanHe, DUAN Chao, HAN Dan, CHEN XinWang, WANG CongLin, YANG BingYang, ZHANG Cheng, LIU Feng. Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the Middle-Lower Yangtze River area[J]. Acta Petrologica Sinica, 2014, 30(5): 1355-1368.

膏盐层氧化障在长江中下游玢岩铁矿成矿中的作用

  • 基金项目:

    本文受国家“973”项目(2012CB416801)、公益行业科研专项项目(200911007、201011027、201211074)和安徽省国土资源科技项目(2012-K-30)联合资助.

Effect of sulfate evaporate salt layer for formation of porphyrite iron ores in the Middle-Lower Yangtze River area

  • 长江中下游是我国著名的铁铜金等多金属成矿带,其中宁芜和庐枞盆地产出一系列与白垩纪中基性火山-次火山岩有关的玢岩铁矿床。前人根据玢岩铁矿的地质特征、空间分布规律及其与火山-次火山岩的关系建立了著名玢岩铁矿成矿模式,发展了成矿理论,有效指导了玢岩铁矿找矿工作。但三叠系膏盐层在成矿中的作用没有引起应有的重视,深部矿化基本没有涉及。最新研究和勘查结果揭示中下三叠统周冲村组顶部膏盐层与矿化关系密切,但膏盐层的控矿机理还不清楚,“膏盐层氧化障”在玢岩铁矿成矿中的作用鲜有报道,宁芜-庐枞盆地深部矿化类型和矿体赋存部位知之甚少。本文研究了长江中下游玢岩铁矿的硫同位素组成,探讨了膏盐层氧化障在玢岩铁矿成矿中的作用。宁芜和庐枞盆地玢岩铁矿、硫铁矿中普遍含有石膏,玢岩铁矿、硫铁矿和石膏矿三者密切共生。玢岩铁矿及伴生硫铁矿中黄铁矿的δ34SV-CDT值异常高,平均值均在5‰以上,石膏的δ34SV-CDT值大部分位于20‰左右,与海相硫酸盐的值相似,指示矿床中硫主要来自三叠纪膏盐层。矿床中黄铁矿的硫同位素组成与矿床成因类型密切相关。宁芜盆地姑山矿田的δ34SV-CDT值最高,为10.8‰,梅山矿田次之,为7.85‰,凹山矿田最低,为5.01‰;矿床成因类型也发生相应变化,矿浆型→矿浆-热液型→热液型。矿床中黄铁矿的硫同位素变化主要由硫酸盐的还原温度和原始岩浆硫所占比例不同引起,还原温度越高,δ34S值越高;原始岩浆硫所占比例越高,δ34S值越低。计算结果表明矿床中约60%~80%的硫来自膏盐层硫酸盐的还原,还原温度多在450℃以上,但硫化物的沉淀温度相对较低,就位时间稍晚。提出膏盐层(富含碳酸盐、石膏和石盐等)不仅可以为成矿提供大量Na+、Cl-、CO32-等矿化剂,使围岩发生钠长石化、方柱石化(氯化)和矽卡岩化等蚀变,使Fe2+以NaFeCl3等络合物形式搬运,膏盐层还是地壳深处最重要的氧化障,能够将硅酸盐熔体和成矿溶液中的Fe2+氧化成Fe3+,富集形成铁矿床,是玢岩铁矿成矿的关键因素。当炽热的岩浆与膏盐层(CaSO4)发生同化混染时,SO42-将硅酸盐熔体中的Fe2+氧化成Fe3+,Fe3+无法进入硅酸盐矿物晶格之中,而形成铁氧化物Fe3O4/Fe2O3和贫铁的硅酸盐矿物透辉石/阳起石、透闪石等。铁氧化物在磷、水和氯化钠等盐类物质的作用下在岩浆房中与硅酸盐熔体发生液态不混熔,熔离形成铁矿浆。铁矿浆粘滞性强,迁移距离不远,在岩体与膏盐层的接触带附近,沿构造有利部位贯入,形成姑山、梅山等矿浆型铁矿床。以铁的络合物形式搬运的成矿热液流动性强,迁移距离远,可以在远离岩体与膏盐层接触带部位、在上部白垩纪火山岩中富集沉淀。长江中下游玢岩铁矿中矿浆充填型和热液交代-充填型矿体同时存在,二者在空间上具有明显的分带,具“双层成矿结构”。在盆地深部岩体与膏盐层的接触部位产出“大冶式”矿浆充填-接触交代型富铁矿床,规模可能超过了赋存于浅部火山-次火山中的狭义“玢岩铁矿”。位于宁芜盆地南北两端的姑山和梅山矿田是找寻“大冶式”矿浆充填-接触交代型富铁矿的有利地段。在SO42-氧化Fe2+的同时自身被还原为S2-,S2-与Fe2+结合形成硫铁矿,在铁矿的上部或边部富集形成硫铁矿矿床;这是石膏矿、铁矿和硫铁矿密切共生的根本原因。
  • 加载中
  • [1]

    Barton MD and Johnson DA. 1996. Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology, 24(3): 259-262

    [2]

    Bi ZQ and Ding BL. 1997. Sedimentary environments of Triassic evaporate formations in the Lower Yangtze River region. Volcnology and Mineral Resources, 18(2): 127-136 (in Chinese with English abstract)

    [3]

    Cai BJ. 1980. The relationship of gypsum salt beds with endogenic copper and iron ores in the Middle-Lower Yangtze Valley. Geochimica, (2): 193-199 (in Chinese with English abstract)

    [4]

    Chang YF, Liu XP and Wu YC. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Beijing: Geological Publishing House, 1-379 (in Chinese)

    [5]

    Chou IM and Eugster HP. 1977. Solubility of magnetite in supercritical chloride solutions. Amer. J. Sci., 277(10): 1296-1314

    [6]

    Chu XL, Chen JS and Wang SX. 1984. Sulfur isotopic temperatures and their significance of Luohe iron deposit in Anhui Province. Geochimica, 12(4): 350-356 (in Chinese with English abstract)

    [7]

    Chu XL, Chen JS and Wang SX. 1986. Study on fractionation mechanism of sulfur isotope and physicochemical conditions of alteration and ore formation in Luohe iron deposit, Anhui. Scientia Geologica Sinica, 26(3): 189-195 (in Chinese with English abstract)

    [8]

    Ding Y. 1992. A new theory converning the origin of the Ningwu (Nanjing-Wuhu) porphyritic iron deposits: Assimilation-high-level emplacement-aggregation of ferruginous substance. Mineral Deposits, 11(3): 195-202 (in Chinese with English abstract)

    [9]

    Dong SW, Xiang HS, Gao R, Lü QT, Li JS, Zhan SQ, Lu ZW and Ma LC. 2010. Deep structure and ore formation with in Lujiang-Zongyang volcanic ore concentrated area in Middle to Lower Reaches of Yangtze River. Acta Petrologica Sinica, 26(9): 2529-2542 (in Chinese with English abstract)

    [10]

    Du JG and Chang DY. 2011. Consideration on the deep-rion deposits prospecting in the Middle-Lower Yangtze Metallogenic Belt. Acta Geologica Sinica, 85(5): 687-698 (in Chinese with English abstract)

    [11]

    Duan C, Mao JW, Li YH, Hou KJ, Yuan SD, Zhang C and Liu JL. 2011. Zircon U-Pb geochronology of the gabbro-diorite porphyry and granodiorite porphyry from Washan iron deposit in Ningwu basin, and its geological significance. Acta Geologica Sinica, 85(7): 1159-1171 (in Chinese with English abstract)

    [12]

    Duan C, Li YH, Hou KJ, Yuan SD, Zhang C and Liu JL. 2012. Late Mesozoic ore-forming events in Ningwu Ore district, Middle-Lower Yangtze River polymetallic ore belt, East China: Evidences from zircon U-Pb geochronology and Hf isotopic compositions of the granitic stocks. Acta Geologica Sinica, 86(3): 719-736

    [13]

    Duan C, Li YH, Yuan SD, Hu MY, Zhao LH, Chen XD, Zhang C and Liu JL. 2012. Geochemical characteristic of magnetite from Washan iron deposit in Ningwu ore district and its constraints on ore-forming. Acta Petrologica Sinica, 28(1): 243-257 (in Chinese with English abstract)

    [14]

    Fan HY, Li WD and Wang WB. 1995. On the relationship between the marine Triassic evaporate horizons and Cu(Au), Fe deposits in the Middle-Lower Yangtze area. Volcanology and Mineral Resources, 16(2): 32-41 (in Chinese with English abstract)

    [15]

    Fan Y, Zhou TF, Yuan F, Qian CC, Lu SM and Cooke DR. 2008. LA-ICP-MS zircon U-Pb ages of the A-type granites in the Lu-Zong (Lujiang-Zongyang) area and their geological significances. Acta Petrologica Sinica, 24(8): 1715-1724 (in Chinese with English abstract)

    [16]

    Fan Y, Zhou TF, Yuan F, Zhang LJ, Qian B, Ma L and Cooke DR. 2010. Geochronology of the diorite porphyrites in Ning-Wu basin and their metallogenic significances. Acta Petrologica Sinica, 26(9): 2715-2728 (in Chinese with English abstract)

    [17]

    Fan Y, Zhou TF, Hao L, Yuan F, Zhang LJ and Wang WC. 2012. Ore-forming fluid characteristic of Nihe iron deposit in Lu-Zong basin, Anhui Province and its significance to ore genesis. Acta Petrologica Sinica, 28(10): 3113-3124 (in Chinese with English abstract)

    [18]

    Frutos JJ and Oyarzun JM. 1975. Tectonic and geochemical evidence concerning the genesis of El Laco magnetite lava flow deposits, Chile. Economic Geology, 70(5): 988-990

    [19]

    Gao DM and Zhao YJ. 2008. Rerecognition of porphyrite iron ore deposit. Geology of Anhui, 18(3): 164-168 (in Chinese with English abstract)

    [20]

    Haller AD and Fontbote L. 2009. The raúl-condestable iron oxide copper-gold deposit, central coast of Peru: Ore and related hydrothermal alteration, sulfur isotopes, and thermodynamic constraints. Economic Geology, 104(3): 365-384

    [21]

    Henriquez F, Naslund HR, Nystrom JO, Vivallo W, Dobbs FM and Lledo H. 2003. New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile: A discussion. Economic Geology, 98(7): 1497-1502

    [22]

    Hou KJ and Yuan SD. 2010. Zircon U-Pb age and Hf isotopic composition of the volcanic and sub-volcanic rocks in the Ningwu basin and their geological implications. Acta Petrologica Sinica, 26(3): 888-902 (in Chinese with English abstract)

    [23]

    Hou T, Zhang ZC, Encarnacion J, Du YS, Zhao ZD and Liu JL. 2010. Geochemistry of Late Mesozoic dioritic porphyries associated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores, Middle-Lower Yangtze Valley, eastern China: Constraints on petrogenesis and iron sources. Lithos, 119(3-4): 330-344

    [24]

    Hou T, Zhang ZC and Kusky T. 2011. Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type? Ore Geology Reviews, 43(1): 333-346

    [25]

    Hou ZQ, Yang ZS, Li YQ, Zeng PS, Meng YF, Xu WY and Tian SH. 2004. Large-scale migration of fluids towards foreland basins during collisional orogeny: Evidence from Triassic anhydrock sequences and regional alteration in Middle-Lower Yangtze area. Mineral Deposits, 23(3): 310-326 (in Chinese with English abstract)

    [26]

    Hu WX, Hu SX and Zhao YC. 1991. Sedimentary genesis of anhydrite deposits in the volcanic series and their relation to the pyrite deposits in Xiangshang district Anhui Province. Geoscience, 5(2): 164-173 (in Chinese with English abstract)

    [27]

    Hu WX and Xu KQ. 1992. Study on Dabaozhuang-type pyrit deposits exhalation-sedimentation-superimposition-transformation sulfide deposits in the Lujiang-Zongyang Basin, Anhui Province. Scientia Geologica Sinica, (3): 213-224 (in Chinese with English abstract)

    [28]

    Huang QT and Yin GP. 1989. Iron Ore Deposit of Luohe in Lujiang, Anhui Province. Beijing: Geological Publishing House, 1-193 (in Chinese)

    [29]

    Institute of Geochemistry, Chinese Academy of Sciences. 1987. Ore-Forming Mechanism of Ningwu Type Iron Deposits. Beijing: Science Press, 1-152 (in Chinese)

    [30]

    Li BL and Xie YH. 1984. Origin, classification, and ore-forming model of Ningwu type iron deposits in Ningwu area. Science in China (Series B), (1): 80-86 (in Chinese)

    [31]

    Li YH, Xie GQ, Duan C and Han D. 2013. Effect of sulfate evaporate salt layer over the formation of skarn-type iron ores. Acta Geologica Sinica, 87(9): 1324-1334 (in Chinese with English abstract)

    [32]

    Lin G and Xu DR. 2010. Prospecting for Daye-type iron deposit in depth of porphyrite-type iron deposit: A case study of southern Ningwu iron deposits in Anhui Province. Mineral Deposits, 29(6): 427-436 (in Chinese with English abstract)

    [33]

    Lin XD, Yao SZ and Zhang SZ. 1984. A study on nature of ore-bearing fluids of "Daye Type" iron ore deposits in eastern Hubei, China. Earth Science, 27(4): 99-106 (in Chinese with English abstract)

    [34]

    Liu YS, Cheng LX and Liao WP. 1981. Expreimental studies on extraction of iron by reaction of diorite-porphyrite with chloride solution at elevated temperatures and pressures. Acta Gologica Sinica, (4): 276-289 (in Chinese with English abstract)

    [35]

    Mao JW, Xie GQ, Duan C, Pirajno F, Ishiyama D and Chen YC. 2011. A tectono-genetic model for porphyry-skarn Cu-Au-Mo-Fe and magnetite-apatite deposits along Middle-Lower Yangtze River Valley, Eastern China. Ore Geology Reviews, 43(1): 294-314

    [36]

    Meinert LD, Dipple GM and Nicolescu S. 2005. World Skarn Deposits. In: Hedenquist JW et al. (eds.). Economic Geology 100th Anniversary Volume, Society of Economic Geologists. Littleton, Colorado, USA: 299-336

    [37]

    Naslund HR. 1983. The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts. Amer. J. Sci., 283(10): 1034-1059

    [38]

    Ningwu Research Group. 1978. Magnetite Porphyry Deposits in Ningwu Area. Beijing: Geological Publishing House, 1-196 (in Chinese)

    [39]

    Nystroem JO and Henriquez F. 1994. Magmatic features of iron ores of the Kiruna type in Chile and Sweden: Ore textures and magnetite geochemistry. Econ. Geol., 89(4): 820-839

    [40]

    Ohmoto H and Rye RO. 1979. Isotopes of sulfur and carbon. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. 2nd Edition. New York: John Wiley and Sons, 10: 509-576

    [41]

    Park CF. 1961. A magnetite "flow" in northern Chile. Econ. Geol., 56(2): 431-436

    [42]

    Philpotts AR. 1967. Origin of certain iron titanium oxide and apatite rocks. Econ. Geol., 62(3): 303-315

    [43]

    Philpotts AR. 1982. Compositions of immiscible liquids in volcanic rocks. Contrib. Mineral. Petrol., 80(3): 201-218

    [44]

    Sillitoe RH. 2003. Iron oxide-copper-gold deposits: An Andean view. Mineralium Deposita, 38(7): 787-812

    [45]

    Snyder D, Carmichael ISE and Wiebe RA. 1993. Experimental study of liquid evolution in a Fe-rich, layered mafic intrusion: Constraints Fe-Ti oxide precipitation on the T-fO2 and T-P paths of tholeiitic magmas. Contrib. Mineral. Petrol., 113(1): 73-86

    [46]

    Song XX, Chen YC, Sheng JF and Ai YD. 1981. On iron deposits formed from volcanogenic-hypabyssal ore magma. Acta Geologica Sinica, (1): 41-54 (in Chinese with English abstract)

    [47]

    Su LH. 1984. The importance of liquid immiscibility in petrology and mineral deposits. Earth Science, (1): 1-12 (in Chinese with English abstract)

    [48]

    Tang YC, Wu YC, Chu GZ, Xing FM, Wang YM, Cao FY and Chang YF. 1998. Geology of Copper-gold Polymetallic Deposits in the along-Changjiang Area of Anhui Province. Beijing: Geological Publishing House, 1-351 (in Chinese with English abstract)

    [49]

    Veksler IV, Dorfman AM, Borisov A, Wirth R and Dingwell DB. 2007. Liquid immiscibility and evolution of basaltic magma. Journal of Petrology, 49: 2177-2186

    [50]

    Veksler IV, Dorfman AM, Borisov A, Wirth R and Dingwell DB. 2008. Liquid unmixing kinetics and the extent of immiscibility in the system K2O-CaO-FeO-Al2O3-SiO2. Chemical Geology, 256(3-4): 119-130

    [51]

    Wang WB, Li WD, Fan HY and Cheng ZF. 1994. Controlling conditions of strata, lithofacies and paleogeography to copper-deposit concentration regions in Middle-Lower Yangtze River. Volcanoloy and Mineral Resources, 15(3): 33-41 (in Chinese with English abstract)

    [52]

    Wu MA, Wang QS, Zheng GW, Cai XB, Yang SX and Di QS. 2011. Discovery of Nihe iron deposit in Lujiang, Anhui, and its exploration significance. Acta Geologica Sinica, 85(5): 802-809 (in Chinese with English abstract)

    [53]

    Xiong XX and Yao CM. 2000. Mineralogy of pyrites from the Xiangshan iron and pyrite deposits, Anhui Province. Acta Petrologica et Mineralogica, 19(2): 185-192 (in Chinese with English abstract)

    [54]

    Yin YD, Liu ZH and Sheng RC. 1996. Yuntaishan Pyrite deposit in Nanjing-Wuhu region: Geologial characters and genetic classification. Geology of Chemical Minerals, 18(4): 284-288 (in Chinese with English abstract)

    [55]

    Yu XH. 1984. The geological significance and the phase equilibrium experiments of wustite-fluor-phlogopite-diopside melt system at one bar and high temperature. Earth Science, (1): 12-18 (in Chinese with English abstract)

    [56]

    Yuan JZ. 1990. Iron ore type and genesis of Meishan iron ore deposit: The study of high temperature experiments. Geoscience, 4(4): 77-84 (in Chinese with English abstract)

    [57]

    Zhai YS, Shi ZL, Lin XD, Xiong PF, Wang DY, Yao SZ and Jin ZM. 1982. Genesis of "Daye Type" iron ore deposits in eastern Hubei, China. Earth Science, (3): 239-251 (in Chinese with English abstract)

    [58]

    Zhai YS, Yao SZ, Lin XD, Zhou XN, Wan TF, Jin FQ and Zhou ZG. 1992. Fe-Cu-Au Metallogeny of the Middle-Lower Changjiang Region. Beijing: Geological Publishing House, 1-235 (in Chinese)

    [59]

    Zhang ZC, Hou T, Santosh M, Li HM, Li JW, Zhang ZH, Song XY and Wang M. 2014. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geology Reviews, 57: 247-263

    [60]

    Zhang ZC, Hou T, Li HM, Li JW, Zhang ZH and Song XY. 2014. Enrichment mechanism of iron in magmatic-hydrothermal system. Acta Petrologica Sinica, 30(5): 1189-1204(in Chinese with English abstract)

    [61]

    Zhao YX. 1993. Mechanisms of Formation of the Contact Iron Deposits along the Middle-Lower Reaches of the Yangtze River. Wuhan: China University of Geosciences Press, 1-120 (in Chinese)

    [62]

    Zhou TF, Yuan F, Yue SC, Liu XD, Zhang X and Fan Y. 2007. Geochemistry and evolution of ore-forming fluids of the Yueshan Cu-Au skarn- and vein-type deposits, Anhui Province, South China. Ore Geology Reviews, 31(2): 279-303

    [63]

    Zhou TF, Fan Y, Yuan F, Lu SM, Shang SG, Cooke D, Meffre S and Zhao GC. 2008. Geochronology of the volcanic rocks in the Luzong (Lujiang-Zongyang) basin and its significance. Science in China (Series D), 51(10): 1470-1482

    [64]

    Zhou TF, Fan Y, Yuan F, Song CZ, Zhang LJ, Qian CC, Lu SM and Cooke D. 2010. Temporal-spatial framework of magmatic intrusions in Luzong volcanic basin in East China and their constrain to mineralization. Acta Petrologica Sinica, 26(9): 2694-2714 (in Chinese with English abstract)

    [65]

    Zhou TF, Fan Y, Yuan F, Zhang LJ, Ma L, Qian B and Xie J. 2011. Petrogenesis and metallogeny study of the volcanic basins in the Middle and Lower Yangtze metallogenic belt. Acta Geologica Sinica, 85(5): 712-730 (in Chinese with English abstract)

    [66]

    毕仲其, 丁保良. 1997. 下扬子区三叠系膏盐建造的沉积环境. 火山地质与矿产, 18(2): 127-136

    [67]

    蔡本俊. 1980. 长江中下游地区内生铁铜矿床与膏盐的关系. 地球化学, (2): 193-199

    [68]

    常印佛, 刘湘培, 吴昌言. 1991. 长江中下游地区铜铁成矿带. 北京: 地质出版社, 1-379

    [69]

    储雪蕾, 陈锦石, 王守信. 1984. 安徽罗河铁矿的硫同位素温度及意义. 地球化学, 12(4): 350-356

    [70]

    储雪蕾, 陈锦石, 王守信. 1986. 罗河铁矿的硫同位素分馏机制和矿床形成的物理化学条件的研究. 地质科学, 26(3): 189-195

    [71]

    丁毅. 1992. 宁芜玢岩铁矿成因新论同化作用、高侵位和铁质聚合. 矿床地质, 11(3): 195-202

    [72]

    董树文, 项怀顺, 高锐, 吕庆田, 李建设, 战双庆, 卢占武, 马立成. 2010. 长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用. 岩石学报, 26(9): 2529-2542

    [73]

    杜建国, 常丹燕. 2011. 长江中下游成矿带深部铁矿找矿的思考. 地质学报, 85(5): 687-698

    [74]

    段超, 毛景文, 李延河, 侯可军, 袁顺达, 张成, 刘佳林. 2011. 宁芜盆地凹山铁矿床辉长闪长玢岩和花岗闪长斑岩的锆石U-Pb年龄及其地质意义. 地质学报, 85(7): 1159-1171

    [75]

    段超, 李延河, 袁顺达, 胡明月, 赵令浩, 陈小丹, 张成, 刘佳林. 2012. 宁芜矿集区凹山铁矿床磁铁矿元素地球化学特征及其对成矿作用的制约. 岩石学报, 28(1): 243-257

    [76]

    范洪源, 李文达, 王文斌. 1995. 长江中下游海相三叠系膏盐层与铜(金)、铁矿床. 火山地质与矿产, 16(2): 32-41

    [77]

    范裕, 周涛发, 袁峰, 钱存超, 陆三明, Cooke DR. 2008. 安徽庐江-枞阳地区A型花岗岩的LA-ICP-MS定年及其地质意义. 岩石学报, 24(8): 1715-1724

    [78]

    范裕, 周涛发, 袁峰, 张乐骏, 钱兵, 马良, Cooke DR. 2010. 宁芜盆地闪长玢岩的形成时代及对成矿的指示意义. 岩石学报, 26(9): 2715-2728

    [79]

    范裕, 周涛发, 郝麟, 袁峰, 张乐骏, 王文财. 2012. 安徽庐枞盆地泥河铁矿床成矿流体特征及其对矿床成因的指示. 岩石学报, 28(10): 3113-3124

    [80]

    高道明, 赵云佳. 2008. 玢岩铁矿再认识. 安徽地质, 18(3): 164-168

    [81]

    侯可军, 袁顺达. 2010. 宁芜盆地火山-次火山岩的锆石U-Pb年龄、Hf同位素组成及其地质意义. 岩石学报, 26(3): 888-902

    [82]

    侯增谦, 杨竹森, 李荫清, 曾普胜, 蒙义峰, 徐文艺, 田世洪. 2004. 碰撞造山过程中流体向前陆盆地大规模迁移汇聚——来自长江中下游三叠纪膏盐建造和区域蚀变的证据. 矿床地质, 23(3): 310-326

    [83]

    胡文瑄, 胡受奚, 赵玉琛. 1991. 安徽向山地区火山岩层中硬石膏的沉积成因特征及其与硫铁矿的关系. 现代地质, 5(2): 164-173

    [84]

    胡文瑄, 徐克勤. 1992. 论安徽庐枞盆地大鲍庄式喷气沉积-叠加改造型硫铁矿床. 地质科学, (3): 213-224

    [85]

    黄清涛, 尹恭沛. 1989. 安徽庐江罗河铁矿. 北京: 地质出版社, 1-193

    [86]

    中国科学院地球化学研究所. 1987. 宁芜型铁矿床形成机理. 北京: 科学出版社, 1-152

    [87]

    李秉伦, 谢奕汉. 1984. 宁芜地区宁芜型铁矿的成因、分类和成矿模式. 中国科学(B 辑), (1): 80-86

    [88]

    李延河, 谢桂青, 段超, 韩丹. 2013. 膏盐层在矽卡岩型铁矿成矿中的作用. 地质学报, 87(9): 1324-1334

    [89]

    林刚, 许德如. 2010. 在宁芜玢岩铁矿深部寻找大冶式铁矿的探讨——以宁芜铁矿南段为例. 矿床地质, 29(6): 427-436

    [90]

    林新多, 姚书振, 张叔贞. 1984. 鄂东大冶式铁矿成矿流体性质的探讨. 地球科学, 27(4): 99-106

    [91]

    刘玉山, 程莱仙, 缪婉萍. 1981. 闪长玢岩在高温、高压下与氯化物溶液作用析出铁的实验研究. 地质学报, (4): 276-289

    [92]

    宁芜项目编写组. 1978. 宁芜玢岩铁矿. 北京: 地质出版社, 1-196

    [93]

    宋学信, 陈毓川, 盛继福, 艾永德. 1981. 论火山-浅成矿浆铁矿床. 地质科学, (1): 41-54

    [94]

    苏良赫. 1984. 液相不共溶在岩石学及矿床学中的重要性. 地球科学, (1): 1-12

    [95]

    唐永成, 吴言昌, 储国正, 邢凤鸣, 王永敏, 曹奋扬, 常印佛. 1998. 安徽沿江地区铜金多金属矿床地质. 北京: 地质出版社, 1-351

    [96]

    王文斌, 李文达, 范洪源, 程忠富. 1994. 长江中下游铜矿集中区地层、岩相、古地理控制条件. 火山地质与矿产, 15(3): 33-41

    [97]

    吴明安, 汪青松, 郑光文, 蔡晓兵, 杨世学, 狄勤松. 2011. 安徽庐江泥河铁矿的发现及意义. 地质学报, 85(5): 802-809

    [98]

    熊先孝, 姚超美. 2000. 向山地区铁、硫矿床中黄铁矿矿物学研究. 岩石矿物学杂志, 19(2): 185-192

    [99]

    殷友东, 刘振红, 盛如崇. 1996. 宁芜云台山硫铁矿矿床地质特征及成因类型. 化工矿产地质, 18(4): 284-288

    [100]

    喻学惠. 1984. 常压高温下方铁矿(FeO)-氟金云母[KMg3(AlSi3O10)F2]-透辉石(CaMgSi2O6)熔融体系相平衡实验及地质意义. 地球科学, (1): 12-18

    [101]

    袁家铮. 1990. 梅山铁矿矿石类型及成因-高温实验结果探讨. 现代地质, 4(4): 77-84

    [102]

    翟裕生, 石准立, 林新多, 熊鹏飞, 王定域, 姚书振, 金振民. 1982. 鄂东大冶式铁矿成因的若干问题. 地球科学, (3): 239-251

    [103]

    翟裕生, 姚书振, 林新多, 周启若, 万天丰, 金福全, 周宗桂. 1992. 长江中下游地区铁铜(金)成矿规律. 北京: 地质出版社, 1-235

    [104]

    张招崇, 侯通, 李厚民, 李建威, 张作衡, 宋谢炎. 2014. 岩浆-热液系统中铁的富集机制探讨. 岩石学报, 30(5): 1189-1204

    [105]

    赵永鑫. 1993. 长江中下游地区接触带铁矿床形成矿机理. 武汉: 中国地质大学出版社, 1-120

    [106]

    周涛发, 范裕, 袁峰, 陆三明, 尚世贵, Cooke DR, Meffre S, 赵国春. 2008. 安徽庐枞(庐江-枞阳)盆地火山岩的年代学及其意义. 中国科学(D辑), 38(11): 1342-1353

    [107]

    周涛发, 范裕, 袁峰, 宋传中, 张乐骏, 钱存超, 陆三明. 2010. 庐枞盆地侵入岩的时空格架及其对成矿的制约. 岩石学报, 26(9): 2694-2714

    [108]

    周涛发, 范裕, 袁峰, 张乐骏, 马良, 钱兵, 谢杰. 2011. 长江中下游成矿带火山岩盆地的成岩成矿作用. 地质学报, 85(5): 712-730

  • 加载中
计量
  • 文章访问数:  9036
  • PDF下载数:  4673
  • 施引文献:  0
出版历程
收稿日期:  2013-11-02
修回日期:  2014-01-24
刊出日期:  2014-05-31

目录