岩基后成矿作用:来自小兴安岭鹿鸣超大型钼矿的证据

刘翠, 邓晋福, 罗照华, 田世攀, 张昱, 钟长汀, SELBY David, 赵寒冬. 岩基后成矿作用:来自小兴安岭鹿鸣超大型钼矿的证据[J]. 岩石学报, 2014, 30(11): 3400-3418.
引用本文: 刘翠, 邓晋福, 罗照华, 田世攀, 张昱, 钟长汀, SELBY David, 赵寒冬. 岩基后成矿作用:来自小兴安岭鹿鸣超大型钼矿的证据[J]. 岩石学报, 2014, 30(11): 3400-3418.
LIU Cui, DENG JinFu, LUO ZhaoHua, TIAN ShiPan, ZHANG Yu, ZHONG ChangTing, SELBY David, ZHAO HanDong. Post-batholith metallogenesis: Evidence from Luming super large molybdenite deposit in Lesser Xing'an Range[J]. Acta Petrologica Sinica, 2014, 30(11): 3400-3418.
Citation: LIU Cui, DENG JinFu, LUO ZhaoHua, TIAN ShiPan, ZHANG Yu, ZHONG ChangTing, SELBY David, ZHAO HanDong. Post-batholith metallogenesis: Evidence from Luming super large molybdenite deposit in Lesser Xing'an Range[J]. Acta Petrologica Sinica, 2014, 30(11): 3400-3418.

岩基后成矿作用:来自小兴安岭鹿鸣超大型钼矿的证据

  • 基金项目:

    本文受中国地质调查局项目(1212011121075、1212010911028、12120114020901、1212011220921、1212011121266)、国家留学基金委青年骨干教师出国研修项目、国家重点基础研究发展计划(973计划)项目(2011CB808901)和科学技术部国际科技合作计划项目(2010DFB23390)联合资助.

Post-batholith metallogenesis: Evidence from Luming super large molybdenite deposit in Lesser Xing'an Range

  • 小兴安岭鹿鸣钼矿是新近发现的斑岩型超大型钼矿.尽管近年有一些新年龄和新资料发表,但是关于矿区的成岩、成矿事件的时代和成因仍有很大争议.本文采用LA ICP-MS锆石U-Pb、辉钼矿Re-Os以及黑云母40Ar-39Ar等测年方法分别对矿区的花岗斑岩、辉钼矿、以及二长花岗岩(下文称鹿鸣花岗岩)中的黑云母开展年代学研究.结果显示矿区花岗斑岩形成于174.0±2Ma(MSWD=3.2);辉钼矿等时线年龄为177.8±2.3Ma(MSWD=0.078),辉钼矿模式年龄加权平均值为177.5±1.2Ma(MSWD=0.058).黑云母40Ar-39Ar 900~1400℃坪年龄为175.9±1.1Ma,表明鹿鸣花岗岩形成于约176Ma(之前).因此结合野外、岩相学、前人结果等,认为鹿鸣花岗岩岩基成岩在前(>176Ma),花岗斑岩成岩在后(约174Ma左右),成矿应当在花岗斑岩成岩近同时或稍后,为早侏罗世末期.花岗斑岩含有浸染状硫化物,表明花岗斑岩体是致矿侵入体,鹿鸣(二长)花岗岩岩基仅仅是钼矿的围岩.岩石地球化学特征,尤其是MgO含量较高,高Sr低Y等特征,以及构造环境判别显示鹿鸣花岗岩岩基和花岗斑岩形成于与俯冲有关的火山弧环境.在早侏罗世早-中期,该区在北部蒙古-鄂霍茨克海和东部的饶河、伊佐那崎洋联合汇聚下形成俯冲带之上的加厚地壳,此时与地幔楔发生过反应的幔源岩浆底侵产生广泛的壳幔相互作用,形成鹿鸣花岗岩的岩基.随后加厚下地壳拆沉导致鹿鸣花岗岩岩基快速隆升,在地壳浅部,与来自于深部的花岗斑岩岩浆(+钼矿和深部流体)相遇,后者侵入到鹿鸣花岗岩岩基中,形成了斑岩及辉钼矿矿床.据此,提出鹿鸣钼矿属于岩基后成矿作用的产物.
  • 加载中
  • [1]

    Anderson T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem. Geol., 192(1-2): 59-79

    [2]

    Arculus RJ. 2003. Use and abuse of the terms calcalkaline and calcalkalic. Journal of Petrology, 44(5): 929-935

    [3]

    Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605-626

    [4]

    Bureau of Geology and Mineral Resources of Heilongjiang Province. 1993. Regional Geology of Heilongjiang Province. Beijing: Geological Publishing House, 1-734 (in Chinese)

    [5]

    Chen J, Sun FY, Pan T, Wang J and Huo L. 2012. Geological features of Huojihe molybdenum deposit in Heilongjiang, and geochronology and geochemistry of mineralized granodiorite. Journal of Jilin University (Earth Science Edition), 42(Suppl.1): 207-215 (in Chinese with English abstract)

    [6]

    Chen W, Liu XY and Zhang SH. 2002. Continuous laser stepwise heating 40Ar/39Ar dating technique. Geological Review, 48(Suppl.): 127-134 (in Chinese with English abstract)

    [7]

    Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200

    [8]

    Condie KC. 1982. Plate Tectonics and Crustal Evolution. Pergamon: Butterworth-Heinemann, 1-310

    [9]

    Defant MJ and Drummoud MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665

    [10]

    Deng JF, Luo ZH, Su SG, Mo XX, Yu BS, Lai XY and Chen HW. 2004. Petrogenesis, Tectonic Setting and Metallogenesis. Beijing: Geological Publishing House, 1-381 (in Chinese)

    [11]

    Deng JF, Su SG, Liu C et al. 2006. Discussion on the lithospheric thinning of the North China craton: Delamination? Or thermal erosion and chemical metasomatism? Earth Science Frontiers, 13(2): 105-119 (in Chinese with English abstract)

    [12]

    Deng JF, Xiao QH, Su SG et al. 2007a. Igneous petrotectonic assemblages and tectonic settings: A discussion. Geological Journal of China Universities, 13(3): 392-402 (in Chinese with English abstract)

    [13]

    Deng JF, Su SG, Liu C, Zhao GC, Zhao XG, Zhou S, Xiao QH, Wu ZX and Geng K. 2007b. Yanshanian (Jura-Cretaceous) orogenic processes and metallogenesis of the Taihangshan-Yanshan-West Liaoning orogenic belt, North China. Geoscience, 21(2): 232-240 (in Chinese with English abstract)

    [14]

    Deng JF, Liu C, Feng YF, Xiao QH, SU SG, Zhao GC, Kong WQ and Cao WY. 2010. High magnesian andesitic/dioritic rocks (HMA) and magnesian andesitic/dioritic rocks (MA): Two igneous rock types related to oceanic subduction. Geology in China, 37(4): 1112-1118 (in Chinese with English abstract)

    [15]

    Du AD, He HL, Yin NW et al. 1994. A study on the rhenium-osmium geochronometry of molybdenites. Acta Geologica Sinica, 68(4): 339-347 (in Chinese with English abstract)

    [16]

    Du AD, Zhao DM, Wang SX et al. 2001. Precise Re-Os dating for molybdenite by ID-NTIMS with Carius Tube Sample Preparation. Rock and Mineral Analysis, 20(4): 247-252 (in Chinese with English abstract)

    [17]

    Du AD, Wu SQ, Sun DZ et al. 2004. Preparation and certification of Re-Os dating reference materials: Molybdenite HLP and JDC. Geostandard and Geoanalytical Research, 28(1): 41-52

    [18]

    Du AD, Qu WJ, Wang DH et al. 2007. Subgrain-size decoupling of Re and 187Os within molybdenite. Mineral deposits, 26(5): 572-580 (in Chinese with English abstract)

    [19]

    Frost BR, Barnes CG, Collius WJ, Arculus RJ, Ellis DJ and Frost CD. 2001. A geochemical classification for granitic rocks. J. Petrol., 42(11): 2033-2048

    [20]

    Ge WC, Wu FY, Zhou CY and Zhang JH. 2007. Porphyry Cu-Mo deposits in the eastern Xing'an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications. Chinese Science Bulletin, 52(24): 3416-3427

    [21]

    Han ZX, Xu YQ and Zheng QD. 2004. Metallogenic Series and Its Evolution of Important Metallic and Nonmetallic Minerals in Heilongjiang Province. Harbin: Heilongjiang People's Publishing House, 1-241 (in Chinese with english abstract)

    [22]

    Han ZZ, Jin ZY, Lü J, Li GC and Zhang K. 2010a. Characteristics of diagenesis and mineralization of the ore-bearing granite and its tectonic setting in the Early Mesozoic Era in the Luming-Xing'an-Qianjin area, southeast of the Lesser Hinggan Mountains. Geology and Exploration, 46(5): 852-862 (in Chinese with English abstract)

    [23]

    Han ZZ, Zhao HL, Li JJ, Leng CE, Lü J and Li WL. 2010b. Early Mesozoic granites and polymetallic mineralization in southeastern Yichun area, Xiao Hinggan Mountains. Geology in China, 37(1): 75-87 (in Chinese with English abstract)

    [24]

    Harley SL, Kelly NM and Möller A. 2007. Zircon tiny but timely: Zircon behaviour and the thermal histories of Mountains Chains. Elements, 3(1): 25-30

    [25]

    Hollings P, Cooke D and Clark A. 2005. Regional geochemistry of Tertiary igneous rocks in central Chile: Implications for the geodynamic environment of giant porphyry copper and epithermal gold mineralization. Economic Geology, 100(5): 887-904

    [26]

    Hou ZQ, Ma HW, Zaw K et al. 2003. The Himalayan Yulong Porphyry Copper Belt: Product of large-scale strike-slip faulting in Eastern Tibet. Economic Geology, 98(1): 125-145

    [27]

    Hou ZQ. 2004. Prophyry Cu-Mo-Au deposits: Some new insights and advances. Earth Science Frontiers, 11(1): 131-144 (in Chinese with English abstract)

    [28]

    Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. Canad. J. Earth Sci., 8(5): 523-548

    [29]

    Jackson SE, Pearson NJ, Griffin WL and Belousova EA. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211(1-2): 47-69

    [30]

    Jäger E, Niggli E and Baethge H. 1963. Two standard minerals, biotite and muscovite for Rb-Sr and K-Ar age determinations, samples Bern 4B and Bern 4M from agneiss, samples Brione, Valle Verzasca (Switzerland). Schweizerische Mineralogische and Petrographische Mitteilungen, 43: 465-470

    [31]

    Jerram DA and Martin VM. 2008. Understanding crystal populations and their significance through the magma plumbing system. In: Annen C and Zellmer GF (eds.). Dynamics of Crustal Magma Transfer, Storage and Differentiation. Geological Society, London, Special Publications, 304: 133-148

    [32]

    Li HK, Zhu SX, Xiang ZQ et al. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract)

    [33]

    Li JY, Zhang J, Yang TN et al. 2009. Crustal tectonic division and evolution of the southern part of the north Asian orogenic region and its adjacent areas. Journal of Jilin University (Earth Science Edition), 39(4): 584-605 (in Chinese with English abstract)

    [34]

    Liu C, Deng JF, Su SG et al. 2006. The numerical simulation of heat fluxes of Yanshanian igneous activity, North China. Earth Science Frontiers, 13(2): 158-164 (in Chinese with English abstract)

    [35]

    Liu C, Deng JF, Kong WQ et al. 2011. LA-ICP-MS zircon U-Pb geochronology of the fine-grained granite and molybdenite Re-Os dating in the Wurinitu molybdenum deposit, Inner Mongolia, China. Acta Geologica Sinica, 85(5): 1057-1066

    [36]

    Liu C, Deng JF, Xu LQ, Zhang Y, Zhao HD, Kong WQ, Li N, Luo ZH, Bai LB, Zhao GC and Su SG. 2011. A preliminary frame of magma-tectonic-Mo metallogenic events of Mesozoic Era in DaHinggan Mountains and Xiao Hinggan Mountains areas. Earth Science Frontiers, 18(3): 166-178 (in Chinese with English abstract)

    [37]

    Liu C, Shi YL, Qiao YC, Deng JF, Li N and Duan PX. 2013. Numeric simulation of Early Jurassic magma-heating supply in the Yanshan area. Earthquake, 33(4): 257-268 (in Chinese with English abstract)

    [38]

    Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2009. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571

    [39]

    Lowell JD and Guilbert JM. 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposit. Economic Geology, 65(4): 373-408

    [40]

    Ludwig KR. 2003. User's manual for Isoplot/Ex version 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center: Special Publication, 4: 1-70

    [41]

    Luo ZH, Lu XX, Chen BH, Huang F, Yang ZF and Wang BZ. 2008. The constraints from deep processes on the porphyry metallogenesis in collisional orogens. Acta Petrologica Sinica, 24(3): 447-456 (in Chinese with English abstract)

    [42]

    Luo ZH, Lu XX, Xu JY, Liu C and Li DD. 2010. Petrographic indicators of the ore-bearing intrusions. Acta Petrologica Sinica, 26(8): 2247-2254 (in Chinese with English abstract)

    [43]

    Luo ZH. 2011. The space-time structure and the metallogenic prediction of evolution of magma and metallogenic system. Acta Mineraligica Sinica, (Suppl.): 505-506 (in Chinese with English abstract)

    [44]

    Luo ZH, Yang ZF, Dai G et al. 2013. Crystal populations of igneous rocks and their implications in genetic mineralogy. Geology in China, 40(1): 176-181 (in Chinese with English abstract)

    [45]

    Luo ZH, Zhou JL, Hei HX, Liu C and Su SG. 2014. Post-supereruption (-superintrusion) metallogenesis. Acta Petrologica Sinica, 30(11): 3131-3154 (in Chinese with English abstract)

    [46]

    Ma SQ and Chen J. 2012. Geochronology and geochemistry of granite of the Luming molybdenum deposit in Heilongjiang and their geological significance. Geology in China, 39(5): 1162-1171 (in Chinese with English abstract)

    [47]

    Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643

    [48]

    Middlemost EAK. 1985. Magmas and Magmatic Rocks. London: Longman, 1-83

    [49]

    Nie FJ, Sun ZJ, Liu YF, Lü KP, Zhao YA and Cao Y. 2013. Mesozoic multiple magmatic activities and molybdenum mineralization in the Chalukou ore district, Da Hinggan Mountains. Geology in China, 40(1): 273-286 (in Chinese with English abstract)

    [50]

    Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983

    [51]

    Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58(1): 63-81

    [52]

    Pitcher WS. 1982. Granite types and tectonic environment. In: Hsu KJ (ed.). Mountain Building Processes. London: Academic Press, 19-40

    [53]

    Qiao YC, Liu C, Zhao GP and Shi YL. 2012. Numerical simulation of the magmatism of North China Craton during Yanshanian. Earth Science (Journal of China University of Geosciences), 37(Suppl.): 203-212 (in Chinese with English abstract)

    [54]

    Qu WJ and Du AD. 2003. Highly precise Re-Os dating of molybdenite by ICP-MS with Carius Tube Sample Digestion. Rock and Mineral Analysis, 22(4): 254-262 (in Chinese with English abstract)

    [55]

    Richards JP, Boyce AJ and Pringle MS. 2001. Geologic evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96(2): 271-305

    [56]

    Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515-1533

    [57]

    Richards JP. 2005. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits. In: Porter TM (ed.). Super Porphyry Copper & Gold Deposits: A Global Perspective. PGC Publishing Adelaide, V. 1: 7-25

    [58]

    Rubatto D and Gebauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by Ion Microprobe: Some examples from the western Alps. Cathodoluminescence in Geosciences. Berlin, Heidelberg, Germany: Springer-Verlag, 373-400

    [59]

    Rui ZY, Huang CK, Qi GM et al. 1984. The Copper-Molybdenum Deposits of China. Beijing: Geological Publishing House, 1-350 (in Chinese)

    [60]

    Selby D and Creaser RA. 2004. Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os isotopic analysis of molybdenite: Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupling of Re and Os within molybdenite. Geochimica et Cosmochimica Acta, 68(19): 3897-3908

    [61]

    Shao J, Yang HZ, Jia B and Peng MS. 2012. Geological characteristics and ore-forming age of Luming Mo deposit in Heilongjiang Province. Mineral Deposit, 31(6): 1301-1310 (in Chinese with English abstract)

    [62]

    Shi YM, Cui B and Jia WL. 2007. Geological features of Luming molybdenum deposit at Tielin the Heilongjiang Province. Geology and Prospecting, 43(2): 19-22 (in Chinese with english abstract)

    [63]

    Shirey SB and Walker RJ. 1995. Carius tube digestion for low-blank rhenium-osmium analysis. Anal. Chem., 67(13): 2136-2141

    [64]

    Stein HG, Morgan JW, Markey RJ et al. 1998. An introduction to Re-Os: What's in it for the mineral industry? Segue Newsletter, 32(1): 8-15

    [65]

    Sui ZM, Ge WC, Wu FY et al. 2007. Zircon U-Pb ages, geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan Mts. Acta Petrologica Sinica, 23(2): 461-480 (in Chinese with English abstract)

    [66]

    Sun DY, Wu FY, Lin Q et al. 2001. Petrogenesis and crustmantle interaction of Early Yanshanian Baishishan pluton in Zhangguangcai Range. Acta Petrologica Sinica, 17(2): 227-235 (in Chinese with English abstract)

    [67]

    Sun DY, Wu FY, Gao S et al. 2004. LA-ICPMS Zircon U Pb Age of the Qingshui pluton in the East Xiao Hinggan Mountains. Acta Geoscientica Sinica, 25(2): 213-218 (in Chinese with English abstract)

    [68]

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

    [69]

    Tan HY, Shu GL, Lü JC, Han RP, Zhang S and Cou LL. 2012. LA-ICP-MS zircon U-Pb and molybdenite Re-Os dating for the Luming large-scale molybdenum deposit in Xiao Hinggan Mountains and its geological implication. Journal of Jilin University (Earth Science Edition), 42(6): 1757-1770 (in Chinese with English abstract)

    [70]

    Tang J, Xu WL, Wang F et al. 2011. Petrogenesis of bimodal volcanic rocks from Maoershan Formation in Zhangguangcai Range: Evidence from geochronology and geochemistry. Global Geology, 30(4): 508-520 (in Chinese with English abstract)

    [71]

    Tang WL. 2007. Geochemical characteristics of magmatites and metallogenic prognosis in Qianjin area, Heilongjiang Province. Master Degree Thesis. Changchun: Jilin University, 10-29 (in Chinese with English summary)

    [72]

    Thompson RN. 1982. Magmatism of the British Tertiary volcanic province. Scott. J. Geol., 18: 49-107

    [73]

    Tian SP. 2013. Geochemical characteristics of ore rock in the Luming and Cuiling Mo deposit, Heilongjiang Province. Master Degree Thesis. Changchun: Jilin University, 1-62 (in Chinese with English summary)

    [74]

    Wu FY, Lin Q, Ge WC and Sun DY. 1998. The petrogenesis and age of Xinhuatun pluton in Zhangguangcailing. Acta Petrologica et Mineralogica, 17(3): 226-234 (in Chinese with English abstract)

    [75]

    Wu FY, Sun DY, Li HM et al. 2002. A-type ganites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173

    [76]

    Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003. Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic. Lithos, 67(3-4): 191-204

    [77]

    Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30

    [78]

    Xu WL, Wang F, Meng E, Gao FH, Pei FP, Yu JJ and Tang J. 2012. Paleozoic-Early Mesozoic tectonic evolution in the eastern Heilongjiang Province, NE China: Evidence from igneous rock association and U-Pb geochronology of detrital Zircons. Journal of Jilin University (Earth Science Edition), 42(5): 1378-1389 (in Chinese with English abstract)

    [79]

    Xu WL, Wang F, Pei FP et al. 2013. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrologica Sinica, 29(2): 339-353 (in Chinese with English abstract)

    [80]

    Yang YC, Han SJ, Sun DY, Guo J and Zhang SJ. 2012. Geological and geochemical features and geochronology of porphyry molybdenum deposits in the Lesser Xing'an Range-Zhangguangcai Range metallogenic belt. Acta Petrologica Sinica, 28(2): 379-390 (in Chinese with English abstract)

    [81]

    Yu HJ. 2012. Geological characteristics and genesis of Luming molybdenum deposit at Tielin of Heilongjiang Provices. Science Communication, 6(12): 37-39 (in Chinese with English abstract)

    [82]

    Zeng QD and Liu JM. 2010. Zircon SHRIMP U-Pb dating and geological significance of the granite porphyry from Banlashan porphyry molydenum deposit in Xilamulun molybdenum metallogenic belt. Journal of Jilin University (Earth Science Edition), 40(4): 828-834 (in Chinese with English abstract)

    [83]

    Zeng QD, Liu JM, Chu SX et al. 2011. Characteristics and significances of rapakivi in Yichun area of Xiaoxinganling, Heilongjiang Province. Journal of Jilin University (Earth Science Edition), 41(6): 1705-1714 (in Chinese with English abstract)

    [84]

    Zhang LL, Liu C, Zhou S, Sun K, Qiu RZ and Feng Y. 2014. Characteristics of ore-bearing granites and ore-forming age of the Huojihe molybdenum deposit in Lesser Xing'an Range. Acta Petrologica Sinica, 30(11): 3419-3431 (in Chinese with English abstract)

    [85]

    Zhao HD, Liu Y, Deng JF et al. 2009. Characteristics and significances of rapakivi in Yichun area of Xiaoxinganling, Heilongjiang Province. Geology in China, 36(3): 658-668 (in Chinese with English abstract)

    [86]

    陈静, 孙丰月, 潘彤, 王瑾, 霍亮. 2012. 黑龙江霍吉河钼矿成矿地质特征及花岗闪长岩年代学、地球化学特征. 吉林大学学报(地球科学版), 42(增刊1): 207-215

    [87]

    陈文, 刘新宇, 张思红. 2002. 连续激光阶段升温40Ar/39Ar地质年代测定方法研究. 地质论评, 48(增刊): 127-134

    [88]

    邓晋福, 罗照华, 苏尚国, 莫宣学, 于炳松, 赖兴运, 谌宏伟. 2004. 岩石成因、构造环境与成矿作用. 北京: 地质出版社, 1-381

    [89]

    邓晋福, 苏尚国, 刘翠等. 2006. 关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论: 拆沉?还是热侵蚀和化学交代. 地学前缘, 13(2): 105-119

    [90]

    邓晋福, 肖庆辉, 苏尚国等. 2007a. 火成岩组合与构造环境: 讨论. 高校地质学报, 13(3): 392-402

    [91]

    邓晋福, 苏尚国, 刘翠, 赵国春, 赵兴国, 周肃, 肖庆辉, 吴宗絮, 耿科. 2007b. 华北太行-燕山-辽西地区燕山期(J-K)造山过程与成矿作用. 现代地质, 21(2): 232-240

    [92]

    邓晋福, 刘翠, 冯艳芳, 肖庆辉, 苏尚国, 赵国春, 孔维琼, 曹文燕. 2010. 高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA): 与洋俯冲作用相关的两类典型的火成岩类. 中国地质, 37(4): 1112-1118

    [93]

    杜安道, 何红蓼, 殷宁万等. 1994. 辉钼矿的铼-锇同位素地质年龄测定方法研究. 地质学报, 68(4): 339-347

    [94]

    杜安道, 赵敦敏, 王淑贤等. 2001. Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄. 岩矿测试, 20(4): 247-252

    [95]

    杜安道, 屈文俊, 王登红等. 2007. 辉钼矿亚晶粒范围内Re和187Os的失耦现象. 矿床地质, 26(5): 572-580

    [96]

    韩振新, 徐衍强, 郑庆道. 2004. 黑龙江省重要金属和非金属矿产的成矿系列及其演化. 哈尔滨: 黑龙江人民出版社, 1-241

    [97]

    韩振哲, 金哲岩, 吕军, 李国臣, 张坤. 2010a. 小兴安岭东南鹿鸣-兴安-前进地区早中生代含矿花岗岩成岩成矿特征. 地质与勘探, 46(5): 852-862

    [98]

    韩振哲, 赵海玲, 李娟娟, 冷昌恩, 吕军, 李文龙. 2010b. 小兴安岭东南伊春一带早中生代花岗岩与多金属成矿作用. 中国地质, 37(1): 75-87

    [99]

    黑龙江省地质矿产局. 1993. 黑龙江省区域地质志. 北京: 地质出版社, 1-734

    [100]

    侯增谦. 2004. 斑岩Cu-Mo-Au矿床: 新认识与新进展. 地学前缘, 11(1): 131-144

    [101]

    李怀坤, 朱士兴, 相振群等. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140

    [102]

    李锦轶, 张进, 杨天南等. 2009. 北亚造山区南部及其毗邻地区地壳构造分区与构造演化. 吉林大学学报(地球科学版), 39(4): 584-605

    [103]

    刘翠, 邓晋福, 苏尚国等. 2006. 华北地区燕山期岩浆活动热供给的初步数值模拟. 地学前缘, 13(2): 158-164

    [104]

    刘翠, 邓晋福, 许立权, 张昱, 赵寒冬, 孔维琼, 李宁, 罗照华, 白立兵, 赵国春, 苏尚国. 2011. 大兴安岭-小兴安岭地区中生代岩浆-构造-钼成矿地质事件序列的初步框架. 地学前缘, 18(3): 166-178

    [105]

    刘翠, 石耀霖, 乔彦超, 邓晋福, 李宁, 段培新. 2013. 燕山地区早侏罗世岩浆活动热供给的数值模拟. 地震, 33(4): 257-268

    [106]

    罗照华,卢欣祥,陈必河,黄凡,杨宗峰,王秉璋. 2008. 碰撞造山带斑岩型矿床的深部约束机制.岩石学报, 24(3): 447-456

    [107]

    罗照华, 卢欣祥, 许俊玉, 刘翠, 李德东. 2010. 成矿侵入体的岩石学标志. 岩石学报, 26(8): 2247-2254

    [108]

    罗照华. 2011. 岩浆成矿系统演化的时空结构与成矿预测体制. 矿物学报, (增刊): 505-506

    [109]

    罗照华, 杨宗锋, 代耕等. 2013. 火成岩的晶体群与成因矿物学展望. 中国地质, 40(1): 176-181

    [110]

    罗照华, 周久龙, 黑慧欣, 刘翠, 苏尚国. 2014. 超级喷发(超级侵入)后成矿作用. 岩石学报, 30(11): 3131-3154

    [111]

    马顺清, 陈静. 2012. 黑龙江鹿鸣钼矿区花岗岩锆石年龄、地球化学特征及其地质意义. 中国地质, 39(5): 1162-1171

    [112]

    聂凤军, 孙振江, 刘翼飞, 吕克鹏, 赵宇安, 曹毅. 2013. 大兴安岭岔路口矿区中生代多期岩浆活动与钼成矿作用. 中国地质, 40(1): 273-286

    [113]

    乔彦超, 刘翠, 赵桂萍, 石耀霖. 2012. 华北克拉通燕山期岩浆活动的数值模拟. 地球科学, 37(增刊): 203-212

    [114]

    屈文俊, 杜安道. 2003. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄. 岩矿测试, 22(4): 254-262

    [115]

    芮宗瑶, 黄崇轲, 齐国明等. 1984. 中国斑岩铜(钼)矿床. 北京: 地质出版社, 1-350

    [116]

    邵军, 杨宏智, 贾斌, 彭明生. 2012. 黑龙江鹿鸣钼矿床地质特征及成矿年龄. 矿床地质, 31(6): 1301-1310

    [117]

    时永明, 崔彬, 贾维林. 2007. 黑龙江省铁力市鹿鸣钼矿床地质特征. 地质与勘探, 43(2): 19-22

    [118]

    隋振民, 葛文春, 吴福元等. 2007. 大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因. 岩石学报, 23(2): 461-480

    [119]

    孙德有, 吴福元, 林强等. 2001. 张广才岭燕山早期白石山岩体成因与壳幔相互作用. 岩石学报, 17(2): 227-235

    [120]

    孙德有, 吴福元, 高山等. 2004. 小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定. 地球学报, 25(2): 213-218

    [121]

    谭红艳, 舒广龙, 吕骏超, 韩仁萍, 张森, 寇林林. 2012. 小兴安岭鹿鸣大型钼矿LA-ICP-MS锆石U-Pb和辉钼矿Re-Os年龄及其地质意义. 吉林大学学报(地球科学版), 42(6): 1757-1770

    [122]

    唐杰, 许文良, 王枫等. 2011. 张广才岭帽儿山组双峰式火山岩成因: 年代学与地球化学证据. 世界地质, 30(4): 508-520

    [123]

    唐文龙. 2007. 黑龙江省前进地区岩浆岩地球化学特征与成矿预测. 硕士学位论文. 长春: 吉林大学, 10-29

    [124]

    田世攀. 2013. 黑龙江省鹿鸣、翠岭钼矿床成矿岩体地球化学特征研究. 硕士学位论文. 长春: 吉林大学, 1-62

    [125]

    吴福元, 林强, 葛文春, 孙德有. 1998. 张广才岭新华屯岩体的形成时代与成因研究. 岩石矿物学杂志, 17(3): 226-234

    [126]

    许文良, 王枫, 孟恩, 高福红, 裴福萍, 于介江, 唐杰. 2012. 黑龙江省东部古生代-早中生代的构造演化: 火成岩组合与碎屑锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 42(5): 1378-1389

    [127]

    许文良, 王枫, 裴福萍等. 2013. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约. 岩石学报, 29(2): 339-353

    [128]

    杨言辰, 韩世炯, 孙德有, 郭嘉, 张苏江. 2012. 小兴安岭-张广才岭成矿带斑岩型钼矿床岩石地球化学特征及其年代学研究. 岩石学报, 28(2): 379-390

    [129]

    于海军. 2012. 黑龙江省铁力市鹿鸣钼矿矿床地质特征及成因. 科技传播, 6(12): 37-39

    [130]

    曾庆栋, 刘建明. 2010. 西拉沐伦钼矿带半拉山斑岩钼矿床花岗斑岩锆石SHRIMP U-Pb测年及其地质意义. 吉林大学学报(地球科学版), 40(4): 828-834

    [131]

    曾庆栋, 刘建明, 褚少雄等. 2011. 西拉沐伦成矿带中生代花岗岩浆活动与钼成矿作用. 吉林大学学报(地球科学版), 41(6): 1705-1714

    [132]

    张琳琳, 刘翠, 周肃, 孙凯, 邱瑞照, 冯瑶. 2014. 小兴安岭霍吉河钼矿区含矿花岗岩类特征及成矿年龄. 岩石学报, 30(11): 3419-3431

    [133]

    赵寒冬, 刘勇, 邓晋福等. 2009. 小兴安岭伊春地区环斑花岗岩组合特征及其地质意义. 中国地质, 36(3): 658-668

  • 加载中
计量
  • 文章访问数:  6404
  • PDF下载数:  6217
  • 施引文献:  0
出版历程
收稿日期:  2014-03-19
修回日期:  2014-06-16
刊出日期:  2014-11-30

目录